Upload folder using huggingface_hub
Browse files- README.md +202 -0
- adapter_config.json +590 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +16 -0
- chat_template.json +3 -0
- global_step3000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step3000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step3000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step3000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step3000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step3000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step3000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step3000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step3000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step3000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step3000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- global_step3000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- global_step3000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- global_step3000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- non_lora_state_dict_visual.bin +3 -0
- preprocessor_config.json +29 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +146 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: /home/ubuntu/zl/Qwen2_VL_72B_ckt/
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
adapter_config.json
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": {
|
4 |
+
"base_model_class": "Qwen2VLForConditionalGeneration",
|
5 |
+
"parent_library": "transformers.models.qwen2_vl.modeling_qwen2_vl"
|
6 |
+
},
|
7 |
+
"base_model_name_or_path": "/home/ubuntu/zl/Qwen2_VL_72B_ckt/",
|
8 |
+
"bias": "none",
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 128,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 64,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"model.layers.60.self_attn.o_proj",
|
27 |
+
"model.layers.47.mlp.gate_proj",
|
28 |
+
"model.layers.36.mlp.gate_proj",
|
29 |
+
"model.layers.43.self_attn.q_proj",
|
30 |
+
"model.layers.67.mlp.up_proj",
|
31 |
+
"model.layers.2.mlp.gate_proj",
|
32 |
+
"model.layers.14.self_attn.q_proj",
|
33 |
+
"model.layers.31.mlp.up_proj",
|
34 |
+
"model.layers.76.self_attn.o_proj",
|
35 |
+
"model.layers.2.self_attn.o_proj",
|
36 |
+
"model.layers.51.self_attn.o_proj",
|
37 |
+
"model.layers.16.mlp.down_proj",
|
38 |
+
"model.layers.1.self_attn.q_proj",
|
39 |
+
"model.layers.22.mlp.gate_proj",
|
40 |
+
"model.layers.9.mlp.gate_proj",
|
41 |
+
"model.layers.29.self_attn.q_proj",
|
42 |
+
"model.layers.29.self_attn.o_proj",
|
43 |
+
"model.layers.12.mlp.gate_proj",
|
44 |
+
"model.layers.35.mlp.up_proj",
|
45 |
+
"model.layers.8.mlp.up_proj",
|
46 |
+
"model.layers.28.self_attn.o_proj",
|
47 |
+
"model.layers.33.mlp.up_proj",
|
48 |
+
"model.layers.68.mlp.up_proj",
|
49 |
+
"model.layers.76.mlp.up_proj",
|
50 |
+
"model.layers.37.mlp.down_proj",
|
51 |
+
"model.layers.9.self_attn.o_proj",
|
52 |
+
"model.layers.18.mlp.gate_proj",
|
53 |
+
"model.layers.3.self_attn.v_proj",
|
54 |
+
"model.layers.74.mlp.gate_proj",
|
55 |
+
"model.layers.35.mlp.gate_proj",
|
56 |
+
"model.layers.36.self_attn.k_proj",
|
57 |
+
"model.layers.36.self_attn.o_proj",
|
58 |
+
"model.layers.18.mlp.up_proj",
|
59 |
+
"model.layers.28.mlp.gate_proj",
|
60 |
+
"model.layers.24.self_attn.q_proj",
|
61 |
+
"model.layers.58.mlp.up_proj",
|
62 |
+
"model.layers.4.self_attn.v_proj",
|
63 |
+
"model.layers.32.self_attn.v_proj",
|
64 |
+
"model.layers.79.self_attn.q_proj",
|
65 |
+
"model.layers.6.self_attn.k_proj",
|
66 |
+
"model.layers.66.mlp.gate_proj",
|
67 |
+
"model.layers.19.mlp.up_proj",
|
68 |
+
"model.layers.68.self_attn.v_proj",
|
69 |
+
"model.layers.64.self_attn.q_proj",
|
70 |
+
"model.layers.6.mlp.down_proj",
|
71 |
+
"model.layers.69.mlp.gate_proj",
|
72 |
+
"model.layers.58.self_attn.v_proj",
|
73 |
+
"model.layers.48.self_attn.q_proj",
|
74 |
+
"model.layers.52.mlp.up_proj",
|
75 |
+
"model.layers.15.self_attn.o_proj",
|
76 |
+
"model.layers.74.mlp.down_proj",
|
77 |
+
"model.layers.79.mlp.down_proj",
|
78 |
+
"model.layers.2.self_attn.v_proj",
|
79 |
+
"model.layers.32.self_attn.k_proj",
|
80 |
+
"model.layers.15.mlp.up_proj",
|
81 |
+
"model.layers.14.mlp.down_proj",
|
82 |
+
"model.layers.74.self_attn.v_proj",
|
83 |
+
"model.layers.30.mlp.down_proj",
|
84 |
+
"model.layers.39.mlp.gate_proj",
|
85 |
+
"model.layers.44.mlp.up_proj",
|
86 |
+
"model.layers.44.self_attn.v_proj",
|
87 |
+
"model.layers.54.mlp.gate_proj",
|
88 |
+
"model.layers.66.self_attn.k_proj",
|
89 |
+
"model.layers.48.self_attn.k_proj",
|
90 |
+
"model.layers.65.self_attn.k_proj",
|
91 |
+
"model.layers.33.mlp.down_proj",
|
92 |
+
"model.layers.66.mlp.up_proj",
|
93 |
+
"model.layers.67.self_attn.q_proj",
|
94 |
+
"model.layers.33.mlp.gate_proj",
|
95 |
+
"model.layers.79.mlp.gate_proj",
|
96 |
+
"model.layers.69.self_attn.k_proj",
|
97 |
+
"model.layers.40.self_attn.q_proj",
|
98 |
+
"model.layers.26.self_attn.k_proj",
|
99 |
+
"model.layers.71.self_attn.o_proj",
|
100 |
+
"model.layers.58.self_attn.k_proj",
|
101 |
+
"model.layers.78.self_attn.k_proj",
|
102 |
+
"model.layers.76.mlp.down_proj",
|
103 |
+
"model.layers.4.self_attn.o_proj",
|
104 |
+
"model.layers.17.self_attn.o_proj",
|
105 |
+
"model.layers.29.mlp.gate_proj",
|
106 |
+
"model.layers.43.self_attn.o_proj",
|
107 |
+
"model.layers.47.self_attn.v_proj",
|
108 |
+
"model.layers.11.mlp.up_proj",
|
109 |
+
"model.layers.60.self_attn.v_proj",
|
110 |
+
"model.layers.64.mlp.gate_proj",
|
111 |
+
"model.layers.55.self_attn.v_proj",
|
112 |
+
"model.layers.65.mlp.down_proj",
|
113 |
+
"model.layers.18.self_attn.o_proj",
|
114 |
+
"model.layers.22.self_attn.v_proj",
|
115 |
+
"model.layers.24.mlp.up_proj",
|
116 |
+
"model.layers.19.self_attn.k_proj",
|
117 |
+
"model.layers.30.self_attn.q_proj",
|
118 |
+
"model.layers.26.mlp.gate_proj",
|
119 |
+
"model.layers.62.self_attn.k_proj",
|
120 |
+
"model.layers.23.mlp.up_proj",
|
121 |
+
"model.layers.34.mlp.down_proj",
|
122 |
+
"model.layers.70.mlp.down_proj",
|
123 |
+
"model.layers.4.self_attn.k_proj",
|
124 |
+
"model.layers.25.self_attn.o_proj",
|
125 |
+
"model.layers.55.self_attn.q_proj",
|
126 |
+
"model.layers.53.self_attn.v_proj",
|
127 |
+
"model.layers.9.self_attn.q_proj",
|
128 |
+
"model.layers.10.self_attn.q_proj",
|
129 |
+
"model.layers.24.self_attn.v_proj",
|
130 |
+
"model.layers.78.mlp.up_proj",
|
131 |
+
"model.layers.71.mlp.gate_proj",
|
132 |
+
"model.layers.2.mlp.up_proj",
|
133 |
+
"model.layers.56.self_attn.o_proj",
|
134 |
+
"model.layers.19.self_attn.v_proj",
|
135 |
+
"model.layers.11.self_attn.k_proj",
|
136 |
+
"model.layers.51.mlp.up_proj",
|
137 |
+
"model.layers.3.self_attn.q_proj",
|
138 |
+
"model.layers.49.mlp.gate_proj",
|
139 |
+
"model.layers.22.mlp.down_proj",
|
140 |
+
"model.layers.69.mlp.up_proj",
|
141 |
+
"model.layers.3.mlp.gate_proj",
|
142 |
+
"model.layers.11.mlp.down_proj",
|
143 |
+
"model.layers.9.self_attn.v_proj",
|
144 |
+
"model.layers.38.mlp.down_proj",
|
145 |
+
"model.layers.56.self_attn.k_proj",
|
146 |
+
"model.layers.40.self_attn.v_proj",
|
147 |
+
"model.layers.72.self_attn.k_proj",
|
148 |
+
"model.layers.67.self_attn.o_proj",
|
149 |
+
"model.layers.17.self_attn.k_proj",
|
150 |
+
"model.layers.42.mlp.up_proj",
|
151 |
+
"model.layers.20.self_attn.o_proj",
|
152 |
+
"model.layers.52.mlp.gate_proj",
|
153 |
+
"model.layers.54.mlp.down_proj",
|
154 |
+
"model.layers.71.self_attn.k_proj",
|
155 |
+
"model.layers.5.mlp.down_proj",
|
156 |
+
"model.layers.12.self_attn.q_proj",
|
157 |
+
"model.layers.15.mlp.down_proj",
|
158 |
+
"model.layers.30.self_attn.v_proj",
|
159 |
+
"model.layers.67.mlp.down_proj",
|
160 |
+
"model.layers.4.self_attn.q_proj",
|
161 |
+
"model.layers.30.mlp.up_proj",
|
162 |
+
"model.layers.51.mlp.gate_proj",
|
163 |
+
"model.layers.27.mlp.down_proj",
|
164 |
+
"model.layers.60.self_attn.k_proj",
|
165 |
+
"model.layers.41.mlp.gate_proj",
|
166 |
+
"model.layers.44.self_attn.k_proj",
|
167 |
+
"model.layers.59.mlp.up_proj",
|
168 |
+
"model.layers.61.self_attn.q_proj",
|
169 |
+
"model.layers.38.self_attn.k_proj",
|
170 |
+
"model.layers.41.mlp.down_proj",
|
171 |
+
"model.layers.61.mlp.down_proj",
|
172 |
+
"model.layers.21.self_attn.k_proj",
|
173 |
+
"model.layers.38.mlp.up_proj",
|
174 |
+
"model.layers.75.self_attn.v_proj",
|
175 |
+
"model.layers.18.self_attn.v_proj",
|
176 |
+
"model.layers.71.mlp.up_proj",
|
177 |
+
"model.layers.32.self_attn.o_proj",
|
178 |
+
"model.layers.33.self_attn.v_proj",
|
179 |
+
"model.layers.22.self_attn.q_proj",
|
180 |
+
"model.layers.39.self_attn.o_proj",
|
181 |
+
"model.layers.28.mlp.up_proj",
|
182 |
+
"model.layers.0.self_attn.v_proj",
|
183 |
+
"model.layers.27.self_attn.q_proj",
|
184 |
+
"model.layers.68.mlp.down_proj",
|
185 |
+
"model.layers.70.mlp.gate_proj",
|
186 |
+
"model.layers.24.mlp.gate_proj",
|
187 |
+
"model.layers.36.mlp.down_proj",
|
188 |
+
"model.layers.20.self_attn.q_proj",
|
189 |
+
"model.layers.0.mlp.up_proj",
|
190 |
+
"model.layers.70.mlp.up_proj",
|
191 |
+
"model.layers.5.self_attn.k_proj",
|
192 |
+
"model.layers.74.self_attn.k_proj",
|
193 |
+
"model.layers.75.self_attn.k_proj",
|
194 |
+
"model.layers.3.self_attn.k_proj",
|
195 |
+
"model.layers.76.self_attn.q_proj",
|
196 |
+
"model.layers.31.mlp.down_proj",
|
197 |
+
"model.layers.54.mlp.up_proj",
|
198 |
+
"model.layers.49.self_attn.k_proj",
|
199 |
+
"model.layers.9.mlp.down_proj",
|
200 |
+
"model.layers.30.self_attn.o_proj",
|
201 |
+
"model.layers.75.self_attn.o_proj",
|
202 |
+
"model.layers.77.mlp.gate_proj",
|
203 |
+
"model.layers.62.mlp.down_proj",
|
204 |
+
"model.layers.35.mlp.down_proj",
|
205 |
+
"model.layers.29.self_attn.v_proj",
|
206 |
+
"model.layers.71.self_attn.v_proj",
|
207 |
+
"model.layers.57.self_attn.o_proj",
|
208 |
+
"model.layers.9.mlp.up_proj",
|
209 |
+
"model.layers.12.self_attn.o_proj",
|
210 |
+
"model.layers.32.self_attn.q_proj",
|
211 |
+
"model.layers.23.self_attn.v_proj",
|
212 |
+
"model.layers.26.mlp.up_proj",
|
213 |
+
"model.layers.75.self_attn.q_proj",
|
214 |
+
"model.layers.39.self_attn.v_proj",
|
215 |
+
"model.layers.28.self_attn.v_proj",
|
216 |
+
"model.layers.16.self_attn.o_proj",
|
217 |
+
"model.layers.1.mlp.gate_proj",
|
218 |
+
"model.layers.13.mlp.gate_proj",
|
219 |
+
"model.layers.53.self_attn.k_proj",
|
220 |
+
"model.layers.56.self_attn.q_proj",
|
221 |
+
"model.layers.37.self_attn.k_proj",
|
222 |
+
"model.layers.68.self_attn.q_proj",
|
223 |
+
"model.layers.27.self_attn.o_proj",
|
224 |
+
"model.layers.79.self_attn.k_proj",
|
225 |
+
"model.layers.13.self_attn.k_proj",
|
226 |
+
"model.layers.60.self_attn.q_proj",
|
227 |
+
"model.layers.13.mlp.up_proj",
|
228 |
+
"model.layers.47.self_attn.k_proj",
|
229 |
+
"model.layers.6.mlp.gate_proj",
|
230 |
+
"model.layers.50.self_attn.q_proj",
|
231 |
+
"model.layers.43.mlp.up_proj",
|
232 |
+
"model.layers.19.mlp.down_proj",
|
233 |
+
"model.layers.38.self_attn.v_proj",
|
234 |
+
"model.layers.65.mlp.up_proj",
|
235 |
+
"model.layers.1.mlp.up_proj",
|
236 |
+
"model.layers.73.mlp.down_proj",
|
237 |
+
"model.layers.69.self_attn.v_proj",
|
238 |
+
"model.layers.41.self_attn.v_proj",
|
239 |
+
"model.layers.20.mlp.down_proj",
|
240 |
+
"model.layers.6.self_attn.o_proj",
|
241 |
+
"model.layers.0.mlp.down_proj",
|
242 |
+
"model.layers.42.mlp.gate_proj",
|
243 |
+
"model.layers.45.self_attn.k_proj",
|
244 |
+
"model.layers.60.mlp.gate_proj",
|
245 |
+
"model.layers.79.self_attn.v_proj",
|
246 |
+
"model.layers.16.mlp.up_proj",
|
247 |
+
"model.layers.49.mlp.down_proj",
|
248 |
+
"model.layers.38.mlp.gate_proj",
|
249 |
+
"model.layers.50.mlp.down_proj",
|
250 |
+
"model.layers.16.self_attn.v_proj",
|
251 |
+
"model.layers.58.self_attn.o_proj",
|
252 |
+
"model.layers.45.self_attn.v_proj",
|
253 |
+
"model.layers.64.mlp.down_proj",
|
254 |
+
"model.layers.71.mlp.down_proj",
|
255 |
+
"model.layers.14.mlp.gate_proj",
|
256 |
+
"model.layers.13.self_attn.o_proj",
|
257 |
+
"model.layers.61.mlp.gate_proj",
|
258 |
+
"model.layers.7.mlp.gate_proj",
|
259 |
+
"model.layers.8.mlp.gate_proj",
|
260 |
+
"model.layers.34.mlp.gate_proj",
|
261 |
+
"model.layers.19.self_attn.q_proj",
|
262 |
+
"model.layers.39.mlp.up_proj",
|
263 |
+
"model.layers.57.self_attn.v_proj",
|
264 |
+
"model.layers.60.mlp.down_proj",
|
265 |
+
"model.layers.73.self_attn.o_proj",
|
266 |
+
"model.layers.74.self_attn.q_proj",
|
267 |
+
"model.layers.63.self_attn.k_proj",
|
268 |
+
"model.layers.54.self_attn.v_proj",
|
269 |
+
"model.layers.28.mlp.down_proj",
|
270 |
+
"model.layers.42.self_attn.v_proj",
|
271 |
+
"model.layers.77.self_attn.v_proj",
|
272 |
+
"model.layers.36.self_attn.v_proj",
|
273 |
+
"model.layers.50.self_attn.v_proj",
|
274 |
+
"model.layers.55.mlp.up_proj",
|
275 |
+
"model.layers.56.mlp.down_proj",
|
276 |
+
"model.layers.4.mlp.down_proj",
|
277 |
+
"model.layers.23.mlp.down_proj",
|
278 |
+
"model.layers.42.self_attn.o_proj",
|
279 |
+
"model.layers.63.self_attn.q_proj",
|
280 |
+
"model.layers.79.mlp.up_proj",
|
281 |
+
"model.layers.33.self_attn.o_proj",
|
282 |
+
"model.layers.64.self_attn.k_proj",
|
283 |
+
"model.layers.44.mlp.down_proj",
|
284 |
+
"model.layers.54.self_attn.o_proj",
|
285 |
+
"model.layers.50.self_attn.o_proj",
|
286 |
+
"model.layers.70.self_attn.v_proj",
|
287 |
+
"model.layers.64.mlp.up_proj",
|
288 |
+
"model.layers.36.self_attn.q_proj",
|
289 |
+
"model.layers.63.mlp.up_proj",
|
290 |
+
"model.layers.75.mlp.gate_proj",
|
291 |
+
"model.layers.71.self_attn.q_proj",
|
292 |
+
"model.layers.37.self_attn.q_proj",
|
293 |
+
"model.layers.48.self_attn.o_proj",
|
294 |
+
"model.layers.17.self_attn.q_proj",
|
295 |
+
"model.layers.40.mlp.gate_proj",
|
296 |
+
"model.layers.58.mlp.gate_proj",
|
297 |
+
"model.layers.26.self_attn.v_proj",
|
298 |
+
"model.layers.67.mlp.gate_proj",
|
299 |
+
"model.layers.58.mlp.down_proj",
|
300 |
+
"model.layers.34.self_attn.k_proj",
|
301 |
+
"model.layers.1.self_attn.k_proj",
|
302 |
+
"model.layers.30.self_attn.k_proj",
|
303 |
+
"model.layers.49.mlp.up_proj",
|
304 |
+
"model.layers.41.self_attn.o_proj",
|
305 |
+
"model.layers.9.self_attn.k_proj",
|
306 |
+
"model.layers.5.self_attn.o_proj",
|
307 |
+
"model.layers.69.mlp.down_proj",
|
308 |
+
"model.layers.30.mlp.gate_proj",
|
309 |
+
"model.layers.29.self_attn.k_proj",
|
310 |
+
"model.layers.37.mlp.up_proj",
|
311 |
+
"model.layers.0.self_attn.k_proj",
|
312 |
+
"model.layers.10.self_attn.v_proj",
|
313 |
+
"model.layers.78.mlp.gate_proj",
|
314 |
+
"model.layers.47.mlp.down_proj",
|
315 |
+
"model.layers.55.self_attn.k_proj",
|
316 |
+
"model.layers.47.self_attn.o_proj",
|
317 |
+
"model.layers.18.self_attn.k_proj",
|
318 |
+
"model.layers.43.mlp.down_proj",
|
319 |
+
"model.layers.10.self_attn.k_proj",
|
320 |
+
"model.layers.7.mlp.up_proj",
|
321 |
+
"model.layers.45.self_attn.o_proj",
|
322 |
+
"model.layers.18.self_attn.q_proj",
|
323 |
+
"model.layers.26.self_attn.q_proj",
|
324 |
+
"model.layers.37.mlp.gate_proj",
|
325 |
+
"model.layers.23.mlp.gate_proj",
|
326 |
+
"model.layers.11.mlp.gate_proj",
|
327 |
+
"model.layers.0.self_attn.q_proj",
|
328 |
+
"model.layers.35.self_attn.v_proj",
|
329 |
+
"model.layers.40.mlp.up_proj",
|
330 |
+
"model.layers.31.self_attn.v_proj",
|
331 |
+
"model.layers.46.mlp.up_proj",
|
332 |
+
"model.layers.35.self_attn.k_proj",
|
333 |
+
"model.layers.69.self_attn.q_proj",
|
334 |
+
"model.layers.55.self_attn.o_proj",
|
335 |
+
"model.layers.7.self_attn.k_proj",
|
336 |
+
"model.layers.21.self_attn.o_proj",
|
337 |
+
"model.layers.50.mlp.gate_proj",
|
338 |
+
"model.layers.43.self_attn.v_proj",
|
339 |
+
"model.layers.65.self_attn.q_proj",
|
340 |
+
"model.layers.12.mlp.up_proj",
|
341 |
+
"model.layers.32.mlp.down_proj",
|
342 |
+
"model.layers.63.self_attn.v_proj",
|
343 |
+
"model.layers.46.mlp.down_proj",
|
344 |
+
"model.layers.61.self_attn.k_proj",
|
345 |
+
"model.layers.14.mlp.up_proj",
|
346 |
+
"model.layers.17.self_attn.v_proj",
|
347 |
+
"model.layers.52.mlp.down_proj",
|
348 |
+
"model.layers.23.self_attn.q_proj",
|
349 |
+
"model.layers.54.self_attn.k_proj",
|
350 |
+
"model.layers.12.self_attn.k_proj",
|
351 |
+
"model.layers.5.mlp.up_proj",
|
352 |
+
"model.layers.48.self_attn.v_proj",
|
353 |
+
"model.layers.51.self_attn.v_proj",
|
354 |
+
"model.layers.78.self_attn.q_proj",
|
355 |
+
"model.layers.28.self_attn.k_proj",
|
356 |
+
"model.layers.53.mlp.gate_proj",
|
357 |
+
"model.layers.53.mlp.down_proj",
|
358 |
+
"model.layers.5.self_attn.q_proj",
|
359 |
+
"model.layers.34.self_attn.o_proj",
|
360 |
+
"model.layers.36.mlp.up_proj",
|
361 |
+
"model.layers.49.self_attn.o_proj",
|
362 |
+
"model.layers.72.mlp.up_proj",
|
363 |
+
"model.layers.21.mlp.gate_proj",
|
364 |
+
"model.layers.6.self_attn.q_proj",
|
365 |
+
"model.layers.11.self_attn.o_proj",
|
366 |
+
"model.layers.37.self_attn.v_proj",
|
367 |
+
"model.layers.56.mlp.gate_proj",
|
368 |
+
"model.layers.34.self_attn.v_proj",
|
369 |
+
"model.layers.15.self_attn.q_proj",
|
370 |
+
"model.layers.67.self_attn.k_proj",
|
371 |
+
"model.layers.27.self_attn.v_proj",
|
372 |
+
"model.layers.8.mlp.down_proj",
|
373 |
+
"model.layers.25.mlp.gate_proj",
|
374 |
+
"model.layers.45.mlp.gate_proj",
|
375 |
+
"model.layers.49.self_attn.v_proj",
|
376 |
+
"model.layers.27.self_attn.k_proj",
|
377 |
+
"model.layers.79.self_attn.o_proj",
|
378 |
+
"model.layers.48.mlp.up_proj",
|
379 |
+
"model.layers.21.self_attn.v_proj",
|
380 |
+
"model.layers.13.self_attn.v_proj",
|
381 |
+
"model.layers.70.self_attn.q_proj",
|
382 |
+
"model.layers.10.mlp.gate_proj",
|
383 |
+
"model.layers.44.self_attn.q_proj",
|
384 |
+
"model.layers.14.self_attn.v_proj",
|
385 |
+
"model.layers.10.self_attn.o_proj",
|
386 |
+
"model.layers.25.self_attn.v_proj",
|
387 |
+
"model.layers.39.self_attn.q_proj",
|
388 |
+
"model.layers.49.self_attn.q_proj",
|
389 |
+
"model.layers.15.mlp.gate_proj",
|
390 |
+
"model.layers.61.self_attn.o_proj",
|
391 |
+
"model.layers.59.self_attn.q_proj",
|
392 |
+
"model.layers.70.self_attn.k_proj",
|
393 |
+
"model.layers.4.mlp.gate_proj",
|
394 |
+
"model.layers.57.self_attn.k_proj",
|
395 |
+
"model.layers.13.mlp.down_proj",
|
396 |
+
"model.layers.3.self_attn.o_proj",
|
397 |
+
"model.layers.66.self_attn.q_proj",
|
398 |
+
"model.layers.25.mlp.up_proj",
|
399 |
+
"model.layers.52.self_attn.q_proj",
|
400 |
+
"model.layers.8.self_attn.q_proj",
|
401 |
+
"model.layers.73.mlp.gate_proj",
|
402 |
+
"model.layers.45.mlp.up_proj",
|
403 |
+
"model.layers.45.self_attn.q_proj",
|
404 |
+
"model.layers.43.mlp.gate_proj",
|
405 |
+
"model.layers.75.mlp.down_proj",
|
406 |
+
"model.layers.51.self_attn.k_proj",
|
407 |
+
"model.layers.27.mlp.gate_proj",
|
408 |
+
"model.layers.33.self_attn.q_proj",
|
409 |
+
"model.layers.59.self_attn.o_proj",
|
410 |
+
"model.layers.41.mlp.up_proj",
|
411 |
+
"model.layers.50.self_attn.k_proj",
|
412 |
+
"model.layers.17.mlp.down_proj",
|
413 |
+
"model.layers.23.self_attn.o_proj",
|
414 |
+
"model.layers.29.mlp.down_proj",
|
415 |
+
"model.layers.12.mlp.down_proj",
|
416 |
+
"model.layers.37.self_attn.o_proj",
|
417 |
+
"model.layers.59.mlp.gate_proj",
|
418 |
+
"model.layers.46.self_attn.v_proj",
|
419 |
+
"model.layers.29.mlp.up_proj",
|
420 |
+
"model.layers.67.self_attn.v_proj",
|
421 |
+
"model.layers.8.self_attn.k_proj",
|
422 |
+
"model.layers.0.mlp.gate_proj",
|
423 |
+
"model.layers.1.self_attn.o_proj",
|
424 |
+
"model.layers.17.mlp.up_proj",
|
425 |
+
"model.layers.68.self_attn.k_proj",
|
426 |
+
"model.layers.46.self_attn.k_proj",
|
427 |
+
"model.layers.48.mlp.down_proj",
|
428 |
+
"model.layers.53.self_attn.q_proj",
|
429 |
+
"model.layers.63.self_attn.o_proj",
|
430 |
+
"model.layers.11.self_attn.v_proj",
|
431 |
+
"model.layers.66.mlp.down_proj",
|
432 |
+
"model.layers.2.mlp.down_proj",
|
433 |
+
"model.layers.69.self_attn.o_proj",
|
434 |
+
"model.layers.61.self_attn.v_proj",
|
435 |
+
"model.layers.7.self_attn.q_proj",
|
436 |
+
"model.layers.1.mlp.down_proj",
|
437 |
+
"model.layers.70.self_attn.o_proj",
|
438 |
+
"model.layers.75.mlp.up_proj",
|
439 |
+
"model.layers.40.self_attn.o_proj",
|
440 |
+
"model.layers.61.mlp.up_proj",
|
441 |
+
"model.layers.77.self_attn.q_proj",
|
442 |
+
"model.layers.17.mlp.gate_proj",
|
443 |
+
"model.layers.77.self_attn.o_proj",
|
444 |
+
"model.layers.44.self_attn.o_proj",
|
445 |
+
"model.layers.16.mlp.gate_proj",
|
446 |
+
"model.layers.15.self_attn.v_proj",
|
447 |
+
"model.layers.5.mlp.gate_proj",
|
448 |
+
"model.layers.62.self_attn.o_proj",
|
449 |
+
"model.layers.59.self_attn.v_proj",
|
450 |
+
"model.layers.52.self_attn.o_proj",
|
451 |
+
"model.layers.34.self_attn.q_proj",
|
452 |
+
"model.layers.22.self_attn.k_proj",
|
453 |
+
"model.layers.13.self_attn.q_proj",
|
454 |
+
"model.layers.10.mlp.down_proj",
|
455 |
+
"model.layers.57.mlp.gate_proj",
|
456 |
+
"model.layers.50.mlp.up_proj",
|
457 |
+
"model.layers.0.self_attn.o_proj",
|
458 |
+
"model.layers.23.self_attn.k_proj",
|
459 |
+
"model.layers.42.self_attn.q_proj",
|
460 |
+
"model.layers.26.mlp.down_proj",
|
461 |
+
"model.layers.72.mlp.down_proj",
|
462 |
+
"model.layers.77.mlp.down_proj",
|
463 |
+
"model.layers.2.self_attn.k_proj",
|
464 |
+
"model.layers.18.mlp.down_proj",
|
465 |
+
"model.layers.76.mlp.gate_proj",
|
466 |
+
"model.layers.59.self_attn.k_proj",
|
467 |
+
"model.layers.25.self_attn.k_proj",
|
468 |
+
"model.layers.74.self_attn.o_proj",
|
469 |
+
"model.layers.35.self_attn.o_proj",
|
470 |
+
"model.layers.55.mlp.gate_proj",
|
471 |
+
"model.layers.53.self_attn.o_proj",
|
472 |
+
"model.layers.35.self_attn.q_proj",
|
473 |
+
"model.layers.24.self_attn.o_proj",
|
474 |
+
"model.layers.40.self_attn.k_proj",
|
475 |
+
"model.layers.19.mlp.gate_proj",
|
476 |
+
"model.layers.20.self_attn.v_proj",
|
477 |
+
"model.layers.73.self_attn.v_proj",
|
478 |
+
"model.layers.54.self_attn.q_proj",
|
479 |
+
"model.layers.72.self_attn.q_proj",
|
480 |
+
"model.layers.46.self_attn.o_proj",
|
481 |
+
"model.layers.57.mlp.down_proj",
|
482 |
+
"model.layers.68.self_attn.o_proj",
|
483 |
+
"model.layers.51.mlp.down_proj",
|
484 |
+
"model.layers.44.mlp.gate_proj",
|
485 |
+
"model.layers.65.self_attn.o_proj",
|
486 |
+
"model.layers.74.mlp.up_proj",
|
487 |
+
"model.layers.27.mlp.up_proj",
|
488 |
+
"model.layers.31.self_attn.o_proj",
|
489 |
+
"model.layers.48.mlp.gate_proj",
|
490 |
+
"model.layers.15.self_attn.k_proj",
|
491 |
+
"model.layers.72.mlp.gate_proj",
|
492 |
+
"model.layers.47.mlp.up_proj",
|
493 |
+
"model.layers.66.self_attn.v_proj",
|
494 |
+
"model.layers.12.self_attn.v_proj",
|
495 |
+
"model.layers.46.mlp.gate_proj",
|
496 |
+
"model.layers.63.mlp.gate_proj",
|
497 |
+
"model.layers.19.self_attn.o_proj",
|
498 |
+
"model.layers.39.self_attn.k_proj",
|
499 |
+
"model.layers.2.self_attn.q_proj",
|
500 |
+
"model.layers.47.self_attn.q_proj",
|
501 |
+
"model.layers.64.self_attn.v_proj",
|
502 |
+
"model.layers.6.mlp.up_proj",
|
503 |
+
"model.layers.16.self_attn.q_proj",
|
504 |
+
"model.layers.21.mlp.down_proj",
|
505 |
+
"model.layers.7.mlp.down_proj",
|
506 |
+
"model.layers.20.mlp.up_proj",
|
507 |
+
"model.layers.39.mlp.down_proj",
|
508 |
+
"model.layers.40.mlp.down_proj",
|
509 |
+
"model.layers.65.self_attn.v_proj",
|
510 |
+
"model.layers.72.self_attn.o_proj",
|
511 |
+
"model.layers.10.mlp.up_proj",
|
512 |
+
"model.layers.51.self_attn.q_proj",
|
513 |
+
"model.layers.57.self_attn.q_proj",
|
514 |
+
"model.layers.65.mlp.gate_proj",
|
515 |
+
"model.layers.41.self_attn.k_proj",
|
516 |
+
"model.layers.25.mlp.down_proj",
|
517 |
+
"model.layers.24.self_attn.k_proj",
|
518 |
+
"model.layers.14.self_attn.k_proj",
|
519 |
+
"model.layers.8.self_attn.v_proj",
|
520 |
+
"model.layers.62.mlp.up_proj",
|
521 |
+
"model.layers.3.mlp.down_proj",
|
522 |
+
"model.layers.41.self_attn.q_proj",
|
523 |
+
"model.layers.32.mlp.up_proj",
|
524 |
+
"model.layers.5.self_attn.v_proj",
|
525 |
+
"model.layers.64.self_attn.o_proj",
|
526 |
+
"model.layers.31.self_attn.k_proj",
|
527 |
+
"model.layers.60.mlp.up_proj",
|
528 |
+
"model.layers.21.self_attn.q_proj",
|
529 |
+
"model.layers.26.self_attn.o_proj",
|
530 |
+
"model.layers.68.mlp.gate_proj",
|
531 |
+
"model.layers.6.self_attn.v_proj",
|
532 |
+
"model.layers.4.mlp.up_proj",
|
533 |
+
"model.layers.22.mlp.up_proj",
|
534 |
+
"model.layers.31.mlp.gate_proj",
|
535 |
+
"model.layers.25.self_attn.q_proj",
|
536 |
+
"model.layers.76.self_attn.k_proj",
|
537 |
+
"model.layers.45.mlp.down_proj",
|
538 |
+
"model.layers.3.mlp.up_proj",
|
539 |
+
"model.layers.21.mlp.up_proj",
|
540 |
+
"model.layers.72.self_attn.v_proj",
|
541 |
+
"model.layers.42.self_attn.k_proj",
|
542 |
+
"model.layers.38.self_attn.q_proj",
|
543 |
+
"model.layers.31.self_attn.q_proj",
|
544 |
+
"model.layers.7.self_attn.v_proj",
|
545 |
+
"model.layers.55.mlp.down_proj",
|
546 |
+
"model.layers.32.mlp.gate_proj",
|
547 |
+
"model.layers.76.self_attn.v_proj",
|
548 |
+
"model.layers.22.self_attn.o_proj",
|
549 |
+
"model.layers.59.mlp.down_proj",
|
550 |
+
"model.layers.73.self_attn.k_proj",
|
551 |
+
"model.layers.58.self_attn.q_proj",
|
552 |
+
"model.layers.46.self_attn.q_proj",
|
553 |
+
"model.layers.24.mlp.down_proj",
|
554 |
+
"model.layers.77.mlp.up_proj",
|
555 |
+
"model.layers.7.self_attn.o_proj",
|
556 |
+
"model.layers.57.mlp.up_proj",
|
557 |
+
"model.layers.11.self_attn.q_proj",
|
558 |
+
"model.layers.73.self_attn.q_proj",
|
559 |
+
"model.layers.62.self_attn.q_proj",
|
560 |
+
"model.layers.56.mlp.up_proj",
|
561 |
+
"model.layers.78.self_attn.o_proj",
|
562 |
+
"model.layers.34.mlp.up_proj",
|
563 |
+
"model.layers.77.self_attn.k_proj",
|
564 |
+
"model.layers.28.self_attn.q_proj",
|
565 |
+
"model.layers.16.self_attn.k_proj",
|
566 |
+
"model.layers.52.self_attn.k_proj",
|
567 |
+
"model.layers.78.mlp.down_proj",
|
568 |
+
"model.layers.43.self_attn.k_proj",
|
569 |
+
"model.layers.62.self_attn.v_proj",
|
570 |
+
"model.layers.38.self_attn.o_proj",
|
571 |
+
"model.layers.1.self_attn.v_proj",
|
572 |
+
"model.layers.53.mlp.up_proj",
|
573 |
+
"model.layers.33.self_attn.k_proj",
|
574 |
+
"model.layers.56.self_attn.v_proj",
|
575 |
+
"model.layers.52.self_attn.v_proj",
|
576 |
+
"model.layers.8.self_attn.o_proj",
|
577 |
+
"model.layers.62.mlp.gate_proj",
|
578 |
+
"model.layers.73.mlp.up_proj",
|
579 |
+
"model.layers.20.mlp.gate_proj",
|
580 |
+
"model.layers.42.mlp.down_proj",
|
581 |
+
"model.layers.20.self_attn.k_proj",
|
582 |
+
"model.layers.14.self_attn.o_proj",
|
583 |
+
"model.layers.63.mlp.down_proj",
|
584 |
+
"model.layers.78.self_attn.v_proj",
|
585 |
+
"model.layers.66.self_attn.o_proj"
|
586 |
+
],
|
587 |
+
"task_type": null,
|
588 |
+
"use_dora": false,
|
589 |
+
"use_rslora": false
|
590 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:895774d3eeb7704eb29620f5151fb70a740e4fd96ad62a0841aea92a48488cb9
|
3 |
+
size 1684428912
|
added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
global_step3000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba326d2e518f430fc4c82b6955b92197d2b1653c9fafe64786d85d4c0a5b6c44
|
3 |
+
size 2642574608
|
global_step3000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fba4485312b411d0a8ef288a49701638bf3139ff5e7cee3e08456d1183ba58fb
|
3 |
+
size 2642574608
|
global_step3000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6000c67bb30ba0abce7687747d48eb7a59cc7ca5252c343c0c5a50f7412202f2
|
3 |
+
size 2642574608
|
global_step3000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ff774786aeaa1032fc5fec1ddd7be13c15f968d41706a80492a5559ed1f27fe
|
3 |
+
size 2642574608
|
global_step3000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:666c0c1c94487b46714cf91959f585a23e3e9c58dea6dbb031f6ebd343921541
|
3 |
+
size 2642574608
|
global_step3000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9845df230299de4093e988c8feedf996c3af6b1db88ee662ceedacdf104aa3d1
|
3 |
+
size 2642574608
|
global_step3000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:850e8c8cdc4830b7e089414f19ad1d9ba29f09ee905f5353547ba2ae354c0ca0
|
3 |
+
size 2642574608
|
global_step3000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f05ab0087d692bb5983658e53d6fb86b48bc0ce158ce86b12e0cc38ba714385b
|
3 |
+
size 1253080
|
global_step3000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89006c86a4497a22c006bdea1cdd445c887af4347cdb40d1dfa3f43783a91a7c
|
3 |
+
size 1253080
|
global_step3000/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b531bb58ae46705ce6e9db5cd6febeb618ba54862db877eaa7a651ca2439edd
|
3 |
+
size 1253080
|
global_step3000/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69b9ba98ebf28723521f9d4dd3fca54a5536cc9ee4a5551d3682ca0e72776cda
|
3 |
+
size 1253080
|
global_step3000/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3139d976f4e9d775e229c68a2f151c1812608de5d38ece5fef1fd8a9aca879f5
|
3 |
+
size 1253080
|
global_step3000/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3dcf30d0622834145da017eb133589ea467b1867f5c6bc6fe9455907fa22181
|
3 |
+
size 1253080
|
global_step3000/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:371e623ced4ac494ac391d1ecf3204984e8a324b7d180b95d7ac880a886cb538
|
3 |
+
size 1253080
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step3000
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
non_lora_state_dict_visual.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab7df2d7b052e02a0047c526636ca849a1d8b39ce4d84291a2e3e1004d18183d
|
3 |
+
size 17723
|
preprocessor_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"max_pixels": 3841600,
|
18 |
+
"merge_size": 2,
|
19 |
+
"min_pixels": 200704,
|
20 |
+
"patch_size": 14,
|
21 |
+
"processor_class": "Qwen2VLProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"max_pixels": 12845056,
|
26 |
+
"min_pixels": 3136
|
27 |
+
},
|
28 |
+
"temporal_patch_size": 2
|
29 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c95382e3756df749563e516476c95b9403f1d2a0f24e727456e402a4c6de27b
|
3 |
+
size 15728
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de8b564d81a3f95cc90ae46791cdf99e7d48720639f495e1bd11b5619932ffd7
|
3 |
+
size 15728
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb7ba99ef5bef1eb75a5c9038c8ae40dded25311c25ed9a9cd4957a131e8cae4
|
3 |
+
size 15728
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eb132f33dc3aac9a639e360000ee67e01e02b693a067d81211f2fa86bc28ed4
|
3 |
+
size 15728
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5d24693c9b05bdf9b11ce5aa0420adebc5ac3c52b998732437a424d1ee58487
|
3 |
+
size 15728
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc8817cda6d236dd154deb7364a8b735eb249a1dd90c90596f65f02a50d66a26
|
3 |
+
size 15728
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f23f785f39223b21398892a28d4e1c33d63c9959659f1fddeacd059f0ed6d919
|
3 |
+
size 15728
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"additional_special_tokens": [
|
118 |
+
"<|im_start|>",
|
119 |
+
"<|im_end|>",
|
120 |
+
"<|object_ref_start|>",
|
121 |
+
"<|object_ref_end|>",
|
122 |
+
"<|box_start|>",
|
123 |
+
"<|box_end|>",
|
124 |
+
"<|quad_start|>",
|
125 |
+
"<|quad_end|>",
|
126 |
+
"<|vision_start|>",
|
127 |
+
"<|vision_end|>",
|
128 |
+
"<|vision_pad|>",
|
129 |
+
"<|image_pad|>",
|
130 |
+
"<|video_pad|>"
|
131 |
+
],
|
132 |
+
"bos_token": null,
|
133 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
134 |
+
"clean_up_tokenization_spaces": false,
|
135 |
+
"eos_token": "<|im_end|>",
|
136 |
+
"errors": "replace",
|
137 |
+
"max_pixels": 3841600,
|
138 |
+
"min_pixels": 200704,
|
139 |
+
"model_max_length": 32768,
|
140 |
+
"pad_token": "<|endoftext|>",
|
141 |
+
"padding_side": "right",
|
142 |
+
"processor_class": "Qwen2VLProcessor",
|
143 |
+
"split_special_tokens": false,
|
144 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
145 |
+
"unk_token": null
|
146 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f535e9a079e808b5afcd8956b4e12f028cd80a70bc7d99b3c562b485af1f7492
|
3 |
+
size 8312
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|