JackyZhuo commited on
Commit
7a496bd
1 Parent(s): c2dd5b3

Upload folder using huggingface_hub

Browse files
Files changed (37) hide show
  1. README.md +202 -0
  2. adapter_config.json +590 -0
  3. adapter_model.safetensors +3 -0
  4. added_tokens.json +16 -0
  5. chat_template.json +3 -0
  6. global_step3000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  7. global_step3000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  8. global_step3000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  9. global_step3000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  10. global_step3000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  11. global_step3000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  12. global_step3000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  13. global_step3000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  14. global_step3000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  15. global_step3000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  16. global_step3000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  17. global_step3000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  18. global_step3000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  19. global_step3000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  20. latest +1 -0
  21. merges.txt +0 -0
  22. non_lora_state_dict_visual.bin +3 -0
  23. preprocessor_config.json +29 -0
  24. rng_state_0.pth +3 -0
  25. rng_state_1.pth +3 -0
  26. rng_state_2.pth +3 -0
  27. rng_state_3.pth +3 -0
  28. rng_state_4.pth +3 -0
  29. rng_state_5.pth +3 -0
  30. rng_state_6.pth +3 -0
  31. special_tokens_map.json +31 -0
  32. tokenizer.json +0 -0
  33. tokenizer_config.json +146 -0
  34. trainer_state.json +0 -0
  35. training_args.bin +3 -0
  36. vocab.json +0 -0
  37. zero_to_fp32.py +604 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /home/ubuntu/zl/Qwen2_VL_72B_ckt/
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,590 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "Qwen2VLForConditionalGeneration",
5
+ "parent_library": "transformers.models.qwen2_vl.modeling_qwen2_vl"
6
+ },
7
+ "base_model_name_or_path": "/home/ubuntu/zl/Qwen2_VL_72B_ckt/",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 128,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 64,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "model.layers.60.self_attn.o_proj",
27
+ "model.layers.47.mlp.gate_proj",
28
+ "model.layers.36.mlp.gate_proj",
29
+ "model.layers.43.self_attn.q_proj",
30
+ "model.layers.67.mlp.up_proj",
31
+ "model.layers.2.mlp.gate_proj",
32
+ "model.layers.14.self_attn.q_proj",
33
+ "model.layers.31.mlp.up_proj",
34
+ "model.layers.76.self_attn.o_proj",
35
+ "model.layers.2.self_attn.o_proj",
36
+ "model.layers.51.self_attn.o_proj",
37
+ "model.layers.16.mlp.down_proj",
38
+ "model.layers.1.self_attn.q_proj",
39
+ "model.layers.22.mlp.gate_proj",
40
+ "model.layers.9.mlp.gate_proj",
41
+ "model.layers.29.self_attn.q_proj",
42
+ "model.layers.29.self_attn.o_proj",
43
+ "model.layers.12.mlp.gate_proj",
44
+ "model.layers.35.mlp.up_proj",
45
+ "model.layers.8.mlp.up_proj",
46
+ "model.layers.28.self_attn.o_proj",
47
+ "model.layers.33.mlp.up_proj",
48
+ "model.layers.68.mlp.up_proj",
49
+ "model.layers.76.mlp.up_proj",
50
+ "model.layers.37.mlp.down_proj",
51
+ "model.layers.9.self_attn.o_proj",
52
+ "model.layers.18.mlp.gate_proj",
53
+ "model.layers.3.self_attn.v_proj",
54
+ "model.layers.74.mlp.gate_proj",
55
+ "model.layers.35.mlp.gate_proj",
56
+ "model.layers.36.self_attn.k_proj",
57
+ "model.layers.36.self_attn.o_proj",
58
+ "model.layers.18.mlp.up_proj",
59
+ "model.layers.28.mlp.gate_proj",
60
+ "model.layers.24.self_attn.q_proj",
61
+ "model.layers.58.mlp.up_proj",
62
+ "model.layers.4.self_attn.v_proj",
63
+ "model.layers.32.self_attn.v_proj",
64
+ "model.layers.79.self_attn.q_proj",
65
+ "model.layers.6.self_attn.k_proj",
66
+ "model.layers.66.mlp.gate_proj",
67
+ "model.layers.19.mlp.up_proj",
68
+ "model.layers.68.self_attn.v_proj",
69
+ "model.layers.64.self_attn.q_proj",
70
+ "model.layers.6.mlp.down_proj",
71
+ "model.layers.69.mlp.gate_proj",
72
+ "model.layers.58.self_attn.v_proj",
73
+ "model.layers.48.self_attn.q_proj",
74
+ "model.layers.52.mlp.up_proj",
75
+ "model.layers.15.self_attn.o_proj",
76
+ "model.layers.74.mlp.down_proj",
77
+ "model.layers.79.mlp.down_proj",
78
+ "model.layers.2.self_attn.v_proj",
79
+ "model.layers.32.self_attn.k_proj",
80
+ "model.layers.15.mlp.up_proj",
81
+ "model.layers.14.mlp.down_proj",
82
+ "model.layers.74.self_attn.v_proj",
83
+ "model.layers.30.mlp.down_proj",
84
+ "model.layers.39.mlp.gate_proj",
85
+ "model.layers.44.mlp.up_proj",
86
+ "model.layers.44.self_attn.v_proj",
87
+ "model.layers.54.mlp.gate_proj",
88
+ "model.layers.66.self_attn.k_proj",
89
+ "model.layers.48.self_attn.k_proj",
90
+ "model.layers.65.self_attn.k_proj",
91
+ "model.layers.33.mlp.down_proj",
92
+ "model.layers.66.mlp.up_proj",
93
+ "model.layers.67.self_attn.q_proj",
94
+ "model.layers.33.mlp.gate_proj",
95
+ "model.layers.79.mlp.gate_proj",
96
+ "model.layers.69.self_attn.k_proj",
97
+ "model.layers.40.self_attn.q_proj",
98
+ "model.layers.26.self_attn.k_proj",
99
+ "model.layers.71.self_attn.o_proj",
100
+ "model.layers.58.self_attn.k_proj",
101
+ "model.layers.78.self_attn.k_proj",
102
+ "model.layers.76.mlp.down_proj",
103
+ "model.layers.4.self_attn.o_proj",
104
+ "model.layers.17.self_attn.o_proj",
105
+ "model.layers.29.mlp.gate_proj",
106
+ "model.layers.43.self_attn.o_proj",
107
+ "model.layers.47.self_attn.v_proj",
108
+ "model.layers.11.mlp.up_proj",
109
+ "model.layers.60.self_attn.v_proj",
110
+ "model.layers.64.mlp.gate_proj",
111
+ "model.layers.55.self_attn.v_proj",
112
+ "model.layers.65.mlp.down_proj",
113
+ "model.layers.18.self_attn.o_proj",
114
+ "model.layers.22.self_attn.v_proj",
115
+ "model.layers.24.mlp.up_proj",
116
+ "model.layers.19.self_attn.k_proj",
117
+ "model.layers.30.self_attn.q_proj",
118
+ "model.layers.26.mlp.gate_proj",
119
+ "model.layers.62.self_attn.k_proj",
120
+ "model.layers.23.mlp.up_proj",
121
+ "model.layers.34.mlp.down_proj",
122
+ "model.layers.70.mlp.down_proj",
123
+ "model.layers.4.self_attn.k_proj",
124
+ "model.layers.25.self_attn.o_proj",
125
+ "model.layers.55.self_attn.q_proj",
126
+ "model.layers.53.self_attn.v_proj",
127
+ "model.layers.9.self_attn.q_proj",
128
+ "model.layers.10.self_attn.q_proj",
129
+ "model.layers.24.self_attn.v_proj",
130
+ "model.layers.78.mlp.up_proj",
131
+ "model.layers.71.mlp.gate_proj",
132
+ "model.layers.2.mlp.up_proj",
133
+ "model.layers.56.self_attn.o_proj",
134
+ "model.layers.19.self_attn.v_proj",
135
+ "model.layers.11.self_attn.k_proj",
136
+ "model.layers.51.mlp.up_proj",
137
+ "model.layers.3.self_attn.q_proj",
138
+ "model.layers.49.mlp.gate_proj",
139
+ "model.layers.22.mlp.down_proj",
140
+ "model.layers.69.mlp.up_proj",
141
+ "model.layers.3.mlp.gate_proj",
142
+ "model.layers.11.mlp.down_proj",
143
+ "model.layers.9.self_attn.v_proj",
144
+ "model.layers.38.mlp.down_proj",
145
+ "model.layers.56.self_attn.k_proj",
146
+ "model.layers.40.self_attn.v_proj",
147
+ "model.layers.72.self_attn.k_proj",
148
+ "model.layers.67.self_attn.o_proj",
149
+ "model.layers.17.self_attn.k_proj",
150
+ "model.layers.42.mlp.up_proj",
151
+ "model.layers.20.self_attn.o_proj",
152
+ "model.layers.52.mlp.gate_proj",
153
+ "model.layers.54.mlp.down_proj",
154
+ "model.layers.71.self_attn.k_proj",
155
+ "model.layers.5.mlp.down_proj",
156
+ "model.layers.12.self_attn.q_proj",
157
+ "model.layers.15.mlp.down_proj",
158
+ "model.layers.30.self_attn.v_proj",
159
+ "model.layers.67.mlp.down_proj",
160
+ "model.layers.4.self_attn.q_proj",
161
+ "model.layers.30.mlp.up_proj",
162
+ "model.layers.51.mlp.gate_proj",
163
+ "model.layers.27.mlp.down_proj",
164
+ "model.layers.60.self_attn.k_proj",
165
+ "model.layers.41.mlp.gate_proj",
166
+ "model.layers.44.self_attn.k_proj",
167
+ "model.layers.59.mlp.up_proj",
168
+ "model.layers.61.self_attn.q_proj",
169
+ "model.layers.38.self_attn.k_proj",
170
+ "model.layers.41.mlp.down_proj",
171
+ "model.layers.61.mlp.down_proj",
172
+ "model.layers.21.self_attn.k_proj",
173
+ "model.layers.38.mlp.up_proj",
174
+ "model.layers.75.self_attn.v_proj",
175
+ "model.layers.18.self_attn.v_proj",
176
+ "model.layers.71.mlp.up_proj",
177
+ "model.layers.32.self_attn.o_proj",
178
+ "model.layers.33.self_attn.v_proj",
179
+ "model.layers.22.self_attn.q_proj",
180
+ "model.layers.39.self_attn.o_proj",
181
+ "model.layers.28.mlp.up_proj",
182
+ "model.layers.0.self_attn.v_proj",
183
+ "model.layers.27.self_attn.q_proj",
184
+ "model.layers.68.mlp.down_proj",
185
+ "model.layers.70.mlp.gate_proj",
186
+ "model.layers.24.mlp.gate_proj",
187
+ "model.layers.36.mlp.down_proj",
188
+ "model.layers.20.self_attn.q_proj",
189
+ "model.layers.0.mlp.up_proj",
190
+ "model.layers.70.mlp.up_proj",
191
+ "model.layers.5.self_attn.k_proj",
192
+ "model.layers.74.self_attn.k_proj",
193
+ "model.layers.75.self_attn.k_proj",
194
+ "model.layers.3.self_attn.k_proj",
195
+ "model.layers.76.self_attn.q_proj",
196
+ "model.layers.31.mlp.down_proj",
197
+ "model.layers.54.mlp.up_proj",
198
+ "model.layers.49.self_attn.k_proj",
199
+ "model.layers.9.mlp.down_proj",
200
+ "model.layers.30.self_attn.o_proj",
201
+ "model.layers.75.self_attn.o_proj",
202
+ "model.layers.77.mlp.gate_proj",
203
+ "model.layers.62.mlp.down_proj",
204
+ "model.layers.35.mlp.down_proj",
205
+ "model.layers.29.self_attn.v_proj",
206
+ "model.layers.71.self_attn.v_proj",
207
+ "model.layers.57.self_attn.o_proj",
208
+ "model.layers.9.mlp.up_proj",
209
+ "model.layers.12.self_attn.o_proj",
210
+ "model.layers.32.self_attn.q_proj",
211
+ "model.layers.23.self_attn.v_proj",
212
+ "model.layers.26.mlp.up_proj",
213
+ "model.layers.75.self_attn.q_proj",
214
+ "model.layers.39.self_attn.v_proj",
215
+ "model.layers.28.self_attn.v_proj",
216
+ "model.layers.16.self_attn.o_proj",
217
+ "model.layers.1.mlp.gate_proj",
218
+ "model.layers.13.mlp.gate_proj",
219
+ "model.layers.53.self_attn.k_proj",
220
+ "model.layers.56.self_attn.q_proj",
221
+ "model.layers.37.self_attn.k_proj",
222
+ "model.layers.68.self_attn.q_proj",
223
+ "model.layers.27.self_attn.o_proj",
224
+ "model.layers.79.self_attn.k_proj",
225
+ "model.layers.13.self_attn.k_proj",
226
+ "model.layers.60.self_attn.q_proj",
227
+ "model.layers.13.mlp.up_proj",
228
+ "model.layers.47.self_attn.k_proj",
229
+ "model.layers.6.mlp.gate_proj",
230
+ "model.layers.50.self_attn.q_proj",
231
+ "model.layers.43.mlp.up_proj",
232
+ "model.layers.19.mlp.down_proj",
233
+ "model.layers.38.self_attn.v_proj",
234
+ "model.layers.65.mlp.up_proj",
235
+ "model.layers.1.mlp.up_proj",
236
+ "model.layers.73.mlp.down_proj",
237
+ "model.layers.69.self_attn.v_proj",
238
+ "model.layers.41.self_attn.v_proj",
239
+ "model.layers.20.mlp.down_proj",
240
+ "model.layers.6.self_attn.o_proj",
241
+ "model.layers.0.mlp.down_proj",
242
+ "model.layers.42.mlp.gate_proj",
243
+ "model.layers.45.self_attn.k_proj",
244
+ "model.layers.60.mlp.gate_proj",
245
+ "model.layers.79.self_attn.v_proj",
246
+ "model.layers.16.mlp.up_proj",
247
+ "model.layers.49.mlp.down_proj",
248
+ "model.layers.38.mlp.gate_proj",
249
+ "model.layers.50.mlp.down_proj",
250
+ "model.layers.16.self_attn.v_proj",
251
+ "model.layers.58.self_attn.o_proj",
252
+ "model.layers.45.self_attn.v_proj",
253
+ "model.layers.64.mlp.down_proj",
254
+ "model.layers.71.mlp.down_proj",
255
+ "model.layers.14.mlp.gate_proj",
256
+ "model.layers.13.self_attn.o_proj",
257
+ "model.layers.61.mlp.gate_proj",
258
+ "model.layers.7.mlp.gate_proj",
259
+ "model.layers.8.mlp.gate_proj",
260
+ "model.layers.34.mlp.gate_proj",
261
+ "model.layers.19.self_attn.q_proj",
262
+ "model.layers.39.mlp.up_proj",
263
+ "model.layers.57.self_attn.v_proj",
264
+ "model.layers.60.mlp.down_proj",
265
+ "model.layers.73.self_attn.o_proj",
266
+ "model.layers.74.self_attn.q_proj",
267
+ "model.layers.63.self_attn.k_proj",
268
+ "model.layers.54.self_attn.v_proj",
269
+ "model.layers.28.mlp.down_proj",
270
+ "model.layers.42.self_attn.v_proj",
271
+ "model.layers.77.self_attn.v_proj",
272
+ "model.layers.36.self_attn.v_proj",
273
+ "model.layers.50.self_attn.v_proj",
274
+ "model.layers.55.mlp.up_proj",
275
+ "model.layers.56.mlp.down_proj",
276
+ "model.layers.4.mlp.down_proj",
277
+ "model.layers.23.mlp.down_proj",
278
+ "model.layers.42.self_attn.o_proj",
279
+ "model.layers.63.self_attn.q_proj",
280
+ "model.layers.79.mlp.up_proj",
281
+ "model.layers.33.self_attn.o_proj",
282
+ "model.layers.64.self_attn.k_proj",
283
+ "model.layers.44.mlp.down_proj",
284
+ "model.layers.54.self_attn.o_proj",
285
+ "model.layers.50.self_attn.o_proj",
286
+ "model.layers.70.self_attn.v_proj",
287
+ "model.layers.64.mlp.up_proj",
288
+ "model.layers.36.self_attn.q_proj",
289
+ "model.layers.63.mlp.up_proj",
290
+ "model.layers.75.mlp.gate_proj",
291
+ "model.layers.71.self_attn.q_proj",
292
+ "model.layers.37.self_attn.q_proj",
293
+ "model.layers.48.self_attn.o_proj",
294
+ "model.layers.17.self_attn.q_proj",
295
+ "model.layers.40.mlp.gate_proj",
296
+ "model.layers.58.mlp.gate_proj",
297
+ "model.layers.26.self_attn.v_proj",
298
+ "model.layers.67.mlp.gate_proj",
299
+ "model.layers.58.mlp.down_proj",
300
+ "model.layers.34.self_attn.k_proj",
301
+ "model.layers.1.self_attn.k_proj",
302
+ "model.layers.30.self_attn.k_proj",
303
+ "model.layers.49.mlp.up_proj",
304
+ "model.layers.41.self_attn.o_proj",
305
+ "model.layers.9.self_attn.k_proj",
306
+ "model.layers.5.self_attn.o_proj",
307
+ "model.layers.69.mlp.down_proj",
308
+ "model.layers.30.mlp.gate_proj",
309
+ "model.layers.29.self_attn.k_proj",
310
+ "model.layers.37.mlp.up_proj",
311
+ "model.layers.0.self_attn.k_proj",
312
+ "model.layers.10.self_attn.v_proj",
313
+ "model.layers.78.mlp.gate_proj",
314
+ "model.layers.47.mlp.down_proj",
315
+ "model.layers.55.self_attn.k_proj",
316
+ "model.layers.47.self_attn.o_proj",
317
+ "model.layers.18.self_attn.k_proj",
318
+ "model.layers.43.mlp.down_proj",
319
+ "model.layers.10.self_attn.k_proj",
320
+ "model.layers.7.mlp.up_proj",
321
+ "model.layers.45.self_attn.o_proj",
322
+ "model.layers.18.self_attn.q_proj",
323
+ "model.layers.26.self_attn.q_proj",
324
+ "model.layers.37.mlp.gate_proj",
325
+ "model.layers.23.mlp.gate_proj",
326
+ "model.layers.11.mlp.gate_proj",
327
+ "model.layers.0.self_attn.q_proj",
328
+ "model.layers.35.self_attn.v_proj",
329
+ "model.layers.40.mlp.up_proj",
330
+ "model.layers.31.self_attn.v_proj",
331
+ "model.layers.46.mlp.up_proj",
332
+ "model.layers.35.self_attn.k_proj",
333
+ "model.layers.69.self_attn.q_proj",
334
+ "model.layers.55.self_attn.o_proj",
335
+ "model.layers.7.self_attn.k_proj",
336
+ "model.layers.21.self_attn.o_proj",
337
+ "model.layers.50.mlp.gate_proj",
338
+ "model.layers.43.self_attn.v_proj",
339
+ "model.layers.65.self_attn.q_proj",
340
+ "model.layers.12.mlp.up_proj",
341
+ "model.layers.32.mlp.down_proj",
342
+ "model.layers.63.self_attn.v_proj",
343
+ "model.layers.46.mlp.down_proj",
344
+ "model.layers.61.self_attn.k_proj",
345
+ "model.layers.14.mlp.up_proj",
346
+ "model.layers.17.self_attn.v_proj",
347
+ "model.layers.52.mlp.down_proj",
348
+ "model.layers.23.self_attn.q_proj",
349
+ "model.layers.54.self_attn.k_proj",
350
+ "model.layers.12.self_attn.k_proj",
351
+ "model.layers.5.mlp.up_proj",
352
+ "model.layers.48.self_attn.v_proj",
353
+ "model.layers.51.self_attn.v_proj",
354
+ "model.layers.78.self_attn.q_proj",
355
+ "model.layers.28.self_attn.k_proj",
356
+ "model.layers.53.mlp.gate_proj",
357
+ "model.layers.53.mlp.down_proj",
358
+ "model.layers.5.self_attn.q_proj",
359
+ "model.layers.34.self_attn.o_proj",
360
+ "model.layers.36.mlp.up_proj",
361
+ "model.layers.49.self_attn.o_proj",
362
+ "model.layers.72.mlp.up_proj",
363
+ "model.layers.21.mlp.gate_proj",
364
+ "model.layers.6.self_attn.q_proj",
365
+ "model.layers.11.self_attn.o_proj",
366
+ "model.layers.37.self_attn.v_proj",
367
+ "model.layers.56.mlp.gate_proj",
368
+ "model.layers.34.self_attn.v_proj",
369
+ "model.layers.15.self_attn.q_proj",
370
+ "model.layers.67.self_attn.k_proj",
371
+ "model.layers.27.self_attn.v_proj",
372
+ "model.layers.8.mlp.down_proj",
373
+ "model.layers.25.mlp.gate_proj",
374
+ "model.layers.45.mlp.gate_proj",
375
+ "model.layers.49.self_attn.v_proj",
376
+ "model.layers.27.self_attn.k_proj",
377
+ "model.layers.79.self_attn.o_proj",
378
+ "model.layers.48.mlp.up_proj",
379
+ "model.layers.21.self_attn.v_proj",
380
+ "model.layers.13.self_attn.v_proj",
381
+ "model.layers.70.self_attn.q_proj",
382
+ "model.layers.10.mlp.gate_proj",
383
+ "model.layers.44.self_attn.q_proj",
384
+ "model.layers.14.self_attn.v_proj",
385
+ "model.layers.10.self_attn.o_proj",
386
+ "model.layers.25.self_attn.v_proj",
387
+ "model.layers.39.self_attn.q_proj",
388
+ "model.layers.49.self_attn.q_proj",
389
+ "model.layers.15.mlp.gate_proj",
390
+ "model.layers.61.self_attn.o_proj",
391
+ "model.layers.59.self_attn.q_proj",
392
+ "model.layers.70.self_attn.k_proj",
393
+ "model.layers.4.mlp.gate_proj",
394
+ "model.layers.57.self_attn.k_proj",
395
+ "model.layers.13.mlp.down_proj",
396
+ "model.layers.3.self_attn.o_proj",
397
+ "model.layers.66.self_attn.q_proj",
398
+ "model.layers.25.mlp.up_proj",
399
+ "model.layers.52.self_attn.q_proj",
400
+ "model.layers.8.self_attn.q_proj",
401
+ "model.layers.73.mlp.gate_proj",
402
+ "model.layers.45.mlp.up_proj",
403
+ "model.layers.45.self_attn.q_proj",
404
+ "model.layers.43.mlp.gate_proj",
405
+ "model.layers.75.mlp.down_proj",
406
+ "model.layers.51.self_attn.k_proj",
407
+ "model.layers.27.mlp.gate_proj",
408
+ "model.layers.33.self_attn.q_proj",
409
+ "model.layers.59.self_attn.o_proj",
410
+ "model.layers.41.mlp.up_proj",
411
+ "model.layers.50.self_attn.k_proj",
412
+ "model.layers.17.mlp.down_proj",
413
+ "model.layers.23.self_attn.o_proj",
414
+ "model.layers.29.mlp.down_proj",
415
+ "model.layers.12.mlp.down_proj",
416
+ "model.layers.37.self_attn.o_proj",
417
+ "model.layers.59.mlp.gate_proj",
418
+ "model.layers.46.self_attn.v_proj",
419
+ "model.layers.29.mlp.up_proj",
420
+ "model.layers.67.self_attn.v_proj",
421
+ "model.layers.8.self_attn.k_proj",
422
+ "model.layers.0.mlp.gate_proj",
423
+ "model.layers.1.self_attn.o_proj",
424
+ "model.layers.17.mlp.up_proj",
425
+ "model.layers.68.self_attn.k_proj",
426
+ "model.layers.46.self_attn.k_proj",
427
+ "model.layers.48.mlp.down_proj",
428
+ "model.layers.53.self_attn.q_proj",
429
+ "model.layers.63.self_attn.o_proj",
430
+ "model.layers.11.self_attn.v_proj",
431
+ "model.layers.66.mlp.down_proj",
432
+ "model.layers.2.mlp.down_proj",
433
+ "model.layers.69.self_attn.o_proj",
434
+ "model.layers.61.self_attn.v_proj",
435
+ "model.layers.7.self_attn.q_proj",
436
+ "model.layers.1.mlp.down_proj",
437
+ "model.layers.70.self_attn.o_proj",
438
+ "model.layers.75.mlp.up_proj",
439
+ "model.layers.40.self_attn.o_proj",
440
+ "model.layers.61.mlp.up_proj",
441
+ "model.layers.77.self_attn.q_proj",
442
+ "model.layers.17.mlp.gate_proj",
443
+ "model.layers.77.self_attn.o_proj",
444
+ "model.layers.44.self_attn.o_proj",
445
+ "model.layers.16.mlp.gate_proj",
446
+ "model.layers.15.self_attn.v_proj",
447
+ "model.layers.5.mlp.gate_proj",
448
+ "model.layers.62.self_attn.o_proj",
449
+ "model.layers.59.self_attn.v_proj",
450
+ "model.layers.52.self_attn.o_proj",
451
+ "model.layers.34.self_attn.q_proj",
452
+ "model.layers.22.self_attn.k_proj",
453
+ "model.layers.13.self_attn.q_proj",
454
+ "model.layers.10.mlp.down_proj",
455
+ "model.layers.57.mlp.gate_proj",
456
+ "model.layers.50.mlp.up_proj",
457
+ "model.layers.0.self_attn.o_proj",
458
+ "model.layers.23.self_attn.k_proj",
459
+ "model.layers.42.self_attn.q_proj",
460
+ "model.layers.26.mlp.down_proj",
461
+ "model.layers.72.mlp.down_proj",
462
+ "model.layers.77.mlp.down_proj",
463
+ "model.layers.2.self_attn.k_proj",
464
+ "model.layers.18.mlp.down_proj",
465
+ "model.layers.76.mlp.gate_proj",
466
+ "model.layers.59.self_attn.k_proj",
467
+ "model.layers.25.self_attn.k_proj",
468
+ "model.layers.74.self_attn.o_proj",
469
+ "model.layers.35.self_attn.o_proj",
470
+ "model.layers.55.mlp.gate_proj",
471
+ "model.layers.53.self_attn.o_proj",
472
+ "model.layers.35.self_attn.q_proj",
473
+ "model.layers.24.self_attn.o_proj",
474
+ "model.layers.40.self_attn.k_proj",
475
+ "model.layers.19.mlp.gate_proj",
476
+ "model.layers.20.self_attn.v_proj",
477
+ "model.layers.73.self_attn.v_proj",
478
+ "model.layers.54.self_attn.q_proj",
479
+ "model.layers.72.self_attn.q_proj",
480
+ "model.layers.46.self_attn.o_proj",
481
+ "model.layers.57.mlp.down_proj",
482
+ "model.layers.68.self_attn.o_proj",
483
+ "model.layers.51.mlp.down_proj",
484
+ "model.layers.44.mlp.gate_proj",
485
+ "model.layers.65.self_attn.o_proj",
486
+ "model.layers.74.mlp.up_proj",
487
+ "model.layers.27.mlp.up_proj",
488
+ "model.layers.31.self_attn.o_proj",
489
+ "model.layers.48.mlp.gate_proj",
490
+ "model.layers.15.self_attn.k_proj",
491
+ "model.layers.72.mlp.gate_proj",
492
+ "model.layers.47.mlp.up_proj",
493
+ "model.layers.66.self_attn.v_proj",
494
+ "model.layers.12.self_attn.v_proj",
495
+ "model.layers.46.mlp.gate_proj",
496
+ "model.layers.63.mlp.gate_proj",
497
+ "model.layers.19.self_attn.o_proj",
498
+ "model.layers.39.self_attn.k_proj",
499
+ "model.layers.2.self_attn.q_proj",
500
+ "model.layers.47.self_attn.q_proj",
501
+ "model.layers.64.self_attn.v_proj",
502
+ "model.layers.6.mlp.up_proj",
503
+ "model.layers.16.self_attn.q_proj",
504
+ "model.layers.21.mlp.down_proj",
505
+ "model.layers.7.mlp.down_proj",
506
+ "model.layers.20.mlp.up_proj",
507
+ "model.layers.39.mlp.down_proj",
508
+ "model.layers.40.mlp.down_proj",
509
+ "model.layers.65.self_attn.v_proj",
510
+ "model.layers.72.self_attn.o_proj",
511
+ "model.layers.10.mlp.up_proj",
512
+ "model.layers.51.self_attn.q_proj",
513
+ "model.layers.57.self_attn.q_proj",
514
+ "model.layers.65.mlp.gate_proj",
515
+ "model.layers.41.self_attn.k_proj",
516
+ "model.layers.25.mlp.down_proj",
517
+ "model.layers.24.self_attn.k_proj",
518
+ "model.layers.14.self_attn.k_proj",
519
+ "model.layers.8.self_attn.v_proj",
520
+ "model.layers.62.mlp.up_proj",
521
+ "model.layers.3.mlp.down_proj",
522
+ "model.layers.41.self_attn.q_proj",
523
+ "model.layers.32.mlp.up_proj",
524
+ "model.layers.5.self_attn.v_proj",
525
+ "model.layers.64.self_attn.o_proj",
526
+ "model.layers.31.self_attn.k_proj",
527
+ "model.layers.60.mlp.up_proj",
528
+ "model.layers.21.self_attn.q_proj",
529
+ "model.layers.26.self_attn.o_proj",
530
+ "model.layers.68.mlp.gate_proj",
531
+ "model.layers.6.self_attn.v_proj",
532
+ "model.layers.4.mlp.up_proj",
533
+ "model.layers.22.mlp.up_proj",
534
+ "model.layers.31.mlp.gate_proj",
535
+ "model.layers.25.self_attn.q_proj",
536
+ "model.layers.76.self_attn.k_proj",
537
+ "model.layers.45.mlp.down_proj",
538
+ "model.layers.3.mlp.up_proj",
539
+ "model.layers.21.mlp.up_proj",
540
+ "model.layers.72.self_attn.v_proj",
541
+ "model.layers.42.self_attn.k_proj",
542
+ "model.layers.38.self_attn.q_proj",
543
+ "model.layers.31.self_attn.q_proj",
544
+ "model.layers.7.self_attn.v_proj",
545
+ "model.layers.55.mlp.down_proj",
546
+ "model.layers.32.mlp.gate_proj",
547
+ "model.layers.76.self_attn.v_proj",
548
+ "model.layers.22.self_attn.o_proj",
549
+ "model.layers.59.mlp.down_proj",
550
+ "model.layers.73.self_attn.k_proj",
551
+ "model.layers.58.self_attn.q_proj",
552
+ "model.layers.46.self_attn.q_proj",
553
+ "model.layers.24.mlp.down_proj",
554
+ "model.layers.77.mlp.up_proj",
555
+ "model.layers.7.self_attn.o_proj",
556
+ "model.layers.57.mlp.up_proj",
557
+ "model.layers.11.self_attn.q_proj",
558
+ "model.layers.73.self_attn.q_proj",
559
+ "model.layers.62.self_attn.q_proj",
560
+ "model.layers.56.mlp.up_proj",
561
+ "model.layers.78.self_attn.o_proj",
562
+ "model.layers.34.mlp.up_proj",
563
+ "model.layers.77.self_attn.k_proj",
564
+ "model.layers.28.self_attn.q_proj",
565
+ "model.layers.16.self_attn.k_proj",
566
+ "model.layers.52.self_attn.k_proj",
567
+ "model.layers.78.mlp.down_proj",
568
+ "model.layers.43.self_attn.k_proj",
569
+ "model.layers.62.self_attn.v_proj",
570
+ "model.layers.38.self_attn.o_proj",
571
+ "model.layers.1.self_attn.v_proj",
572
+ "model.layers.53.mlp.up_proj",
573
+ "model.layers.33.self_attn.k_proj",
574
+ "model.layers.56.self_attn.v_proj",
575
+ "model.layers.52.self_attn.v_proj",
576
+ "model.layers.8.self_attn.o_proj",
577
+ "model.layers.62.mlp.gate_proj",
578
+ "model.layers.73.mlp.up_proj",
579
+ "model.layers.20.mlp.gate_proj",
580
+ "model.layers.42.mlp.down_proj",
581
+ "model.layers.20.self_attn.k_proj",
582
+ "model.layers.14.self_attn.o_proj",
583
+ "model.layers.63.mlp.down_proj",
584
+ "model.layers.78.self_attn.v_proj",
585
+ "model.layers.66.self_attn.o_proj"
586
+ ],
587
+ "task_type": null,
588
+ "use_dora": false,
589
+ "use_rslora": false
590
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:895774d3eeb7704eb29620f5151fb70a740e4fd96ad62a0841aea92a48488cb9
3
+ size 1684428912
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
global_step3000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba326d2e518f430fc4c82b6955b92197d2b1653c9fafe64786d85d4c0a5b6c44
3
+ size 2642574608
global_step3000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fba4485312b411d0a8ef288a49701638bf3139ff5e7cee3e08456d1183ba58fb
3
+ size 2642574608
global_step3000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6000c67bb30ba0abce7687747d48eb7a59cc7ca5252c343c0c5a50f7412202f2
3
+ size 2642574608
global_step3000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ff774786aeaa1032fc5fec1ddd7be13c15f968d41706a80492a5559ed1f27fe
3
+ size 2642574608
global_step3000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:666c0c1c94487b46714cf91959f585a23e3e9c58dea6dbb031f6ebd343921541
3
+ size 2642574608
global_step3000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9845df230299de4093e988c8feedf996c3af6b1db88ee662ceedacdf104aa3d1
3
+ size 2642574608
global_step3000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:850e8c8cdc4830b7e089414f19ad1d9ba29f09ee905f5353547ba2ae354c0ca0
3
+ size 2642574608
global_step3000/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f05ab0087d692bb5983658e53d6fb86b48bc0ce158ce86b12e0cc38ba714385b
3
+ size 1253080
global_step3000/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89006c86a4497a22c006bdea1cdd445c887af4347cdb40d1dfa3f43783a91a7c
3
+ size 1253080
global_step3000/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b531bb58ae46705ce6e9db5cd6febeb618ba54862db877eaa7a651ca2439edd
3
+ size 1253080
global_step3000/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69b9ba98ebf28723521f9d4dd3fca54a5536cc9ee4a5551d3682ca0e72776cda
3
+ size 1253080
global_step3000/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3139d976f4e9d775e229c68a2f151c1812608de5d38ece5fef1fd8a9aca879f5
3
+ size 1253080
global_step3000/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3dcf30d0622834145da017eb133589ea467b1867f5c6bc6fe9455907fa22181
3
+ size 1253080
global_step3000/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:371e623ced4ac494ac391d1ecf3204984e8a324b7d180b95d7ac880a886cb538
3
+ size 1253080
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step3000
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
non_lora_state_dict_visual.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab7df2d7b052e02a0047c526636ca849a1d8b39ce4d84291a2e3e1004d18183d
3
+ size 17723
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 3841600,
18
+ "merge_size": 2,
19
+ "min_pixels": 200704,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c95382e3756df749563e516476c95b9403f1d2a0f24e727456e402a4c6de27b
3
+ size 15728
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de8b564d81a3f95cc90ae46791cdf99e7d48720639f495e1bd11b5619932ffd7
3
+ size 15728
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb7ba99ef5bef1eb75a5c9038c8ae40dded25311c25ed9a9cd4957a131e8cae4
3
+ size 15728
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eb132f33dc3aac9a639e360000ee67e01e02b693a067d81211f2fa86bc28ed4
3
+ size 15728
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5d24693c9b05bdf9b11ce5aa0420adebc5ac3c52b998732437a424d1ee58487
3
+ size 15728
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc8817cda6d236dd154deb7364a8b735eb249a1dd90c90596f65f02a50d66a26
3
+ size 15728
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f23f785f39223b21398892a28d4e1c33d63c9959659f1fddeacd059f0ed6d919
3
+ size 15728
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "max_pixels": 3841600,
138
+ "min_pixels": 200704,
139
+ "model_max_length": 32768,
140
+ "pad_token": "<|endoftext|>",
141
+ "padding_side": "right",
142
+ "processor_class": "Qwen2VLProcessor",
143
+ "split_special_tokens": false,
144
+ "tokenizer_class": "Qwen2Tokenizer",
145
+ "unk_token": null
146
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f535e9a079e808b5afcd8956b4e12f028cd80a70bc7d99b3c562b485af1f7492
3
+ size 8312
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)