license: mit
task_categories:
- text-classification
- feature-extraction
language:
- en
tags:
- software-engineering
- testing
- performance
- llm-serving
- vllm
- benchmarking
- ml-evaluation
pretty_name: vLLM PR Test Classification
size_categories:
- n<1K
configs:
- config_name: default
data_files:
- split: train
path: data/*
vLLM PR Test Classification Dataset
π― Overview
This dataset contains 98 vLLM project commits with their corresponding Pull Request (PR) timeline data and comprehensive test type classifications. It provides insights into testing patterns in a major LLM serving infrastructure project.
π Dataset Description
Purpose
This dataset was created by analyzing vLLM project PR timelines to:
- Identify different types of testing and benchmarking activities
- Understand testing patterns in LLM infrastructure development
- Provide labeled data for ML models to classify test types in software PRs
- Enable research on performance optimization trends in LLM serving
Test Categories
Each commit is classified across four test categories:
Category | Description | Keywords | Prevalence |
---|---|---|---|
LM Evaluation | Language model evaluation tests | lm_eval , gsm8k , mmlu , hellaswag , truthfulqa |
25.5% |
Performance | Performance benchmarking tests | TTFT , throughput , latency , ITL , TPOT , tok/s |
81.6% |
Serving | Serving functionality tests | vllm serve , API server , frontend , online serving |
53.1% |
General Test | General testing activities | CI , pytest , unittest , buildkite , fastcheck |
96.9% |
π Dataset Statistics
Overall Distribution
- Total commits: 98
- Multi-category commits: 76 (77.6%)
- Average test types per commit: 2.57
Detailed Keyword Frequency
Top Performance Keywords (80 commits)
throughput
: 241 mentionslatency
: 191 mentionsprofiling
: 114 mentionsTTFT
(Time To First Token): 114 mentionsITL
(Inter-token Latency): 114 mentionsTPOT
(Time Per Output Token): 108 mentionsoptimization
: 87 mentionstok/s
(tokens per second): 66 mentions
Top LM Evaluation Keywords (25 commits)
gsm8k
: 62 mentionslm_eval
: 33 mentionslm-eval
: 9 mentionsmmlu
: 3 mentionshumaneval
: 1 mention
Top Serving Keywords (52 commits)
frontend
: 181 mentionsserving
: 74 mentionsapi server
: 42 mentionsvllm serve
: 23 mentionsonline serving
: 19 mentions
ποΈ Data Schema
{
'commit_hash': str, # Git commit SHA-1 hash (40 chars)
'pr_url': str, # GitHub PR URL (e.g., https://github.com/vllm-project/vllm/pull/12601)
'has_lm_eval': bool, # True if commit contains LM evaluation tests
'has_performance': bool, # True if commit contains performance benchmarks
'has_serving': bool, # True if commit contains serving tests
'has_general_test': bool, # True if commit contains general tests
'test_details': str, # Pipe-separated test keywords (e.g., "PERF: ttft, throughput | TEST: ci, pytest")
'timeline_text': str, # Full PR timeline text with comments, reviews, and commit messages
'extracted_at': str # ISO timestamp when data was extracted
}
π» Usage Examples
Basic Loading
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("your-username/vllm-pr-test-classification")
# Explore the data
print(f"Total examples: {len(dataset['train'])}")
print(f"Features: {dataset['train'].features}")
print(f"First example: {dataset['train'][0]}")
Filtering Examples
# Get commits with performance benchmarks
perf_commits = dataset['train'].filter(lambda x: x['has_performance'])
print(f"Performance commits: {len(perf_commits)}")
# Get commits with LM evaluation
lm_eval_commits = dataset['train'].filter(lambda x: x['has_lm_eval'])
print(f"LM evaluation commits: {len(lm_eval_commits)}")
# Get commits with multiple test types
multi_test = dataset['train'].filter(
lambda x: sum([x['has_lm_eval'], x['has_performance'],
x['has_serving'], x['has_general_test']]) >= 3
)
print(f"Commits with 3+ test types: {len(multi_test)}")
Analysis Example
import pandas as pd
# Convert to pandas for analysis
df = dataset['train'].to_pandas()
# Analyze test type combinations
test_combinations = df[['has_lm_eval', 'has_performance', 'has_serving', 'has_general_test']]
combination_counts = test_combinations.value_counts()
print("Most common test combinations:")
print(combination_counts.head())
# Extract performance metrics mentioned
perf_df = df[df['has_performance']]
print(f"\nCommits mentioning specific metrics:")
print(f"TTFT mentions: {perf_df['test_details'].str.contains('TTFT').sum()}")
print(f"Throughput mentions: {perf_df['test_details'].str.contains('throughput', case=False).sum()}")
Text Classification Training
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
# Prepare for multi-label classification
def preprocess_function(examples):
# Create multi-label targets
labels = []
for i in range(len(examples['commit_hash'])):
label = [
int(examples['has_lm_eval'][i]),
int(examples['has_performance'][i]),
int(examples['has_serving'][i]),
int(examples['has_general_test'][i])
]
labels.append(label)
# Tokenize timeline text
tokenized = tokenizer(
examples['timeline_text'],
truncation=True,
padding='max_length',
max_length=512
)
tokenized['labels'] = labels
return tokenized
# Train a classifier to identify test types from PR text
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained(
"bert-base-uncased",
num_labels=4,
problem_type="multi_label_classification"
)
π Sample Data
Example 1: Performance-focused commit
{
"commit_hash": "fc542144c4477ffec1d3de6fa43e54f8fb5351e8",
"pr_url": "https://github.com/vllm-project/vllm/pull/12563",
"has_lm_eval": false,
"has_performance": true,
"has_serving": false,
"has_general_test": true,
"test_details": "PERF: tok/s, optimization | TEST: CI",
"timeline_text": "[Guided decoding performance optimization]..."
}
Example 2: Comprehensive testing commit
{
"commit_hash": "aea94362c9bdd08ed2b346701bdc09d278e85f66",
"pr_url": "https://github.com/vllm-project/vllm/pull/12287",
"has_lm_eval": true,
"has_performance": true,
"has_serving": true,
"has_general_test": true,
"test_details": "LM_EVAL: lm_eval, gsm8k | PERF: TTFT, ITL | SERVING: vllm serve | TEST: test, CI",
"timeline_text": "[Frontend][V1] Online serving performance improvements..."
}
π οΈ Potential Use Cases
- Test Type Classification: Train models to automatically classify test types in software PRs
- Testing Pattern Analysis: Study how different test types correlate in infrastructure projects
- Performance Optimization Research: Analyze performance testing trends in LLM serving systems
- CI/CD Insights: Understand continuous integration patterns in ML infrastructure projects
- Documentation Generation: Generate test documentation from PR timelines
- Code Review Automation: Build tools to automatically suggest relevant tests based on PR content
π Source
This dataset was extracted from the vLLM project GitHub repository PR timelines. vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs.
π Updates
- v1.0.0 (2025-01): Initial release with 98 commits
π License
This dataset is released under the MIT License, consistent with the vLLM project's licensing.
π Citation
If you use this dataset in your research or applications, please cite:
@dataset{vllm_pr_test_classification_2025,
title={vLLM PR Test Classification Dataset},
author={vLLM Community Contributors},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/your-username/vllm-pr-test-classification},
note={A dataset of 98 vLLM commits with test type classifications extracted from GitHub PR timelines}
}
π€ Contributing
If you'd like to contribute to this dataset or report issues:
- Open an issue on the Hugging Face dataset repository
- Submit improvements via pull requests
- Share your use cases and findings
β οΈ Limitations
- Dataset size is limited to 98 commits
- Timeline text may be truncated for very long PR discussions
- Classification is based on keyword matching, which may miss context-dependent references
- Dataset represents a snapshot from specific time period of vLLM development
π Acknowledgments
Thanks to the vLLM project maintainers and contributors for their open-source work that made this dataset possible.