|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""RuLM: a dataset for Russian language modeling""" |
|
|
|
import os |
|
import io |
|
|
|
import zstandard |
|
import jsonlines |
|
import datasets |
|
|
|
try: |
|
import simdjson |
|
parser = simdjson.Parser() |
|
def parse_json(x): |
|
try: |
|
return parser.parse(x).as_dict() |
|
except ValueError: |
|
return |
|
except ImportError: |
|
import json |
|
def parse_json(x): |
|
return json.loads(x) |
|
|
|
|
|
|
|
_TRAIN_SPLITS = 20 |
|
_DESCRIPTION = "Dataset for Russian language modeling" |
|
_URLS = { |
|
"train": ["train/{}.jsonl.zst".format(str(i).zfill(2)) for i in range(_TRAIN_SPLITS)], |
|
"validation": "validation.jsonl.zst", |
|
"test": "test.jsonl.zst" |
|
} |
|
_TEXT = "text" |
|
|
|
|
|
class RuLMDataset(datasets.GeneratorBasedBuilder): |
|
"""RuLM Dataset""" |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="default", version=VERSION, description=""), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"meta": { |
|
"source": datasets.Value("string"), |
|
"url": datasets.Value("string") |
|
} |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=(_TEXT,) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download(_URLS) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"paths": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"paths": downloaded_files["test"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"paths": downloaded_files["validation"]}), |
|
] |
|
|
|
def _generate_examples(self, paths): |
|
if not isinstance(paths, list): |
|
paths = [paths] |
|
for filename in paths: |
|
with open(filename, "rb") as f: |
|
cctx = zstandard.ZstdDecompressor() |
|
reader_stream = io.BufferedReader(cctx.stream_reader(f)) |
|
reader = jsonlines.Reader(reader_stream, loads=parse_json) |
|
for id_, item in enumerate(reader): |
|
yield id_, item |
|
|