Datasets:
Iker
/

Modalities:
Text
Formats:
parquet
Languages:
Spanish
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
NoticIA / README.md
Iker's picture
Update README.md
7ef52b4 verified
|
raw
history blame
4.37 kB
metadata
license: apache-2.0
dataset_info:
  features:
    - name: web_url
      dtype: string
    - name: web_headline
      dtype: string
    - name: web_text
      dtype: string
    - name: summary
      dtype: string
    - name: clean_web_text
      dtype: string
  splits:
    - name: train
      num_bytes: 3939347
      num_examples: 700
    - name: validation
      num_bytes: 352363
      num_examples: 50
    - name: test
      num_bytes: 602869
      num_examples: 100
  download_size: 2876490
  dataset_size: 4894579
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*
language:
  - es
tags:
  - summarization
  - clickbait
  - news
pretty_name: NoticIA
multilinguality:
  - monolingual
source_datasets:
  - original
task_categories:
  - summarization
size_categories:
  - n<1K

"A Spanish dataset for Clickbait articles summarization"

We introduce a dataset that contains articles with clickbait headlines. We provide the clickbait headline for the article, the corresponding web text, and the summary. The summaries are written by humans and aim to answer the clickbait headlines using the fewest words possible.

For example, given the following headline and web text:

# ¿Qué pasará el 15 de enero de 2024?
Al parecer, no todo es dulzura en las vacaciones de fin de años, como lo demuestra la nueva intrig....

The summary is:

Que los estudiantes vuelven a clase.

Data explanation

  • web_url (int): The URL of the news article
  • web_headline (str): The headline of the article, which is a Clickbait.
  • web_text (int): The body of the article.
  • clean_web_text (str): The web_text has been downloaded from the web HTML and can contain undesired text not related to the news article. The clean_web_text has been cleaned using the OpenAI gpt-3.5-turbo-0125 model. We ask the model to remove any sentence unrelated to the article.
  • summary (str): The summary written by humans that answers the clickbait headline.

Dataset Description

Uses

This dataset is intended to build models tailored for academic research that can extract information from large texts. The objective is to research whether current LLMs, given a question formulated as a Clickbait headline, can locate the answer within the article body and summarize the information in a few words. The dataset also aims to serve as a task to evaluate the performance of current LLMs in Spanish.

Out-of-Scope Use

You cannot use this dataset to develop systems that directly harm the newspapers included in the dataset. This includes using the dataset to train profit-oriented LLMs capable of generating articles from a short text or headline, as well as developing profit-oriented bots that automatically summarize articles without the permission of the article's owner. Additionally, you are not permitted to train a system with this dataset that generates clickbait headlines.

Dataset Creation

The dataset has been meticulously created by hand. We utilize two sources to compile Clickbait articles:

  • The Twitter user @ahorrandoclick1, who reposts Clickbait articles along with a hand-crafted summary. Although we use their summaries as a reference, most of them have been rewritten (750 examples from this source).
  • The web demo ⚔️ClickbaitFighter⚔️, which operates a pre-trained model using an early iteration of our dataset. We collect all the model inputs/outputs and manually correct them (100 examples from this source).

Who are the annotators?

The dataset was annotated by Iker García-Ferrero and validated by . The annotation took ~40 hours.