|
import os |
|
import sys |
|
from multiprocessing import Pool |
|
from os import path as osp |
|
|
|
import cv2 |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
|
|
def scandir(dir_path, suffix=None, recursive=False, full_path=False): |
|
"""Scan a directory to find the interested files. |
|
Args: |
|
dir_path (str): Path of the directory. |
|
suffix (str | tuple(str), optional): File suffix that we are |
|
interested in. Default: None. |
|
recursive (bool, optional): If set to True, recursively scan the |
|
directory. Default: False. |
|
full_path (bool, optional): If set to True, include the dir_path. |
|
Default: False. |
|
Returns: |
|
A generator for all the interested files with relative pathes. |
|
""" |
|
|
|
if (suffix is not None) and not isinstance(suffix, (str, tuple)): |
|
raise TypeError('"suffix" must be a string or tuple of strings') |
|
|
|
root = dir_path |
|
|
|
def _scandir(dir_path, suffix, recursive): |
|
for entry in os.scandir(dir_path): |
|
if not entry.name.startswith('.') and entry.is_file(): |
|
if full_path: |
|
return_path = entry.path |
|
else: |
|
return_path = osp.relpath(entry.path, root) |
|
|
|
if suffix is None: |
|
yield return_path |
|
elif return_path.endswith(suffix): |
|
yield return_path |
|
else: |
|
if recursive: |
|
yield from _scandir( |
|
entry.path, suffix=suffix, recursive=recursive) |
|
else: |
|
continue |
|
|
|
return _scandir(dir_path, suffix=suffix, recursive=recursive) |
|
|
|
|
|
def main(): |
|
"""A multi-thread tool to crop large images to sub-images for faster IO. |
|
It is used for DIV2K dataset. |
|
opt (dict): Configuration dict. It contains: |
|
n_thread (int): Thread number. |
|
compression_level (int): CV_IMWRITE_PNG_COMPRESSION from 0 to 9. |
|
A higher value means a smaller size and longer compression time. |
|
Use 0 for faster CPU decompression. Default: 3, same in cv2. |
|
input_folder (str): Path to the input folder. |
|
save_folder (str): Path to save folder. |
|
crop_size (int): Crop size. |
|
step (int): Step for overlapped sliding window. |
|
thresh_size (int): Threshold size. Patches whose size is lower |
|
than thresh_size will be dropped. |
|
Usage: |
|
For each folder, run this script. |
|
Typically, there are four folders to be processed for DIV2K dataset. |
|
DIV2K_train_HR |
|
DIV2K_train_LR_bicubic/X2 |
|
DIV2K_train_LR_bicubic/X3 |
|
DIV2K_train_LR_bicubic/X4 |
|
After process, each sub_folder should have the same number of |
|
subimages. |
|
Remember to modify opt configurations according to your settings. |
|
""" |
|
|
|
opt = {} |
|
opt['n_thread'] = 40 |
|
opt['compression_level'] = 3 |
|
|
|
|
|
opt['input_folder'] = './GT' |
|
opt['save_folder'] = './GT_sub' |
|
opt['crop_size'] = 480 |
|
opt['step'] = 240 |
|
opt['thresh_size'] = 0 |
|
extract_subimages(opt) |
|
|
|
|
|
def extract_subimages(opt): |
|
"""Crop images to subimages. |
|
Args: |
|
opt (dict): Configuration dict. It contains: |
|
input_folder (str): Path to the input folder. |
|
save_folder (str): Path to save folder. |
|
n_thread (int): Thread number. |
|
""" |
|
input_folder = opt['input_folder'] |
|
save_folder = opt['save_folder'] |
|
if not osp.exists(save_folder): |
|
os.makedirs(save_folder) |
|
print(f'mkdir {save_folder} ...', exist_okay=True) |
|
else: |
|
pass |
|
|
|
|
|
|
|
img_list = list(scandir(input_folder, full_path=True)) |
|
|
|
pbar = tqdm(total=len(img_list), unit='image', desc='Extract') |
|
pool = Pool(opt['n_thread']) |
|
img_list = sorted(img_list)[-3:-2] |
|
for path in img_list: |
|
worker(path, opt) |
|
raise NotImplementedError |
|
pool.apply_async( |
|
worker, args=(path, opt), callback=lambda arg: pbar.update(1)) |
|
|
|
pool.close() |
|
pool.join() |
|
pbar.close() |
|
print('All processes done.') |
|
|
|
|
|
def worker(path, opt): |
|
"""Worker for each process. |
|
Args: |
|
path (str): Image path. |
|
opt (dict): Configuration dict. It contains: |
|
crop_size (int): Crop size. |
|
step (int): Step for overlapped sliding window. |
|
thresh_size (int): Threshold size. Patches whose size is lower |
|
than thresh_size will be dropped. |
|
save_folder (str): Path to save folder. |
|
compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION. |
|
Returns: |
|
process_info (str): Process information displayed in progress bar. |
|
""" |
|
crop_size = opt['crop_size'] |
|
step = opt['step'] |
|
thresh_size = opt['thresh_size'] |
|
img_name, extension = osp.splitext(osp.basename(path)) |
|
|
|
|
|
img_name = img_name.replace('x2', |
|
'').replace('x3', |
|
'').replace('x4', |
|
'').replace('x8', '') |
|
|
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) |
|
|
|
if img.ndim == 2: |
|
h, w = img.shape |
|
elif img.ndim == 3: |
|
h, w, c = img.shape |
|
else: |
|
raise ValueError(f'Image ndim should be 2 or 3, but got {img.ndim}') |
|
|
|
h_space = np.arange(0, h - crop_size + 1, step) |
|
if h - (h_space[-1] + crop_size) > thresh_size: |
|
h_space = np.append(h_space, h - crop_size) |
|
w_space = np.arange(0, w - crop_size + 1, step) |
|
if w - (w_space[-1] + crop_size) > thresh_size: |
|
w_space = np.append(w_space, w - crop_size) |
|
|
|
index = 0 |
|
for x in h_space: |
|
for y in w_space: |
|
index += 1 |
|
cropped_img = img[x:x + crop_size, y:y + crop_size, ...] |
|
cropped_img = np.ascontiguousarray(cropped_img) |
|
cv2.imwrite( |
|
osp.join(opt['save_folder'], |
|
f'{img_name}_s{index:03d}{extension}'), cropped_img, |
|
[cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) |
|
process_info = f'Processing {img_name} ...' |
|
return process_info |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|