|
--- |
|
license: cc |
|
task_categories: |
|
- audio-to-audio |
|
- text-generation |
|
- audio-classification |
|
- video-classification |
|
language: |
|
- en |
|
size_categories: |
|
- 1K<n<10K |
|
|
|
|
|
|
|
|
|
|
|
--- |
|
Audio files have been newly processed and re-uploaded on 7/11/2024. Please download the files again for an updated version. |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** https://multidialog.github.io |
|
- **Repository:** https://github.com/MultiDialog/MultiDialog |
|
- **Paper:** https://arxiv.org/abs/2106.06909 |
|
- **Point of Contact:** [jinny960812@kaist.ac.kr](mailto:jinny960812@kaist.ac.kr) |
|
- **Point of Contact:** [chaewonkim@kaist.ac.kr](mailto:chaewonkim@kaist.ac.kr) |
|
|
|
## Dataset Description |
|
This dataset includes manually annotated metadata linking audio files to transcriptions, emotions, and other attributes. For access to video files of MultiDialog, download them [here](https://drive.google.com/drive/folders/1RPMwVHU34yX0R_HbxAWmxF2EHy961HA3?usp=sharing). |
|
|
|
### Dataset Statistics |
|
| | train | valid_freq | valid_rare | test_freq | test_rare | Total | |
|
|-----------------------|---------|---------|---------|---------|---------|----------| |
|
| \# dialogues | 7,011 | 448 | 443 | 450 | 381 | 8,733 | |
|
| \# utterance | 151,645 | 8,516 | 9,556 | 9,811 | 8,331 | 187,859 | |
|
| avg \# utterance/dialogue | 21.63 | 19.01 | 21.57 | 21.80 | 21.87 | 21.51 | |
|
| avg length/utterance (s) | 6.50 | 6.23 | 6.40 | 6.99 | 6.49 | 6.51 | |
|
| avg length/dialogue (min) | 2.34 | 1.97 | 2.28 | 2.54 | 2.36 | 2.33 | |
|
| total length (hr) | 273.93 | 14.74 | 17.00 | 19.04 | 15.01 | 339.71 | |
|
|
|
|
|
### Example Usage |
|
There are 'train', 'test_freq', 'test_rare', 'valid_freq', and 'valid_rare' splits. Below is an example usage. |
|
```python |
|
from datasets import load_dataset |
|
|
|
MultiD = load_dataset("IVLLab/MultiDialog", "valid_freq", use_auth_token=True) |
|
|
|
# see structure |
|
print(MultiD) |
|
|
|
# load audio sample on the fly |
|
audio_input = MultiD["valid_freq"][0]["audio"] # first decoded audio sample |
|
transcription = MultiD["valid_freq"][0]["value"] # first transcription |
|
``` |
|
|
|
### Supported Tasks |
|
- `multimodal dialogue generation` : The dataset can be used to train an end-to-end multimodal |
|
- `automatic-speech-recognition`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). |
|
- `text-to-speech`: The dataset can also be used to train a model for Text-To-Speech (TTS). |
|
|
|
### Languages |
|
Multidialog contains audio and transcription data in English. |
|
|
|
### Gold Emotion Dialogue Subset |
|
We provide a gold emotion dialogue subset in the MultiDialog dataset, a more reliable resource for studying emotional dynamics in conversations. |
|
We classify dialogues from actors that exhibit emotion accuracy above 40% as gold emotion dialogue. Please use dialogues from actors with the following ids: a, b, c, e, f, g, i, j, and k. |
|
|
|
|
|
## Dataset Structure |
|
### Data Instances |
|
```python |
|
{ |
|
'file_name': 't_ffa55df6-114d-4b36-87a1-7af6b8b63d9b/t_ffa55df6-114d-4b36-87a1-7af6b8b63d9b_0k.wav' |
|
'conv_id': 't_ffa55df6-114d-4b36-87a1-7af6b8b63d9b', |
|
'utterance_id': 0, |
|
'from': 'gpt', |
|
'audio': |
|
{ |
|
# in streaming mode 'path' will be 't_152ee99a-fec0-4d37-87a8-b1510a9dc7e5/t_152ee99a-fec0-4d37-87a8-b1510a9dc7e5_0i.wav' |
|
'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/cache_id/t_152ee99a-fec0-4d37-87a8-b1510a9dc7e5/t_152ee99a-fec0-4d37-87a8-b1510a9dc7e5_0i.wav, |
|
'array': array([0.0005188 , 0.00085449, 0.00012207, ..., 0.00125122, 0.00076294, 0.00036621], dtype=float32), |
|
'sampling_rate': 16000 |
|
}, |
|
'value': 'Are you a football fan?', |
|
'emotion': 'Neutral', |
|
'original_full_path': 'valid_freq/t_ffa55df6-114d-4b36-87a1-7af6b8b63d9b/t_ffa55df6-114d-4b36-87a1-7af6b8b63d9b_0k.wav' |
|
} |
|
``` |
|
|
|
### Data Fields |
|
* file_name (string) - relative file path to the audio sample in the specific split directory. |
|
* conv_id (string) - unique identifier for each conversation. |
|
* utterance_id (float) - uterrance index. |
|
* from (string) - who the message is from (human, gpt). |
|
* audio (Audio feature) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. |
|
In non-streaming mode (default), the path point to the locally extracted audio. In streaming mode, the path is the relative path of an audio. |
|
segment inside its archive (as files are not downloaded and extracted locally). |
|
* value (string) - transcription of the utterance. |
|
* emotion (string) - the emotion of the utterance. |
|
* original_full_path (string) - the relative path to the original full audio sample in the original data directory. |
|
|
|
Emotion is assigned from the following labels: |
|
"Neutral", "Happy", "Fear", "Angry", "Disgusting", "Surprising", "Sad" |
|
|
|
|
|
|
|
|
|
|