Datasets:
Tasks:
Question Answering
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
Commit
·
1108a96
1
Parent(s):
5796f56
Fix NonMatchingSplitsSizesError (#3)
Browse files- Delete legacy dataset_infos.json (fcaa2122dfe722063ad01b19a4dc7adee543c9c0)
- Fix size of test split in dataset card (66809f999db39c5b260bb447a62844377fb2c854)
- README.md +18 -18
- dataset_infos.json +0 -1
README.md
CHANGED
@@ -10,7 +10,6 @@ license:
|
|
10 |
- apache-2.0
|
11 |
multilinguality:
|
12 |
- monolingual
|
13 |
-
pretty_name: MultiDoc2Dial
|
14 |
size_categories:
|
15 |
- 10K<n<100K
|
16 |
- 1K<n<10K
|
@@ -22,6 +21,11 @@ task_categories:
|
|
22 |
task_ids:
|
23 |
- open-domain-qa
|
24 |
paperswithcode_id: multidoc2dial
|
|
|
|
|
|
|
|
|
|
|
25 |
dataset_info:
|
26 |
- config_name: dialogue_domain
|
27 |
features:
|
@@ -49,13 +53,13 @@ dataset_info:
|
|
49 |
dtype: string
|
50 |
splits:
|
51 |
- name: train
|
52 |
-
num_bytes:
|
53 |
num_examples: 3474
|
54 |
- name: validation
|
55 |
-
num_bytes:
|
56 |
num_examples: 661
|
57 |
-
download_size:
|
58 |
-
dataset_size:
|
59 |
- config_name: document_domain
|
60 |
features:
|
61 |
- name: domain
|
@@ -102,10 +106,10 @@ dataset_info:
|
|
102 |
dtype: string
|
103 |
splits:
|
104 |
- name: train
|
105 |
-
num_bytes:
|
106 |
num_examples: 488
|
107 |
-
download_size:
|
108 |
-
dataset_size:
|
109 |
- config_name: multidoc2dial
|
110 |
features:
|
111 |
- name: id
|
@@ -130,20 +134,16 @@ dataset_info:
|
|
130 |
dtype: string
|
131 |
splits:
|
132 |
- name: validation
|
133 |
-
num_bytes:
|
134 |
num_examples: 4201
|
135 |
- name: train
|
136 |
-
num_bytes:
|
137 |
num_examples: 21451
|
138 |
- name: test
|
139 |
-
num_bytes:
|
140 |
-
num_examples:
|
141 |
-
download_size:
|
142 |
-
dataset_size:
|
143 |
-
config_names:
|
144 |
-
- dialogue_domain
|
145 |
-
- document_domain
|
146 |
-
- multidoc2dial
|
147 |
---
|
148 |
|
149 |
# Dataset Card for MultiDoc2Dial
|
|
|
10 |
- apache-2.0
|
11 |
multilinguality:
|
12 |
- monolingual
|
|
|
13 |
size_categories:
|
14 |
- 10K<n<100K
|
15 |
- 1K<n<10K
|
|
|
21 |
task_ids:
|
22 |
- open-domain-qa
|
23 |
paperswithcode_id: multidoc2dial
|
24 |
+
pretty_name: MultiDoc2Dial
|
25 |
+
config_names:
|
26 |
+
- dialogue_domain
|
27 |
+
- document_domain
|
28 |
+
- multidoc2dial
|
29 |
dataset_info:
|
30 |
- config_name: dialogue_domain
|
31 |
features:
|
|
|
53 |
dtype: string
|
54 |
splits:
|
55 |
- name: train
|
56 |
+
num_bytes: 11700558
|
57 |
num_examples: 3474
|
58 |
- name: validation
|
59 |
+
num_bytes: 2210338
|
60 |
num_examples: 661
|
61 |
+
download_size: 6868509
|
62 |
+
dataset_size: 13910896
|
63 |
- config_name: document_domain
|
64 |
features:
|
65 |
- name: domain
|
|
|
106 |
dtype: string
|
107 |
splits:
|
108 |
- name: train
|
109 |
+
num_bytes: 29378879
|
110 |
num_examples: 488
|
111 |
+
download_size: 6868509
|
112 |
+
dataset_size: 29378879
|
113 |
- config_name: multidoc2dial
|
114 |
features:
|
115 |
- name: id
|
|
|
134 |
dtype: string
|
135 |
splits:
|
136 |
- name: validation
|
137 |
+
num_bytes: 24331936
|
138 |
num_examples: 4201
|
139 |
- name: train
|
140 |
+
num_bytes: 126589862
|
141 |
num_examples: 21451
|
142 |
- name: test
|
143 |
+
num_bytes: 23026892
|
144 |
+
num_examples: 4094
|
145 |
+
download_size: 6868509
|
146 |
+
dataset_size: 173948690
|
|
|
|
|
|
|
|
|
147 |
---
|
148 |
|
149 |
# Dataset Card for MultiDoc2Dial
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"dialogue_domain": {"description": "MultiDoc2Dial is a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a single given document or passage. We aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. \n", "citation": "@inproceedings{feng2021multidoc2dial,\n title={MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents},\n author={Feng, Song and Patel, Siva Sankalp and Wan, Hui and Joshi, Sachindra},\n booktitle={EMNLP},\n year={2021}\n}\n", "homepage": "https://doc2dial.github.io/multidoc2dial/", "license": "", "features": {"dial_id": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}, "turns": [{"turn_id": {"dtype": "int32", "id": null, "_type": "Value"}, "role": {"dtype": "string", "id": null, "_type": "Value"}, "da": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"id_sp": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}}], "utterance": {"dtype": "string", "id": null, "_type": "Value"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "multi_doc2dial", "config_name": "dialogue_domain", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 11700598, "num_examples": 3474, "dataset_name": "multi_doc2dial"}, "validation": {"name": "validation", "num_bytes": 2210378, "num_examples": 661, "dataset_name": "multi_doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/multidoc2dial/file/multidoc2dial.zip": {"num_bytes": 6451144, "checksum": "a8051237dd3be50d81c06aca82ed5171716922e35f44bfa5b9c024f090903419"}}, "download_size": 6451144, "post_processing_size": null, "dataset_size": 13910976, "size_in_bytes": 20362120}, "document_domain": {"description": "MultiDoc2Dial is a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a single given document or passage. We aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. \n", "citation": "@inproceedings{feng2021multidoc2dial,\n title={MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents},\n author={Feng, Song and Patel, Siva Sankalp and Wan, Hui and Joshi, Sachindra},\n booktitle={EMNLP},\n year={2021}\n}\n", "homepage": "https://doc2dial.github.io/multidoc2dial/", "license": "", "features": {"domain": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "doc_text": {"dtype": "string", "id": null, "_type": "Value"}, "spans": [{"id_sp": {"dtype": "string", "id": null, "_type": "Value"}, "tag": {"dtype": "string", "id": null, "_type": "Value"}, "start_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "end_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sp": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "parent_titles": {"feature": {"id_sp": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "level": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "id_sec": {"dtype": "string", "id": null, "_type": "Value"}, "start_sec": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sec": {"dtype": "string", "id": null, "_type": "Value"}, "end_sec": {"dtype": "int32", "id": null, "_type": "Value"}}], "doc_html_ts": {"dtype": "string", "id": null, "_type": "Value"}, "doc_html_raw": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "multi_doc2dial", "config_name": "document_domain", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 29378955, "num_examples": 488, "dataset_name": "multi_doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/multidoc2dial/file/multidoc2dial.zip": {"num_bytes": 6451144, "checksum": "a8051237dd3be50d81c06aca82ed5171716922e35f44bfa5b9c024f090903419"}}, "download_size": 6451144, "post_processing_size": null, "dataset_size": 29378955, "size_in_bytes": 35830099}, "multidoc2dial": {"description": "MultiDoc2Dial is a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a single given document or passage. We aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. \n", "citation": "@inproceedings{feng2021multidoc2dial,\n title={MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents},\n author={Feng, Song and Patel, Siva Sankalp and Wan, Hui and Joshi, Sachindra},\n booktitle={EMNLP},\n year={2021}\n}\n", "homepage": "https://doc2dial.github.io/multidoc2dial/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "da": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "utterance": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "multi_doc2dial", "config_name": "multidoc2dial", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 24331976, "num_examples": 4201, "dataset_name": "multi_doc2dial"}, "train": {"name": "train", "num_bytes": 126589982, "num_examples": 21451, "dataset_name": "multi_doc2dial"}, "test": {"name": "test", "num_bytes": 33032, "num_examples": 5, "dataset_name": "multi_doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/multidoc2dial/file/multidoc2dial.zip": {"num_bytes": 6451144, "checksum": "a8051237dd3be50d81c06aca82ed5171716922e35f44bfa5b9c024f090903419"}}, "download_size": 6451144, "post_processing_size": null, "dataset_size": 150954990, "size_in_bytes": 157406134}}
|
|
|
|