Datasets:
ibm
/

Languages:
English
ArXiv:
License:
albertvillanova HF staff commited on
Commit
1108a96
·
1 Parent(s): 5796f56

Fix NonMatchingSplitsSizesError (#3)

Browse files

- Delete legacy dataset_infos.json (fcaa2122dfe722063ad01b19a4dc7adee543c9c0)
- Fix size of test split in dataset card (66809f999db39c5b260bb447a62844377fb2c854)

Files changed (2) hide show
  1. README.md +18 -18
  2. dataset_infos.json +0 -1
README.md CHANGED
@@ -10,7 +10,6 @@ license:
10
  - apache-2.0
11
  multilinguality:
12
  - monolingual
13
- pretty_name: MultiDoc2Dial
14
  size_categories:
15
  - 10K<n<100K
16
  - 1K<n<10K
@@ -22,6 +21,11 @@ task_categories:
22
  task_ids:
23
  - open-domain-qa
24
  paperswithcode_id: multidoc2dial
 
 
 
 
 
25
  dataset_info:
26
  - config_name: dialogue_domain
27
  features:
@@ -49,13 +53,13 @@ dataset_info:
49
  dtype: string
50
  splits:
51
  - name: train
52
- num_bytes: 11700598
53
  num_examples: 3474
54
  - name: validation
55
- num_bytes: 2210378
56
  num_examples: 661
57
- download_size: 6451144
58
- dataset_size: 13910976
59
  - config_name: document_domain
60
  features:
61
  - name: domain
@@ -102,10 +106,10 @@ dataset_info:
102
  dtype: string
103
  splits:
104
  - name: train
105
- num_bytes: 29378955
106
  num_examples: 488
107
- download_size: 6451144
108
- dataset_size: 29378955
109
  - config_name: multidoc2dial
110
  features:
111
  - name: id
@@ -130,20 +134,16 @@ dataset_info:
130
  dtype: string
131
  splits:
132
  - name: validation
133
- num_bytes: 24331976
134
  num_examples: 4201
135
  - name: train
136
- num_bytes: 126589982
137
  num_examples: 21451
138
  - name: test
139
- num_bytes: 33032
140
- num_examples: 5
141
- download_size: 6451144
142
- dataset_size: 150954990
143
- config_names:
144
- - dialogue_domain
145
- - document_domain
146
- - multidoc2dial
147
  ---
148
 
149
  # Dataset Card for MultiDoc2Dial
 
10
  - apache-2.0
11
  multilinguality:
12
  - monolingual
 
13
  size_categories:
14
  - 10K<n<100K
15
  - 1K<n<10K
 
21
  task_ids:
22
  - open-domain-qa
23
  paperswithcode_id: multidoc2dial
24
+ pretty_name: MultiDoc2Dial
25
+ config_names:
26
+ - dialogue_domain
27
+ - document_domain
28
+ - multidoc2dial
29
  dataset_info:
30
  - config_name: dialogue_domain
31
  features:
 
53
  dtype: string
54
  splits:
55
  - name: train
56
+ num_bytes: 11700558
57
  num_examples: 3474
58
  - name: validation
59
+ num_bytes: 2210338
60
  num_examples: 661
61
+ download_size: 6868509
62
+ dataset_size: 13910896
63
  - config_name: document_domain
64
  features:
65
  - name: domain
 
106
  dtype: string
107
  splits:
108
  - name: train
109
+ num_bytes: 29378879
110
  num_examples: 488
111
+ download_size: 6868509
112
+ dataset_size: 29378879
113
  - config_name: multidoc2dial
114
  features:
115
  - name: id
 
134
  dtype: string
135
  splits:
136
  - name: validation
137
+ num_bytes: 24331936
138
  num_examples: 4201
139
  - name: train
140
+ num_bytes: 126589862
141
  num_examples: 21451
142
  - name: test
143
+ num_bytes: 23026892
144
+ num_examples: 4094
145
+ download_size: 6868509
146
+ dataset_size: 173948690
 
 
 
 
147
  ---
148
 
149
  # Dataset Card for MultiDoc2Dial
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"dialogue_domain": {"description": "MultiDoc2Dial is a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a single given document or passage. We aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. \n", "citation": "@inproceedings{feng2021multidoc2dial,\n title={MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents},\n author={Feng, Song and Patel, Siva Sankalp and Wan, Hui and Joshi, Sachindra},\n booktitle={EMNLP},\n year={2021}\n}\n", "homepage": "https://doc2dial.github.io/multidoc2dial/", "license": "", "features": {"dial_id": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}, "turns": [{"turn_id": {"dtype": "int32", "id": null, "_type": "Value"}, "role": {"dtype": "string", "id": null, "_type": "Value"}, "da": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"id_sp": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}}], "utterance": {"dtype": "string", "id": null, "_type": "Value"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "multi_doc2dial", "config_name": "dialogue_domain", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 11700598, "num_examples": 3474, "dataset_name": "multi_doc2dial"}, "validation": {"name": "validation", "num_bytes": 2210378, "num_examples": 661, "dataset_name": "multi_doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/multidoc2dial/file/multidoc2dial.zip": {"num_bytes": 6451144, "checksum": "a8051237dd3be50d81c06aca82ed5171716922e35f44bfa5b9c024f090903419"}}, "download_size": 6451144, "post_processing_size": null, "dataset_size": 13910976, "size_in_bytes": 20362120}, "document_domain": {"description": "MultiDoc2Dial is a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a single given document or passage. We aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. \n", "citation": "@inproceedings{feng2021multidoc2dial,\n title={MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents},\n author={Feng, Song and Patel, Siva Sankalp and Wan, Hui and Joshi, Sachindra},\n booktitle={EMNLP},\n year={2021}\n}\n", "homepage": "https://doc2dial.github.io/multidoc2dial/", "license": "", "features": {"domain": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "doc_text": {"dtype": "string", "id": null, "_type": "Value"}, "spans": [{"id_sp": {"dtype": "string", "id": null, "_type": "Value"}, "tag": {"dtype": "string", "id": null, "_type": "Value"}, "start_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "end_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sp": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "parent_titles": {"feature": {"id_sp": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "level": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "id_sec": {"dtype": "string", "id": null, "_type": "Value"}, "start_sec": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sec": {"dtype": "string", "id": null, "_type": "Value"}, "end_sec": {"dtype": "int32", "id": null, "_type": "Value"}}], "doc_html_ts": {"dtype": "string", "id": null, "_type": "Value"}, "doc_html_raw": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "multi_doc2dial", "config_name": "document_domain", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 29378955, "num_examples": 488, "dataset_name": "multi_doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/multidoc2dial/file/multidoc2dial.zip": {"num_bytes": 6451144, "checksum": "a8051237dd3be50d81c06aca82ed5171716922e35f44bfa5b9c024f090903419"}}, "download_size": 6451144, "post_processing_size": null, "dataset_size": 29378955, "size_in_bytes": 35830099}, "multidoc2dial": {"description": "MultiDoc2Dial is a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a single given document or passage. We aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. \n", "citation": "@inproceedings{feng2021multidoc2dial,\n title={MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents},\n author={Feng, Song and Patel, Siva Sankalp and Wan, Hui and Joshi, Sachindra},\n booktitle={EMNLP},\n year={2021}\n}\n", "homepage": "https://doc2dial.github.io/multidoc2dial/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "da": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "utterance": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "multi_doc2dial", "config_name": "multidoc2dial", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 24331976, "num_examples": 4201, "dataset_name": "multi_doc2dial"}, "train": {"name": "train", "num_bytes": 126589982, "num_examples": 21451, "dataset_name": "multi_doc2dial"}, "test": {"name": "test", "num_bytes": 33032, "num_examples": 5, "dataset_name": "multi_doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/multidoc2dial/file/multidoc2dial.zip": {"num_bytes": 6451144, "checksum": "a8051237dd3be50d81c06aca82ed5171716922e35f44bfa5b9c024f090903419"}}, "download_size": 6451144, "post_processing_size": null, "dataset_size": 150954990, "size_in_bytes": 157406134}}