Datasets:
Tasks:
Question Answering
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents""" | |
import json | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{feng2021multidoc2dial, | |
title={MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents}, | |
author={Feng, Song and Patel, Siva Sankalp and Wan, Hui and Joshi, Sachindra}, | |
booktitle={EMNLP}, | |
year={2021} | |
} | |
""" | |
_DESCRIPTION = """\ | |
MultiDoc2Dial is a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. \ | |
Most previous works treat document-grounded dialogue modeling as a machine reading comprehension task based on a \ | |
single given document or passage. We aim to address more realistic scenarios where a goal-oriented information-seeking \ | |
conversation involves multiple topics, and hence is grounded on different documents. | |
""" | |
_HOMEPAGE = "https://doc2dial.github.io/multidoc2dial/" | |
_URL = "https://doc2dial.github.io/multidoc2dial/file/multidoc2dial.zip" | |
class MultiDoc2dial(datasets.GeneratorBasedBuilder): | |
"""MultiDoc2Dial v1.0""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="dialogue_domain", | |
version=VERSION, | |
description="This part of the dataset covers the dialogue domain that has questions, answers and the associated doc ids", | |
), | |
datasets.BuilderConfig( | |
name="document_domain", | |
version=VERSION, | |
description="This part of the dataset covers the document domain which details all the documents in the various domains", | |
), | |
datasets.BuilderConfig( | |
name="multidoc2dial", | |
version=VERSION, | |
description="Load MultiDoc2Dial dataset for machine reading comprehension tasks", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "multidoc2dial" | |
def _info(self): | |
if self.config.name == "dialogue_domain": | |
features = datasets.Features( | |
{ | |
"dial_id": datasets.Value("string"), | |
"domain": datasets.Value("string"), | |
"turns": [ | |
{ | |
"turn_id": datasets.Value("int32"), | |
"role": datasets.Value("string"), | |
"da": datasets.Value("string"), | |
"references": [ | |
{ | |
"id_sp": datasets.Value("string"), | |
"label": datasets.Value("string"), | |
"doc_id": datasets.Value("string"), | |
} | |
], | |
"utterance": datasets.Value("string"), | |
} | |
], | |
} | |
) | |
elif "document_domain" in self.config.name: | |
features = datasets.Features( | |
{ | |
"domain": datasets.Value("string"), | |
"doc_id": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"doc_text": datasets.Value("string"), | |
"spans": [ | |
{ | |
"id_sp": datasets.Value("string"), | |
"tag": datasets.Value("string"), | |
"start_sp": datasets.Value("int32"), | |
"end_sp": datasets.Value("int32"), | |
"text_sp": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"parent_titles": datasets.features.Sequence( | |
{ | |
"id_sp": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"level": datasets.Value("string"), | |
} | |
), | |
"id_sec": datasets.Value("string"), | |
"start_sec": datasets.Value("int32"), | |
"text_sec": datasets.Value("string"), | |
"end_sec": datasets.Value("int32"), | |
} | |
], | |
"doc_html_ts": datasets.Value("string"), | |
"doc_html_raw": datasets.Value("string"), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"da": datasets.Value("string"), | |
"answers": datasets.features.Sequence( | |
{ | |
"text": datasets.Value("string"), | |
"answer_start": datasets.Value("int32"), | |
} | |
), | |
"utterance": datasets.Value("string"), | |
"domain": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data_dir = dl_manager.download_and_extract(_URL) | |
if self.config.name == "dialogue_domain": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "multidoc2dial/multidoc2dial_dial_train.json"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "multidoc2dial/multidoc2dial_dial_validation.json"), | |
}, | |
), | |
] | |
elif self.config.name == "document_domain": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "multidoc2dial/multidoc2dial_doc.json"), | |
}, | |
) | |
] | |
elif "multidoc2dial_" in self.config.name: | |
domain = self.config.name.split("_")[-1] | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
data_dir, | |
"multidoc2dial_domain", | |
domain, | |
"multidoc2dial_dial_validation.json", | |
), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
data_dir, | |
"multidoc2dial_domain", | |
domain, | |
"multidoc2dial_dial_train.json", | |
), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join( | |
data_dir, | |
"multidoc2dial_domain", | |
domain, | |
"multidoc2dial_dial_test.json", | |
), | |
}, | |
), | |
] | |
elif self.config.name == "multidoc2dial": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "multidoc2dial/multidoc2dial_dial_validation.json"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "multidoc2dial/multidoc2dial_dial_train.json"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "multidoc2dial/multidoc2dial_dial_test.json"), | |
}, | |
), | |
] | |
def _load_doc_data_rc(self, filepath): | |
doc_filepath = os.path.join(os.path.dirname(filepath), "multidoc2dial_doc.json") | |
with open(doc_filepath, encoding="utf-8") as f: | |
data = json.load(f)["doc_data"] | |
return data | |
def _get_answers_rc(self, references, spans, doc_text): | |
"""Obtain the grounding annotation for a given dialogue turn""" | |
if not references: | |
return [] | |
start, end = -1, -1 | |
ls_sp = [] | |
for ele in references: | |
id_sp = ele["id_sp"] | |
start_sp, end_sp = spans[id_sp]["start_sp"], spans[id_sp]["end_sp"] | |
if start == -1 or start > start_sp: | |
start = start_sp | |
if end < end_sp: | |
end = end_sp | |
ls_sp.append(doc_text[start_sp:end_sp]) | |
answer = {"text": doc_text[start:end], "answer_start": start} | |
return [answer] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
if self.config.name == "dialogue_domain": | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for domain in data["dial_data"]: | |
for dialogue in data["dial_data"][domain]: | |
x = { | |
"dial_id": dialogue["dial_id"], | |
"turns": dialogue["turns"], | |
"domain": domain, | |
} | |
yield dialogue["dial_id"], x | |
elif self.config.name == "document_domain": | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for domain in data["doc_data"]: | |
for doc_id in data["doc_data"][domain]: | |
yield doc_id, { | |
"domain": domain, | |
"doc_id": doc_id, | |
"title": data["doc_data"][domain][doc_id]["title"], | |
"doc_text": data["doc_data"][domain][doc_id]["doc_text"], | |
"spans": [ | |
{ | |
"id_sp": data["doc_data"][domain][doc_id]["spans"][i]["id_sp"], | |
"tag": data["doc_data"][domain][doc_id]["spans"][i]["tag"], | |
"start_sp": data["doc_data"][domain][doc_id]["spans"][i]["start_sp"], | |
"end_sp": data["doc_data"][domain][doc_id]["spans"][i]["end_sp"], | |
"text_sp": data["doc_data"][domain][doc_id]["spans"][i]["text_sp"], | |
"title": data["doc_data"][domain][doc_id]["spans"][i]["title"], | |
"parent_titles": data["doc_data"][domain][doc_id]["spans"][i]["parent_titles"], | |
"id_sec": data["doc_data"][domain][doc_id]["spans"][i]["id_sec"], | |
"start_sec": data["doc_data"][domain][doc_id]["spans"][i]["start_sec"], | |
"text_sec": data["doc_data"][domain][doc_id]["spans"][i]["text_sec"], | |
"end_sec": data["doc_data"][domain][doc_id]["spans"][i]["end_sec"], | |
} | |
for i in data["doc_data"][domain][doc_id]["spans"] | |
], | |
"doc_html_ts": data["doc_data"][domain][doc_id]["doc_html_ts"], | |
"doc_html_raw": data["doc_data"][domain][doc_id]["doc_html_raw"], | |
} | |
elif "multidoc2dial" in self.config.name: | |
logger.info("generating examples from = %s", filepath) | |
doc_data = self._load_doc_data_rc(filepath) | |
d_doc_data = {} | |
for domain, d_doc in doc_data.items(): | |
for doc_id, data in d_doc.items(): | |
d_doc_data[doc_id] = data | |
with open(filepath, encoding="utf-8") as f: | |
dial_data = json.load(f)["dial_data"] | |
for domain, dialogues in dial_data.items(): | |
for dial in dialogues: | |
all_prev_utterances = [] | |
for idx, turn in enumerate(dial["turns"]): | |
doc_id = turn["references"][0]["doc_id"] | |
doc = d_doc_data[doc_id] | |
utterance_line = turn["utterance"].replace("\n", " ").replace("\t", " ") | |
all_prev_utterances.append("{}: {}".format(turn["role"], utterance_line)) | |
if turn["role"] == "agent": | |
continue | |
if idx + 1 < len(dial["turns"]): | |
if ( | |
dial["turns"][idx + 1]["role"] == "agent" | |
and dial["turns"][idx + 1]["da"] != "respond_no_solution" | |
): | |
turn_to_predict = dial["turns"][idx + 1] | |
else: | |
continue | |
else: | |
continue | |
question_str = utterance_line + "[SEP]" + "||".join(reversed(all_prev_utterances[:-1])) | |
id_ = "{}_{}".format(dial["dial_id"], turn["turn_id"]) | |
qa = { | |
"id": id_, | |
"title": doc_id, | |
"context": doc["doc_text"], | |
"question": question_str, | |
"da": turn["da"], | |
"answers": self._get_answers_rc( | |
turn_to_predict["references"], | |
doc["spans"], | |
doc["doc_text"], | |
), | |
"utterance": turn_to_predict["utterance"], | |
"domain": domain, | |
} | |
yield id_, qa | |