|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""pn_summary""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{pnSummary, title={Leveraging ParsBERT and Pretrained mT5 for Persian Abstractive Text Summarization}, |
|
author={Mehrdad Farahani, Mohammad Gharachorloo, Mohammad Manthouri}, |
|
year={2020}, |
|
eprint={2012.11204}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A well-structured summarization dataset for the Persian language consists of 93,207 records. It is prepared for Abstractive/Extractive tasks (like cnn_dailymail for English). It can also be used in other scopes like Text Generation, Title Generation, and News Category Classification. |
|
It is imperative to consider that the newlines were replaced with the `[n]` symbol. Please interpret them into normal newlines (for ex. `t.replace("[n]", "\n")`) and then use them for your purposes. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/hooshvare/pn-summary" |
|
_LICENSE = "MIT License" |
|
|
|
_REPO = "https://huggingface.co/datasets/pn_summary/resolve/main/data" |
|
_URLs = { |
|
"1.0.0": { |
|
"data": f"{_REPO}/pn_summary.zip", |
|
"features": [ |
|
{"name": "id", "type": datasets.Value("string")}, |
|
{"name": "title", "type": datasets.Value("string")}, |
|
{"name": "article", "type": datasets.Value("string")}, |
|
{"name": "summary", "type": datasets.Value("string")}, |
|
{ |
|
"name": "category", |
|
"type": datasets.ClassLabel( |
|
names=[ |
|
"Economy", |
|
"Roads-Urban", |
|
"Banking-Insurance", |
|
"Agriculture", |
|
"International", |
|
"Oil-Energy", |
|
"Industry", |
|
"Transportation", |
|
"Science-Technology", |
|
"Local", |
|
"Sports", |
|
"Politics", |
|
"Art-Culture", |
|
"Society", |
|
"Health", |
|
"Research", |
|
"Education-University", |
|
"Tourism", |
|
] |
|
), |
|
}, |
|
{"name": "categories", "type": datasets.Value("string")}, |
|
{ |
|
"name": "network", |
|
"type": datasets.ClassLabel(names=["Tahlilbazaar", "Imna", "Shana", "Mehr", "Irna", "Khabaronline"]), |
|
}, |
|
{"name": "link", "type": datasets.Value("string")}, |
|
], |
|
} |
|
} |
|
|
|
|
|
class PnSummaryConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for pn_summary.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for pn_summary.""" |
|
|
|
super(PnSummaryConfig, self).__init__(**kwargs) |
|
|
|
|
|
class PnSummary(datasets.GeneratorBasedBuilder): |
|
"""A well-structured summarization dataset for the Persian language: pn_summary""" |
|
|
|
BUILDER_CONFIGS = [ |
|
PnSummaryConfig( |
|
name="1.0.0", version=datasets.Version("1.0.0"), description="The first version of pn_summary" |
|
), |
|
] |
|
|
|
def _info(self): |
|
feature_names_types = _URLs[self.config.name]["features"] |
|
features = datasets.Features({f["name"]: f["type"] for f in feature_names_types}) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
my_urls = _URLs[self.config.name] |
|
data_dir = dl_manager.download_and_extract(my_urls["data"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "pn_summary", "train.csv"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "pn_summary", "dev.csv"), |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "pn_summary", "test.csv"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
feature_names_types = _URLs[self.config.name]["features"] |
|
features = [f["name"] for f in feature_names_types] |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
reader = csv.DictReader(csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_MINIMAL) |
|
|
|
for _id, row in enumerate(reader): |
|
if len(row) == len(features): |
|
yield _id, {f: row[f] for f in features} |
|
|