MLSUM-single / README.md
Holmeister's picture
Update README.md
afc290e verified
metadata
dataset_info:
  features:
    - name: instruction
      dtype: string
    - name: input
      dtype: string
    - name: output
      dtype: string
    - name: inst_no
      dtype: int64
    - name: system
      dtype: string
  splits:
    - name: train
      num_bytes: 55286755
      num_examples: 20000
    - name: validation
      num_bytes: 2408874
      num_examples: 1000
    - name: test
      num_bytes: 10404070
      num_examples: 5000
  download_size: 33379631
  dataset_size: 68099699
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*

Original Dataset

@inproceedings{scialom-etal-2020-mlsum,
    title = "{MLSUM}: The Multilingual Summarization Corpus",
    author = "Scialom, Thomas  and
      Dray, Paul-Alexis  and
      Lamprier, Sylvain  and
      Piwowarski, Benjamin  and
      Staiano, Jacopo",
    editor = "Webber, Bonnie  and
      Cohn, Trevor  and
      He, Yulan  and
      Liu, Yang",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.emnlp-main.647",
    doi = "10.18653/v1/2020.emnlp-main.647",
    pages = "8051--8067",
    abstract = "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages {--} namely, French, German, Spanish, Russian, Turkish. Together with English news articles from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset.",
}