Hengzongshu commited on
Commit
d6dfc51
1 Parent(s): d7edc50

Upload 7 files

Browse files
LinearAlgebra_data.jsonl ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"id":1,"text":"in mathematics and physics a vector space also called a linear space is a set whose elements often called vectors may be added together and multiplied scaled by numbers called scalars","entities":[{"id":3,"label":"Math","start_offset":3,"end_offset":14},{"id":4,"label":"Math","start_offset":29,"end_offset":41},{"id":5,"label":"Math","start_offset":56,"end_offset":68},{"id":6,"label":"Math","start_offset":106,"end_offset":113}],"relations":[{"id":6,"from_id":4,"to_id":5,"type":"Another_name"},{"id":7,"from_id":3,"to_id":4,"type":"Relation"},{"id":8,"from_id":4,"to_id":6,"type":"Elements"}],"Comments":[]}
2
+ {"id":2,"text":"scalars are often real numbers but can be complex numbers or more generally elements of any field","entities":[{"id":7,"label":"Math","start_offset":0,"end_offset":7},{"id":8,"label":"Math","start_offset":92,"end_offset":97}],"relations":[{"id":9,"from_id":8,"to_id":7,"type":"Elements"}],"Comments":[]}
3
+ {"id":3,"text":"the operations of vector addition and scalar multiplication must satisfy certain requirements called vector axioms","entities":[],"relations":[],"Comments":[]}
4
+ {"id":4,"text":"real vector space and complex vector space are kinds of vector spaces based on different kinds of scalars real coordinate space or complex coordinate space","entities":[{"id":9,"label":"Math","start_offset":56,"end_offset":70},{"id":10,"label":"Math","start_offset":106,"end_offset":128},{"id":11,"label":"Math","start_offset":131,"end_offset":155}],"relations":[{"id":10,"from_id":9,"to_id":10,"type":"Relation"},{"id":11,"from_id":9,"to_id":11,"type":"Relation"}],"Comments":[]}
5
+ {"id":5,"text":"vector spaces generalize euclidean vectors which allow modeling of physical quantities such as forces and velocity that have not only a magnitude but also a direction","entities":[{"id":12,"label":"Math","start_offset":0,"end_offset":13},{"id":13,"label":"Attributes","start_offset":136,"end_offset":145},{"id":14,"label":"Attributes","start_offset":157,"end_offset":166},{"id":15,"label":"Math","start_offset":35,"end_offset":42}],"relations":[{"id":14,"from_id":15,"to_id":13,"type":"Elements"},{"id":15,"from_id":15,"to_id":14,"type":"Elements"}],"Comments":[]}
6
+ {"id":6,"text":"the concept of vector spaces is fundamental for linear algebra together with the concept of matrices which allows computing in vector spaces","entities":[{"id":16,"label":"Math","start_offset":15,"end_offset":28},{"id":17,"label":"Math","start_offset":48,"end_offset":62},{"id":18,"label":"Math","start_offset":92,"end_offset":100}],"relations":[{"id":16,"from_id":16,"to_id":18,"type":"Elements"}],"Comments":[]}
7
+ {"id":7,"text":"this provides a concise and synthetic way for manipulating and studying systems of linear equations","entities":[{"id":19,"label":"Math","start_offset":83,"end_offset":99}],"relations":[],"Comments":[]}
8
+ {"id":8,"text":"vector spaces are characterized by their dimension which roughly speaking specifies the number of independent directions in the space","entities":[{"id":20,"label":"Math","start_offset":0,"end_offset":13},{"id":21,"label":"Attributes","start_offset":41,"end_offset":50}],"relations":[{"id":17,"from_id":20,"to_id":21,"type":"Elements"}],"Comments":[]}
9
+ {"id":9,"text":"this means that for two vector spaces over a given field and with the same dimension the properties that depend only on the vectorspace structure are exactly the same technically the vector spaces are isomorphic","entities":[{"id":22,"label":"Math","start_offset":24,"end_offset":37},{"id":23,"label":"Attributes","start_offset":201,"end_offset":211},{"id":24,"label":"Math","start_offset":75,"end_offset":85}],"relations":[{"id":18,"from_id":22,"to_id":23,"type":"Elements"},{"id":19,"from_id":22,"to_id":24,"type":"Elements"}],"Comments":[]}
10
+ {"id":10,"text":"a vector space is finitedimensional if its dimension is a natural number","entities":[{"id":25,"label":"Math","start_offset":2,"end_offset":14},{"id":26,"label":"Attributes","start_offset":18,"end_offset":35}],"relations":[{"id":20,"from_id":25,"to_id":26,"type":"Elements"}],"Comments":[]}
11
+ {"id":11,"text":"otherwise it is infinitedimensional and its dimension is an infinite cardinal","entities":[{"id":27,"label":"Attributes","start_offset":16,"end_offset":35}],"relations":[],"Comments":[]}
12
+ {"id":12,"text":"finitedimensional vector spaces occur naturally in geometry and related areas","entities":[{"id":28,"label":"Math","start_offset":18,"end_offset":31},{"id":29,"label":"Math","start_offset":51,"end_offset":59},{"id":32,"label":"Attributes","start_offset":0,"end_offset":17}],"relations":[{"id":22,"from_id":32,"to_id":29,"type":"Relation"}],"Comments":[]}
13
+ {"id":13,"text":"infinitedimensional vector spaces occur in many areas of mathematics","entities":[{"id":30,"label":"Math","start_offset":20,"end_offset":33},{"id":31,"label":"Math","start_offset":57,"end_offset":68},{"id":34,"label":"Attributes","start_offset":0,"end_offset":19}],"relations":[{"id":23,"from_id":34,"to_id":31,"type":"Relation"}],"Comments":[]}
14
+ {"id":14,"text":"for example polynomial rings are countably infinitedimensional vector spaces and many function spaces have the cardinality of the continuum as a dimension","entities":[{"id":35,"label":"Math","start_offset":12,"end_offset":28},{"id":36,"label":"Attributes","start_offset":43,"end_offset":62},{"id":37,"label":"Math","start_offset":63,"end_offset":76}],"relations":[],"Comments":[]}
15
+ {"id":15,"text":"many vector spaces that are considered in mathematics are also endowed with other structures","entities":[{"id":38,"label":"Math","start_offset":5,"end_offset":18},{"id":39,"label":"Math","start_offset":42,"end_offset":53}],"relations":[],"Comments":[]}
16
+ {"id":16,"text":"this is the case of algebras which include field extensions polynomial rings associative algebras and lie algebras","entities":[{"id":41,"label":"Math","start_offset":49,"end_offset":76}],"relations":[],"Comments":[]}
17
+ {"id":17,"text":"this is also the case of topological vector spaces which include function spaces inner product spaces normed spaces hilbert spaces and banach spaces","entities":[{"id":44,"label":"Math","start_offset":25,"end_offset":50},{"id":45,"label":"Math","start_offset":116,"end_offset":130},{"id":46,"label":"Math","start_offset":135,"end_offset":148}],"relations":[],"Comments":[]}
18
+ {"id":18,"text":"in this article vectors are represented in boldface to distinguish them from scalars","entities":[{"id":47,"label":"Math","start_offset":16,"end_offset":23},{"id":48,"label":"Math","start_offset":77,"end_offset":84}],"relations":[],"Comments":[]}
19
+ {"id":19,"text":"a vector space over a field f is a nonempty set v together with a binary operation and a binary function that satisfy the eight axioms listed below","entities":[{"id":49,"label":"Math","start_offset":2,"end_offset":14},{"id":50,"label":"Math","start_offset":22,"end_offset":28},{"id":53,"label":"Math","start_offset":35,"end_offset":47}],"relations":[],"Comments":[]}
20
+ {"id":20,"text":"in this context the elements of v are commonly called vectors and the elements of f are called scalars","entities":[{"id":54,"label":"Math","start_offset":54,"end_offset":61},{"id":55,"label":"Math","start_offset":95,"end_offset":102}],"relations":[],"Comments":[]}
21
+ {"id":21,"text":"the binary operation called vector addition or simply addition assigns to any two vectors v and w in v a third vector in v which is commonly written as v w and called the sum of these two vectors","entities":[{"id":57,"label":"Math","start_offset":82,"end_offset":89}],"relations":[],"Comments":[]}
22
+ {"id":22,"text":"the binary function called scalar multiplicationassigns to any scalar a in f and any vector v in v another vector in v which is denoted av","entities":[{"id":59,"label":"Math","start_offset":34,"end_offset":55},{"id":60,"label":"Math","start_offset":63,"end_offset":69},{"id":62,"label":"Math","start_offset":85,"end_offset":91}],"relations":[{"id":24,"from_id":62,"to_id":60,"type":"Relation"}],"Comments":[]}
23
+ {"id":23,"text":"to have a vector space the eight following axioms must be satisfied for every u v and w in v and a and b in f","entities":[{"id":63,"label":"Math","start_offset":10,"end_offset":22}],"relations":[],"Comments":[]}
24
+ {"id":24,"text":"when the scalar field is the real numbers the vector space is called a real vector space and when the scalar field is the complex numbers the vector space is called a complex vector space","entities":[{"id":64,"label":"Math","start_offset":46,"end_offset":58},{"id":65,"label":"Math","start_offset":167,"end_offset":187},{"id":66,"label":"Math","start_offset":71,"end_offset":88}],"relations":[{"id":25,"from_id":64,"to_id":66,"type":"Elements"},{"id":26,"from_id":64,"to_id":65,"type":"Elements"}],"Comments":[]}
25
+ {"id":25,"text":"these two cases are the most common ones but vector spaces with scalars in an arbitrary field f are also commonly considered","entities":[{"id":67,"label":"Math","start_offset":45,"end_offset":58},{"id":68,"label":"Math","start_offset":64,"end_offset":71}],"relations":[],"Comments":[]}
26
+ {"id":26,"text":"in mathematics a linear combination is an expression constructed from a set of terms by multiplying each term by a constant and adding the results eg","entities":[{"id":69,"label":"Math","start_offset":17,"end_offset":35},{"id":70,"label":"Math","start_offset":42,"end_offset":52}],"relations":[{"id":27,"from_id":69,"to_id":70,"type":"Relation"}],"Comments":[]}
27
+ {"id":27,"text":"a linear combination of x and y would be any expression of the form ax by where a and b are constants","entities":[{"id":71,"label":"Math","start_offset":2,"end_offset":20},{"id":72,"label":"Math","start_offset":45,"end_offset":55}],"relations":[{"id":28,"from_id":71,"to_id":72,"type":"Relation"}],"Comments":[]}
28
+ {"id":28,"text":"the concept of linear combinations is central to linear algebra and related fields of mathematics","entities":[{"id":73,"label":"Math","start_offset":15,"end_offset":34},{"id":74,"label":"Math","start_offset":49,"end_offset":63},{"id":75,"label":"Math","start_offset":86,"end_offset":97}],"relations":[{"id":29,"from_id":73,"to_id":74,"type":"Elements"},{"id":30,"from_id":74,"to_id":75,"type":"Elements"}],"Comments":[]}
29
+ {"id":29,"text":"most of this article deals with linear combinations in the context of a vector space over a field with some generalizations given at the end of the article","entities":[{"id":76,"label":"Math","start_offset":32,"end_offset":51},{"id":77,"label":"Math","start_offset":72,"end_offset":84}],"relations":[{"id":31,"from_id":76,"to_id":77,"type":"Elements"}],"Comments":[]}
30
+ {"id":30,"text":"in the theory of vector spaces a set of vectors is said to be linearly independent if there exists no nontrivial linear combination of the vectors that equals the zero vector","entities":[{"id":78,"label":"Math","start_offset":17,"end_offset":30},{"id":79,"label":"Math","start_offset":40,"end_offset":47},{"id":80,"label":"Math","start_offset":62,"end_offset":82},{"id":81,"label":"Math","start_offset":113,"end_offset":131}],"relations":[{"id":32,"from_id":81,"to_id":78,"type":"Elements"},{"id":33,"from_id":80,"to_id":78,"type":"Elements"}],"Comments":[]}
31
+ {"id":31,"text":"if such a linear combination exists then the vectors are said to be linearly dependent","entities":[{"id":82,"label":"Math","start_offset":10,"end_offset":28},{"id":83,"label":"Math","start_offset":68,"end_offset":86}],"relations":[{"id":34,"from_id":83,"to_id":82,"type":"Elements"}],"Comments":[]}
32
+ {"id":32,"text":"these concepts are central to the definition of dimension","entities":[{"id":84,"label":"Math","start_offset":48,"end_offset":57}],"relations":[],"Comments":[]}
33
+ {"id":33,"text":"a vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors","entities":[{"id":85,"label":"Math","start_offset":2,"end_offset":14},{"id":86,"label":"Math","start_offset":25,"end_offset":41},{"id":87,"label":"Math","start_offset":45,"end_offset":63}],"relations":[{"id":35,"from_id":86,"to_id":85,"type":"Elements"},{"id":36,"from_id":87,"to_id":85,"type":"Elements"}],"Comments":[]}
34
+ {"id":34,"text":"the definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space","entities":[{"id":89,"label":"Math","start_offset":18,"end_offset":35},{"id":90,"label":"Math","start_offset":98,"end_offset":110}],"relations":[{"id":37,"from_id":89,"to_id":90,"type":"Elements"}],"Comments":[]}
35
+ {"id":35,"text":"linear algebra is central to almost all areas of mathematics","entities":[{"id":91,"label":"Math","start_offset":0,"end_offset":14},{"id":92,"label":"Math","start_offset":49,"end_offset":60}],"relations":[{"id":38,"from_id":91,"to_id":92,"type":"Elements"}],"Comments":[]}
36
+ {"id":36,"text":"for instance linear algebra is fundamental in modern presentations of geometry including for defining basic objects such as lines planes and rotations","entities":[{"id":93,"label":"Math","start_offset":13,"end_offset":27},{"id":94,"label":"Math","start_offset":70,"end_offset":78},{"id":95,"label":"Math","start_offset":124,"end_offset":136},{"id":96,"label":"Math","start_offset":141,"end_offset":150}],"relations":[{"id":39,"from_id":93,"to_id":94,"type":"Relation"},{"id":43,"from_id":95,"to_id":94,"type":"Elements"},{"id":44,"from_id":96,"to_id":94,"type":"Elements"}],"Comments":[]}
37
+ {"id":37,"text":"also functional analysis a branch of mathematical analysis may be viewed as the application of linear algebra to function spaces","entities":[{"id":97,"label":"Math","start_offset":5,"end_offset":24},{"id":98,"label":"Math","start_offset":95,"end_offset":109}],"relations":[{"id":45,"from_id":97,"to_id":98,"type":"Relation"}],"Comments":[]}
38
+ {"id":38,"text":"linear algebra is also used in most sciences and fields of engineering because it allows modeling many natural phenomena and computing efficiently with such models","entities":[{"id":99,"label":"Math","start_offset":0,"end_offset":14}],"relations":[],"Comments":[]}
39
+ {"id":39,"text":"for nonlinear systems which cannot be modeled with linear algebra it is often used for dealing with firstorder approximations using the fact that the differential of a multivariate function at a point is the linear map that best approximates the function near that point","entities":[{"id":101,"label":"Math","start_offset":208,"end_offset":218},{"id":102,"label":"Math","start_offset":51,"end_offset":65}],"relations":[{"id":47,"from_id":101,"to_id":102,"type":"Elements"}],"Comments":[]}
40
+ {"id":40,"text":"in mathematics a matrix pl","entities":[{"id":103,"label":"Math","start_offset":3,"end_offset":14},{"id":104,"label":"Math","start_offset":17,"end_offset":23}],"relations":[{"id":48,"from_id":104,"to_id":103,"type":"Elements"}],"Comments":[]}
41
+ {"id":41,"text":" matrices is a rectangular array or table of numbers symbols or expressions arranged in rows and columns which is used to represent a mathematical object or a property of such an object","entities":[{"id":105,"label":"Math","start_offset":1,"end_offset":9}],"relations":[],"Comments":[]}
42
+ {"id":42,"text":"matrices are used to represent linear maps and allow explicit computations in linear algebra","entities":[{"id":106,"label":"Math","start_offset":0,"end_offset":8},{"id":107,"label":"Math","start_offset":31,"end_offset":42},{"id":108,"label":"Math","start_offset":78,"end_offset":92}],"relations":[{"id":49,"from_id":106,"to_id":107,"type":"Elements"},{"id":50,"from_id":107,"to_id":108,"type":"Elements"}],"Comments":[]}
43
+ {"id":43,"text":"therefore the study of matrices is a large part of linear algebra and most properties and operations of abstract linear algebra can be expressed in terms of matrices","entities":[{"id":109,"label":"Math","start_offset":23,"end_offset":31},{"id":110,"label":"Math","start_offset":51,"end_offset":65},{"id":111,"label":"Math","start_offset":113,"end_offset":127},{"id":112,"label":"Math","start_offset":157,"end_offset":165}],"relations":[{"id":51,"from_id":109,"to_id":110,"type":"Elements"},{"id":52,"from_id":112,"to_id":111,"type":"Elements"}],"Comments":[]}
44
+ {"id":44,"text":"for example matrix multiplication represents the composition of linear maps","entities":[{"id":113,"label":"Math","start_offset":12,"end_offset":18},{"id":114,"label":"Math","start_offset":64,"end_offset":75}],"relations":[{"id":54,"from_id":113,"to_id":114,"type":"Elements"}],"Comments":[]}
45
+ {"id":45,"text":"not all matrices are related to linear algebra","entities":[{"id":115,"label":"Math","start_offset":8,"end_offset":16},{"id":116,"label":"Math","start_offset":32,"end_offset":46}],"relations":[{"id":55,"from_id":115,"to_id":116,"type":"Elements"}],"Comments":[]}
46
+ {"id":46,"text":"this is in particular the case in graph theory of incidence matrices and adjacency matrices","entities":[{"id":117,"label":"Math","start_offset":34,"end_offset":47},{"id":118,"label":"Math","start_offset":60,"end_offset":68}],"relations":[{"id":56,"from_id":118,"to_id":117,"type":"Elements"}],"Comments":[]}
47
+ {"id":47,"text":" this article focuses on matrices related to linear algebra and unless otherwise specified all matrices represent linear maps or may be viewed as such","entities":[{"id":119,"label":"Math","start_offset":25,"end_offset":33},{"id":120,"label":"Math","start_offset":45,"end_offset":59},{"id":121,"label":"Math","start_offset":95,"end_offset":103},{"id":122,"label":"Math","start_offset":114,"end_offset":125}],"relations":[{"id":57,"from_id":119,"to_id":120,"type":"Elements"},{"id":58,"from_id":121,"to_id":122,"type":"Elements"}],"Comments":[]}
48
+ {"id":48,"text":"square matrices matrices with the same number of rows and columns play a major role in matrix theory","entities":[{"id":123,"label":"Math","start_offset":0,"end_offset":15},{"id":124,"label":"Math","start_offset":87,"end_offset":100}],"relations":[{"id":59,"from_id":123,"to_id":124,"type":"Elements"}],"Comments":[]}
49
+ {"id":49,"text":"square matrices of a given dimension form a noncommutative ring which is one of the most common examples of a noncommutative ring","entities":[{"id":125,"label":"Math","start_offset":0,"end_offset":15},{"id":126,"label":"Math","start_offset":27,"end_offset":36},{"id":127,"label":"Math","start_offset":44,"end_offset":63}],"relations":[{"id":60,"from_id":126,"to_id":125,"type":"Elements"},{"id":61,"from_id":125,"to_id":127,"type":"Elements"}],"Comments":[]}
50
+ {"id":50,"text":"the determinant of a square matrix is a number associated to the matrix which is fundamental for the study of a square matrix for example a square matrix is invertible if and only if it has a nonzero determinant and the eigenvalues of a square matrix are the roots of a polynomial determinant","entities":[{"id":128,"label":"Math","start_offset":4,"end_offset":15},{"id":129,"label":"Math","start_offset":21,"end_offset":34},{"id":130,"label":"Math","start_offset":220,"end_offset":231},{"id":131,"label":"Math","start_offset":237,"end_offset":250},{"id":132,"label":"Math","start_offset":270,"end_offset":292}],"relations":[{"id":62,"from_id":130,"to_id":132,"type":"Relation"},{"id":63,"from_id":130,"to_id":131,"type":"Elements"},{"id":64,"from_id":128,"to_id":129,"type":"Elements"}],"Comments":[]}
51
+ {"id":51,"text":"in geometry matrices are widely used for specifying and representing geometric transformations for example rotations and coordinate changes","entities":[{"id":133,"label":"Math","start_offset":12,"end_offset":20},{"id":134,"label":"Attributes","start_offset":107,"end_offset":116},{"id":135,"label":"Attributes","start_offset":121,"end_offset":139}],"relations":[{"id":65,"from_id":134,"to_id":133,"type":"Elements"},{"id":66,"from_id":135,"to_id":133,"type":"Elements"}],"Comments":[]}
52
+ {"id":52,"text":"in numerical analysis many computational problems are solved by reducing them to a matrix computation and this often involves computing with matrices of huge dimension","entities":[{"id":136,"label":"Math","start_offset":3,"end_offset":21},{"id":137,"label":"Math","start_offset":83,"end_offset":90}],"relations":[{"id":67,"from_id":137,"to_id":136,"type":"Elements"}],"Comments":[]}
53
+ {"id":53,"text":"matrices are used in most areas of mathematics and most scientific fields either directly or through their use in geometry and numerical analysis","entities":[{"id":138,"label":"Math","start_offset":0,"end_offset":8},{"id":140,"label":"Math","start_offset":35,"end_offset":46},{"id":141,"label":"Math","start_offset":127,"end_offset":145}],"relations":[{"id":68,"from_id":138,"to_id":140,"type":"Elements"},{"id":69,"from_id":138,"to_id":141,"type":"Elements"}],"Comments":[]}
54
+ {"id":54,"text":"matrix theory is the branch of mathematics that focuses on the study of matrices","entities":[{"id":142,"label":"Math","start_offset":0,"end_offset":13},{"id":143,"label":"Math","start_offset":31,"end_offset":42},{"id":144,"label":"Math","start_offset":72,"end_offset":80}],"relations":[{"id":71,"from_id":142,"to_id":143,"type":"Elements"},{"id":72,"from_id":144,"to_id":142,"type":"Elements"}],"Comments":[]}
55
+ {"id":55,"text":"it was initially a subbranch of linear algebra but soon grew to include subjects related to graph theory algebra combinatorics and statistics","entities":[{"id":145,"label":"Math","start_offset":32,"end_offset":46},{"id":146,"label":"Math","start_offset":92,"end_offset":104},{"id":147,"label":"Math","start_offset":131,"end_offset":141},{"id":149,"label":"Math","start_offset":105,"end_offset":112},{"id":150,"label":"Math","start_offset":113,"end_offset":126}],"relations":[{"id":73,"from_id":146,"to_id":149,"type":"Relation"},{"id":74,"from_id":149,"to_id":150,"type":"Relation"},{"id":75,"from_id":150,"to_id":147,"type":"Relation"},{"id":76,"from_id":146,"to_id":145,"type":"Relation"}],"Comments":[]}
56
+ {"id":56,"text":"functional analysis is a branch of mathematical analysis the core of which is formed by the study of vector spaces endowed with some kind of limitrelated structure for example inner product norm or topology and the linear functions defined on these spaces and suitably respecting these structures","entities":[{"id":151,"label":"Math","start_offset":0,"end_offset":19},{"id":152,"label":"Math","start_offset":35,"end_offset":56},{"id":153,"label":"Math","start_offset":101,"end_offset":114},{"id":155,"label":"Math","start_offset":176,"end_offset":189},{"id":156,"label":"Math","start_offset":190,"end_offset":194},{"id":157,"label":"Math","start_offset":198,"end_offset":206},{"id":158,"label":"Math","start_offset":215,"end_offset":231}],"relations":[{"id":77,"from_id":151,"to_id":152,"type":"Elements"},{"id":78,"from_id":155,"to_id":153,"type":"Elements"},{"id":79,"from_id":156,"to_id":153,"type":"Elements"},{"id":80,"from_id":157,"to_id":153,"type":"Elements"},{"id":81,"from_id":158,"to_id":151,"type":"Relation"}],"Comments":[]}
57
+ {"id":57,"text":"the historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the fourier transform as transformations defining for example continuous or unitary operators between function spaces","entities":[{"id":159,"label":"Math","start_offset":24,"end_offset":43},{"id":161,"label":"Math","start_offset":162,"end_offset":179},{"id":162,"label":"Math","start_offset":234,"end_offset":251}],"relations":[{"id":82,"from_id":161,"to_id":159,"type":"Elements"},{"id":83,"from_id":162,"to_id":159,"type":"Elements"}],"Comments":[]}
58
+ {"id":58,"text":"this point of view turned out to be particularly useful for the study of differential and integral equations","entities":[{"id":163,"label":"Math","start_offset":73,"end_offset":108}],"relations":[],"Comments":[]}
59
+ {"id":59,"text":"the usage of the word functional as a noun goes back to the calculus of variations implying a function whose argument is a function","entities":[{"id":164,"label":"Math","start_offset":72,"end_offset":82},{"id":165,"label":"Math","start_offset":123,"end_offset":131}],"relations":[],"Comments":[]}
60
+ {"id":60,"text":"the term was first used in hadamards book on that subject","entities":[],"relations":[],"Comments":[]}
61
+ {"id":61,"text":"however the general concept of a functional had previously been introduced in by the italian mathematician and physicist vito volterra","entities":[{"id":166,"label":"Math","start_offset":33,"end_offset":43}],"relations":[],"Comments":[]}
62
+ {"id":62,"text":" the theory of nonlinear functionals was continued by students of hadamard in particular fréchet and lévy","entities":[{"id":167,"label":"Math","start_offset":1,"end_offset":37}],"relations":[],"Comments":[]}
63
+ {"id":63,"text":"hadamard also founded the modern school of linear functional analysis further developed by riesz and the group of polish mathematicians around stefan banach","entities":[{"id":168,"label":"Math","start_offset":43,"end_offset":69}],"relations":[],"Comments":[]}
64
+ {"id":64,"text":"in modern introductory texts on functional analysis the subject is seen as the study of vector spaces endowed with a topology in particular infinitedimensional spaces","entities":[{"id":169,"label":"Math","start_offset":32,"end_offset":51},{"id":170,"label":"Math","start_offset":88,"end_offset":101},{"id":171,"label":"Math","start_offset":117,"end_offset":125}],"relations":[{"id":84,"from_id":171,"to_id":170,"type":"Relation"},{"id":85,"from_id":170,"to_id":169,"type":"Relation"}],"Comments":[]}
65
+ {"id":65,"text":" in contrast linear algebra deals mostly with finitedimensional spaces and does not use topology","entities":[{"id":172,"label":"Math","start_offset":13,"end_offset":27},{"id":173,"label":"Math","start_offset":46,"end_offset":70},{"id":174,"label":"Math","start_offset":88,"end_offset":96}],"relations":[{"id":86,"from_id":174,"to_id":172,"type":"Elements"},{"id":87,"from_id":173,"to_id":172,"type":"Relation"}],"Comments":[]}
66
+ {"id":66,"text":"an important part of functional analysis is the extension of the theories of measure integration and probability to infinite dimensional spaces also known as infinite dimensional analysis","entities":[{"id":177,"label":"Math","start_offset":77,"end_offset":96},{"id":178,"label":"Math","start_offset":101,"end_offset":112},{"id":179,"label":"Math","start_offset":21,"end_offset":40}],"relations":[{"id":88,"from_id":177,"to_id":179,"type":"Elements"},{"id":89,"from_id":178,"to_id":179,"type":"Elements"}],"Comments":[]}
67
+ {"id":67,"text":"in mathematics differential refers to several related notions derived from the early days of calculus put on a rigorous footing such as infinitesimal differences and the derivatives of functions","entities":[{"id":181,"label":"Math","start_offset":15,"end_offset":27},{"id":182,"label":"Attributes","start_offset":136,"end_offset":161},{"id":183,"label":"Math","start_offset":170,"end_offset":181}],"relations":[{"id":90,"from_id":182,"to_id":181,"type":"Elements"},{"id":91,"from_id":183,"to_id":181,"type":"Elements"}],"Comments":[]}
68
+ {"id":68,"text":"the term is used in various branches of mathematics such as calculus differential geometry algebraic geometry and algebraic topology","entities":[{"id":184,"label":"Math","start_offset":60,"end_offset":90},{"id":185,"label":"Math","start_offset":91,"end_offset":109},{"id":186,"label":"Math","start_offset":114,"end_offset":132}],"relations":[{"id":92,"from_id":186,"to_id":185,"type":"Relation"},{"id":93,"from_id":185,"to_id":184,"type":"Relation"}],"Comments":[]}
69
+ {"id":69,"text":"in mathematics and more specifically in linear algebra a linear map also called a linear mapping linear transformation vector space homomorphism or in some contexts linear function is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication","entities":[{"id":187,"label":"Math","start_offset":40,"end_offset":54},{"id":188,"label":"Math","start_offset":57,"end_offset":67},{"id":189,"label":"Math","start_offset":82,"end_offset":97},{"id":191,"label":"Math","start_offset":97,"end_offset":118},{"id":192,"label":"Math","start_offset":119,"end_offset":144}],"relations":[{"id":94,"from_id":189,"to_id":188,"type":"Another_name"},{"id":95,"from_id":192,"to_id":188,"type":"Another_name"},{"id":96,"from_id":191,"to_id":188,"type":"Another_name"}],"Comments":[]}
70
+ {"id":70,"text":"the same names and the same definition are also used for the more general case of modules over a ring see module homomorphism","entities":[{"id":193,"label":"Math","start_offset":106,"end_offset":125}],"relations":[],"Comments":[]}
71
+ {"id":71,"text":"f a linear map is a bijection then it is called a linear isomorphism","entities":[{"id":195,"label":"Math","start_offset":4,"end_offset":14},{"id":196,"label":"Math","start_offset":50,"end_offset":68},{"id":197,"label":"Attributes","start_offset":20,"end_offset":29}],"relations":[{"id":97,"from_id":196,"to_id":195,"type":"Relation"},{"id":98,"from_id":197,"to_id":195,"type":"Elements"}],"Comments":[]}
72
+ {"id":72,"text":"in the case where a linear map is called a linear endomorphism","entities":[{"id":198,"label":"Math","start_offset":20,"end_offset":30},{"id":199,"label":"Math","start_offset":43,"end_offset":62}],"relations":[{"id":99,"from_id":199,"to_id":198,"type":"Relation"}],"Comments":[]}
73
+ {"id":73,"text":"sometimes the term linear operator refers to this case but the term linear operator can have different meanings for different conventions for example it can be used to emphasize that and are real vector spaces not necessarily with citation needed or it can be used to emphasize that is a function space which is a common convention in functional analysis","entities":[{"id":201,"label":"Math","start_offset":19,"end_offset":34},{"id":203,"label":"Math","start_offset":335,"end_offset":355},{"id":204,"label":"Math","start_offset":289,"end_offset":303}],"relations":[],"Comments":[]}
74
+ {"id":74,"text":" sometimes the term linear function has the same meaning as linear map while in analysis it does not","entities":[{"id":205,"label":"Math","start_offset":60,"end_offset":70},{"id":208,"label":"Math","start_offset":20,"end_offset":35}],"relations":[{"id":101,"from_id":205,"to_id":208,"type":"Relation"}],"Comments":[]}
75
+ {"id":75,"text":"in the language of category theory linear maps are the morphisms of vector spaces","entities":[{"id":209,"label":"Math","start_offset":19,"end_offset":34},{"id":210,"label":"Math","start_offset":35,"end_offset":46},{"id":211,"label":"Math","start_offset":68,"end_offset":81}],"relations":[{"id":102,"from_id":211,"to_id":210,"type":"Relation"},{"id":103,"from_id":210,"to_id":209,"type":"Elements"}],"Comments":[]}
76
+ {"id":76,"text":"a linear map from to always maps the origin of to the origin of","entities":[{"id":212,"label":"Math","start_offset":2,"end_offset":12}],"relations":[],"Comments":[]}
77
+ {"id":77,"text":"moreover it maps linear subspaces in onto linear subspaces in possibly of a lower dimension for example it maps a plane through the origin in to either a plane through the origin in a line through the origin in or just the origin in","entities":[{"id":213,"label":"Math","start_offset":17,"end_offset":33},{"id":214,"label":"Math","start_offset":84,"end_offset":93}],"relations":[{"id":104,"from_id":214,"to_id":213,"type":"Elements"}],"Comments":[]}
78
+ {"id":78,"text":"linear maps can often be represented as matrices and simple examples include rotation and reflection linear transformations","entities":[{"id":215,"label":"Math","start_offset":0,"end_offset":11},{"id":216,"label":"Math","start_offset":40,"end_offset":48},{"id":217,"label":"Attributes","start_offset":77,"end_offset":85},{"id":218,"label":"Math","start_offset":101,"end_offset":123}],"relations":[{"id":105,"from_id":218,"to_id":216,"type":"Relation"},{"id":106,"from_id":216,"to_id":215,"type":"Elements"},{"id":107,"from_id":217,"to_id":216,"type":"Relation"}],"Comments":[]}
79
+ {"id":79,"text":"a bijective linear map between two vector spaces that is every vector from the second space is associated with exactly one in the first is an isomorphism","entities":[{"id":219,"label":"Math","start_offset":142,"end_offset":153}],"relations":[],"Comments":[]}
80
+ {"id":80,"text":"because an isomorphism preserves linear structure two isomorphic vector spaces are essentially the same from the linear algebra point of view in the sense that they cannot be distinguished by using vector space properties","entities":[{"id":220,"label":"Math","start_offset":11,"end_offset":22},{"id":221,"label":"Math","start_offset":113,"end_offset":127},{"id":222,"label":"Math","start_offset":54,"end_offset":78}],"relations":[{"id":108,"from_id":222,"to_id":221,"type":"Relation"},{"id":109,"from_id":220,"to_id":222,"type":"Relation"}],"Comments":[]}
81
+ {"id":81,"text":"an essential question in linear algebra is testing whether a linear map is an isomorphism or not and if it is not an isomorphism finding its range or image and the set of elements that are mapped to the zero vector called the kernel of the map","entities":[{"id":223,"label":"Math","start_offset":25,"end_offset":39},{"id":224,"label":"Math","start_offset":61,"end_offset":71},{"id":225,"label":"Attributes","start_offset":78,"end_offset":89},{"id":226,"label":"Math","start_offset":226,"end_offset":232}],"relations":[{"id":110,"from_id":225,"to_id":226,"type":"Relation"},{"id":111,"from_id":225,"to_id":224,"type":"Elements"},{"id":112,"from_id":224,"to_id":223,"type":"Elements"}],"Comments":[]}
82
+ {"id":82,"text":"all these questions can be solved by using gaussian elimination or some variant of this algorithm","entities":[{"id":227,"label":"Math","start_offset":43,"end_offset":63}],"relations":[],"Comments":[]}
83
+ {"id":83,"text":"in mathematics and more specifically in linear algebra a linear subspace or vector subspacenote is a vector space that is a subset of some larger vector space","entities":[{"id":230,"label":"Math","start_offset":3,"end_offset":14},{"id":231,"label":"Math","start_offset":40,"end_offset":54},{"id":232,"label":"Math","start_offset":57,"end_offset":72},{"id":233,"label":"Math","start_offset":76,"end_offset":95},{"id":234,"label":"Math","start_offset":147,"end_offset":159}],"relations":[{"id":113,"from_id":233,"to_id":232,"type":"Another_name"},{"id":114,"from_id":232,"to_id":231,"type":"Elements"},{"id":115,"from_id":231,"to_id":230,"type":"Elements"},{"id":116,"from_id":234,"to_id":231,"type":"Elements"}],"Comments":[]}
84
+ {"id":84,"text":"a linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces","entities":[{"id":235,"label":"Math","start_offset":2,"end_offset":17},{"id":237,"label":"Math","start_offset":45,"end_offset":53}],"relations":[{"id":117,"from_id":237,"to_id":235,"type":"Another_name"}],"Comments":[]}
85
+ {"id":85,"text":"as a corollary all vector spaces are equipped with at least two possibly different linear subspaces the zero vector space consisting of the zero vector alone and the entire vector space itself","entities":[{"id":238,"label":"Math","start_offset":173,"end_offset":185},{"id":239,"label":"Math","start_offset":83,"end_offset":99},{"id":240,"label":"Math","start_offset":104,"end_offset":121}],"relations":[{"id":118,"from_id":239,"to_id":238,"type":"Relation"},{"id":119,"from_id":240,"to_id":238,"type":"Relation"},{"id":120,"from_id":239,"to_id":240,"type":"Relation"}],"Comments":[]}
86
+ {"id":86,"text":"these are called the trivial subspaces of the vector space","entities":[{"id":241,"label":"Math","start_offset":21,"end_offset":39},{"id":242,"label":"Math","start_offset":46,"end_offset":58}],"relations":[{"id":121,"from_id":241,"to_id":242,"type":"Elements"}],"Comments":[]}
87
+ {"id":87,"text":"if v is a vector space over a field k and if w is a subset of v then w is a linear subspace of v if under the operations of v w is a vector space over k equivalently a nonempty subset w is a linear subspace of v if whenever w w are elements of w and α β are elements of k it follows that αw βw is in w","entities":[{"id":243,"label":"Math","start_offset":191,"end_offset":206},{"id":244,"label":"Math","start_offset":10,"end_offset":23}],"relations":[{"id":122,"from_id":243,"to_id":244,"type":"Elements"}],"Comments":[]}
88
+ {"id":88,"text":"in mathematics the linear span also called the linear hull or just span of a set s of vectors from a vector space denoted spans is defined as the set of all linear combinations of the vectors in s for example two linearly independent vectors span a plane","entities":[{"id":245,"label":"Math","start_offset":3,"end_offset":15},{"id":246,"label":"Math","start_offset":19,"end_offset":30},{"id":247,"label":"Math","start_offset":47,"end_offset":58}],"relations":[{"id":123,"from_id":247,"to_id":246,"type":"Another_name"}],"Comments":[]}
89
+ {"id":89,"text":"the linear span can be characterized either as the intersection of all linear subspaces that contain s or as the smallest subspace containing s the linear span of a set of vectors is therefore a vector space itself","entities":[{"id":250,"label":"Math","start_offset":4,"end_offset":15},{"id":251,"label":"Math","start_offset":71,"end_offset":87},{"id":253,"label":"Math","start_offset":195,"end_offset":207},{"id":255,"label":"Math","start_offset":172,"end_offset":180}],"relations":[{"id":124,"from_id":250,"to_id":251,"type":"Relation"},{"id":125,"from_id":255,"to_id":253,"type":"Elements"}],"Comments":[]}
90
+ {"id":90,"text":"spans can be generalized to matroids and modules","entities":[{"id":256,"label":"Attributes","start_offset":27,"end_offset":36},{"id":257,"label":"Attributes","start_offset":41,"end_offset":48},{"id":258,"label":"Math","start_offset":0,"end_offset":5}],"relations":[{"id":126,"from_id":256,"to_id":258,"type":"Elements"},{"id":127,"from_id":257,"to_id":258,"type":"Elements"}],"Comments":[]}
91
+ {"id":91,"text":"to express that a vector space v is a linear span of a subset s one commonly uses the following phraseseither s spans v s is a spanning set of v v is spannedgenerated by s or s is a generator or generator set of v","entities":[{"id":260,"label":"Math","start_offset":38,"end_offset":49},{"id":262,"label":"Math","start_offset":18,"end_offset":30}],"relations":[{"id":128,"from_id":260,"to_id":262,"type":"Elements"}],"Comments":[]}
92
+ {"id":92,"text":"in mathematics a set b of vectors in a vector space v is called a basis pl","entities":[{"id":263,"label":"Attributes","start_offset":66,"end_offset":71},{"id":264,"label":"Math","start_offset":39,"end_offset":51},{"id":265,"label":"Math","start_offset":26,"end_offset":33}],"relations":[{"id":129,"from_id":265,"to_id":263,"type":"Another_name"},{"id":130,"from_id":264,"to_id":265,"type":"Elements"},{"id":131,"from_id":263,"to_id":264,"type":"Elements"}],"Comments":[]}
93
+ {"id":93,"text":" bases if every element of v may be written in a unique way as a finite linear combination of elements of b","entities":[{"id":266,"label":"Attributes","start_offset":1,"end_offset":6},{"id":267,"label":"Math","start_offset":72,"end_offset":90}],"relations":[{"id":132,"from_id":266,"to_id":267,"type":"Elements"}],"Comments":[]}
94
+ {"id":94,"text":"the coefficients of this linear combination are referred to as components or coordinates of the vector with respect to b","entities":[{"id":268,"label":"Math","start_offset":63,"end_offset":73},{"id":269,"label":"Math","start_offset":77,"end_offset":88},{"id":270,"label":"Math","start_offset":25,"end_offset":43}],"relations":[{"id":133,"from_id":268,"to_id":270,"type":"Elements"},{"id":134,"from_id":269,"to_id":268,"type":"Another_name"},{"id":135,"from_id":269,"to_id":270,"type":"Elements"}],"Comments":[]}
95
+ {"id":95,"text":"the elements of a basis are called basis vectors","entities":[{"id":271,"label":"Attributes","start_offset":18,"end_offset":23},{"id":272,"label":"Math","start_offset":35,"end_offset":48}],"relations":[{"id":136,"from_id":271,"to_id":272,"type":"Another_name"}],"Comments":[]}
96
+ {"id":96,"text":"equivalently a set b is a basis if its elements are linearly independent and every element of v is a linear combination of elements of b","entities":[{"id":273,"label":"Math","start_offset":52,"end_offset":72},{"id":274,"label":"Math","start_offset":101,"end_offset":119}],"relations":[{"id":137,"from_id":274,"to_id":273,"type":"Relation"}],"Comments":[]}
97
+ {"id":97,"text":" in other words a basis is a linearly independent spanning set","entities":[{"id":275,"label":"Attributes","start_offset":18,"end_offset":23},{"id":276,"label":"Math","start_offset":29,"end_offset":62}],"relations":[{"id":138,"from_id":275,"to_id":276,"type":"Elements"}],"Comments":[]}
98
+ {"id":98,"text":"a vector space can have several bases however all the bases have the same number of elements called the dimension of the vector space","entities":[{"id":277,"label":"Math","start_offset":2,"end_offset":14},{"id":278,"label":"Attributes","start_offset":32,"end_offset":37},{"id":280,"label":"Math","start_offset":104,"end_offset":113}],"relations":[{"id":139,"from_id":280,"to_id":278,"type":"Relation"},{"id":141,"from_id":278,"to_id":277,"type":"Elements"}],"Comments":[]}
99
+ {"id":99,"text":"this article deals mainly with finitedimensional vector spaces","entities":[{"id":281,"label":"Math","start_offset":49,"end_offset":62}],"relations":[],"Comments":[]}
100
+ {"id":100,"text":"however many of the principles are also valid for infinitedimensional vector spaces","entities":[{"id":282,"label":"Math","start_offset":70,"end_offset":83}],"relations":[],"Comments":[]}
101
+ {"id":101,"text":"in mathematics a system of linear equations or linear system is a collection of one or more linear equations involving the same variables","entities":[{"id":283,"label":"Math","start_offset":3,"end_offset":14},{"id":284,"label":"Math","start_offset":27,"end_offset":43},{"id":285,"label":"Math","start_offset":47,"end_offset":60}],"relations":[{"id":142,"from_id":284,"to_id":283,"type":"Elements"},{"id":143,"from_id":285,"to_id":284,"type":"Relation"}],"Comments":[]}
102
+ {"id":102,"text":"a solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied","entities":[{"id":287,"label":"Math","start_offset":2,"end_offset":10},{"id":288,"label":"Math","start_offset":64,"end_offset":74},{"id":289,"label":"Math","start_offset":106,"end_offset":120}],"relations":[{"id":144,"from_id":288,"to_id":287,"type":"Another_name"},{"id":145,"from_id":289,"to_id":288,"type":"Relation"}],"Comments":[]}
103
+ {"id":103,"text":"in the example above a solution is given by the ordered triple since it makes all three equations valid","entities":[{"id":291,"label":"Math","start_offset":23,"end_offset":31},{"id":293,"label":"Math","start_offset":89,"end_offset":98}],"relations":[],"Comments":[]}
104
+ {"id":104,"text":"the word system indicates that the equations should be considered collectively rather than individually","entities":[],"relations":[],"Comments":[]}
105
+ {"id":105,"text":"linear systems are the basis and a fundamental part of linear algebra a subject used in most modern mathematics","entities":[{"id":296,"label":"Math","start_offset":55,"end_offset":69},{"id":297,"label":"Math","start_offset":100,"end_offset":111},{"id":298,"label":"Math","start_offset":0,"end_offset":14}],"relations":[{"id":146,"from_id":298,"to_id":296,"type":"Relation"},{"id":147,"from_id":296,"to_id":297,"type":"Another_name"}],"Comments":[]}
106
+ {"id":106,"text":"computational algorithms for finding the solutions are an important part of numerical linear algebra and play a prominent role in engineering physics chemistry computer science and economics","entities":[{"id":299,"label":"Math","start_offset":86,"end_offset":100},{"id":300,"label":"Math","start_offset":41,"end_offset":50}],"relations":[],"Comments":[]}
107
+ {"id":107,"text":"a system of nonlinear equations can often be approximated by a linear system see linearization a helpful technique when making a mathematical model or computer simulation of a relatively complex system","entities":[{"id":301,"label":"Math","start_offset":12,"end_offset":31},{"id":302,"label":"Math","start_offset":63,"end_offset":76}],"relations":[],"Comments":[]}
108
+ {"id":108,"text":"very often and in this article the coefficients of the equations are real or complex numbers and the solutions are searched in the same set of numbers but the theory and the algorithms apply for coefficients and solutions in any field","entities":[{"id":304,"label":"Math","start_offset":195,"end_offset":207},{"id":305,"label":"Math","start_offset":212,"end_offset":221}],"relations":[],"Comments":[]}
109
+ {"id":109,"text":"for solutions in an integral domain like the ring of the integers or in other algebraic structures other theories have been developed see linear equation over a ring","entities":[{"id":307,"label":"Math","start_offset":138,"end_offset":153}],"relations":[],"Comments":[]}
110
+ {"id":110,"text":"integer linear programming is a collection of methods for finding the best integer solution when there are many","entities":[{"id":308,"label":"Math","start_offset":0,"end_offset":26}],"relations":[],"Comments":[]}
111
+ {"id":111,"text":"gröbner basis theory provides algorithms when coefficients and unknowns are polynomials","entities":[{"id":309,"label":"Math","start_offset":30,"end_offset":40}],"relations":[],"Comments":[]}
112
+ {"id":112,"text":"tropical geometry is another example of linear algebra in a more exotic structure","entities":[{"id":311,"label":"Math","start_offset":0,"end_offset":17},{"id":312,"label":"Math","start_offset":39,"end_offset":54}],"relations":[{"id":149,"from_id":311,"to_id":312,"type":"Relation"}],"Comments":[]}
113
+ {"id":113,"text":"a linear endomorphism is a linear map that maps a vector space v to itself","entities":[{"id":314,"label":"Math","start_offset":2,"end_offset":21},{"id":315,"label":"Math","start_offset":27,"end_offset":37},{"id":316,"label":"Math","start_offset":50,"end_offset":62}],"relations":[{"id":150,"from_id":314,"to_id":315,"type":"Relation"},{"id":151,"from_id":315,"to_id":316,"type":"Elements"}],"Comments":[]}
114
+ {"id":114,"text":"if v has a basis of n elements such an endomorphism is represented by a square matrix of size n","entities":[{"id":318,"label":"Math","start_offset":11,"end_offset":16},{"id":319,"label":"Math","start_offset":72,"end_offset":85}],"relations":[{"id":152,"from_id":318,"to_id":319,"type":"Elements"}],"Comments":[]}
115
+ {"id":115,"text":"with respect to general linear maps linear endomorphisms and square matrices have some specific properties that make their study an important part of linear algebra which is used in many parts of mathematics including geometric transformations coordinate changes quadratic forms and many other part of mathematics","entities":[{"id":320,"label":"Math","start_offset":24,"end_offset":35},{"id":321,"label":"Math","start_offset":36,"end_offset":56},{"id":322,"label":"Math","start_offset":61,"end_offset":76},{"id":324,"label":"Math","start_offset":244,"end_offset":262},{"id":325,"label":"Math","start_offset":263,"end_offset":278},{"id":326,"label":"Math","start_offset":218,"end_offset":243}],"relations":[{"id":153,"from_id":322,"to_id":321,"type":"Elements"},{"id":154,"from_id":320,"to_id":326,"type":"Relation"},{"id":155,"from_id":320,"to_id":324,"type":"Relation"},{"id":156,"from_id":320,"to_id":325,"type":"Relation"}],"Comments":[]}
116
+ {"id":116,"text":"this allows all the language and theory of vector spaces or more generally modules to be brought to bear","entities":[{"id":327,"label":"Math","start_offset":43,"end_offset":56}],"relations":[],"Comments":[]}
117
+ {"id":117,"text":"for example the collection of all possible linear combinations of the vectors on the lefthand side is called their span and the equations have a solution just when the righthand vector is within that span","entities":[{"id":328,"label":"Math","start_offset":43,"end_offset":62},{"id":329,"label":"Math","start_offset":70,"end_offset":77}],"relations":[{"id":157,"from_id":329,"to_id":328,"type":"Elements"}],"Comments":[]}
118
+ {"id":118,"text":"if every vector within that span has exactly one expression as a linear combination of the given lefthand vectors then any solution is unique","entities":[{"id":330,"label":"Math","start_offset":9,"end_offset":15},{"id":331,"label":"Math","start_offset":65,"end_offset":83}],"relations":[{"id":158,"from_id":330,"to_id":331,"type":"Elements"}],"Comments":[]}
119
+ {"id":119,"text":"in any event the span has a basis of linearly independent vectors that do guarantee exactly one expression and the number of vectors in that basis its dimension cannot be larger than m or n but it can be smaller","entities":[{"id":332,"label":"Math","start_offset":125,"end_offset":132}],"relations":[],"Comments":[]}
120
+ {"id":120,"text":"this is important because if we have m independent vectors a solution is guaranteed regardless of the righthand side and otherwise not guaranteed","entities":[{"id":333,"label":"Math","start_offset":39,"end_offset":58}],"relations":[],"Comments":[]}
121
+ {"id":121,"text":"geometric interpretation","entities":[{"id":334,"label":"Math","start_offset":0,"end_offset":9}],"relations":[],"Comments":[]}
122
+ {"id":122,"text":"for a system involving two variables x and y each linear equation determines a line on the xyplane","entities":[{"id":335,"label":"Math","start_offset":50,"end_offset":65}],"relations":[],"Comments":[]}
123
+ {"id":123,"text":"because a solution to a linear system must satisfy all of the equations the solution set is the intersection of these lines and is hence either a line a single point or the empty set","entities":[{"id":336,"label":"Math","start_offset":24,"end_offset":37}],"relations":[],"Comments":[]}
124
+ {"id":124,"text":"for three variables each linear equation determines a plane in threedimensional space and the solution set is the intersection of these planes","entities":[{"id":337,"label":"Math","start_offset":25,"end_offset":40},{"id":338,"label":"Math","start_offset":54,"end_offset":59},{"id":339,"label":"Math","start_offset":94,"end_offset":102}],"relations":[{"id":159,"from_id":339,"to_id":338,"type":"Relation"},{"id":160,"from_id":337,"to_id":338,"type":"Relation"}],"Comments":[]}
125
+ {"id":125,"text":"thus the solution set may be a plane a line a single point or the empty set","entities":[{"id":341,"label":"Math","start_offset":9,"end_offset":21},{"id":342,"label":"Math","start_offset":31,"end_offset":36},{"id":343,"label":"Math","start_offset":39,"end_offset":43},{"id":344,"label":"Math","start_offset":46,"end_offset":58},{"id":345,"label":"Math","start_offset":66,"end_offset":75}],"relations":[{"id":161,"from_id":345,"to_id":341,"type":"Relation"},{"id":162,"from_id":344,"to_id":341,"type":"Relation"},{"id":163,"from_id":343,"to_id":341,"type":"Relation"},{"id":164,"from_id":342,"to_id":341,"type":"Relation"}],"Comments":[]}
126
+ {"id":126,"text":"for example as three parallel planes do not have a common point the solution set of their equations is empty the solution set of the equations of three planes intersecting at a point is single point if three planes pass through two points their equations have at least two common solutions in fact the solution set is infinite and consists in all the line passing through these points","entities":[{"id":346,"label":"Math","start_offset":302,"end_offset":314}],"relations":[],"Comments":[]}
127
+ {"id":127,"text":"for n variables each linear equation determines a hyperplane in ndimensional space","entities":[{"id":348,"label":"Math","start_offset":64,"end_offset":82},{"id":349,"label":"Math","start_offset":37,"end_offset":47},{"id":350,"label":"Math","start_offset":6,"end_offset":15}],"relations":[{"id":165,"from_id":350,"to_id":349,"type":"Relation"},{"id":166,"from_id":349,"to_id":348,"type":"Relation"}],"Comments":[]}
128
+ {"id":128,"text":"the solution set is the intersection of these hyperplanes and is a flat which may have any dimension lower than n","entities":[{"id":352,"label":"Math","start_offset":4,"end_offset":16},{"id":353,"label":"Math","start_offset":91,"end_offset":100},{"id":354,"label":"Math","start_offset":46,"end_offset":58}],"relations":[{"id":167,"from_id":352,"to_id":354,"type":"Relation"},{"id":168,"from_id":354,"to_id":353,"type":"Relation"}],"Comments":[]}
129
+ {"id":129,"text":"in general the behavior of a linear system is determined by the relationship between the number of equations and the number of unknowns","entities":[{"id":356,"label":"Math","start_offset":29,"end_offset":42}],"relations":[],"Comments":[]}
130
+ {"id":130,"text":"here in general means that a different behavior may occur for specific values of the coefficients of the equations","entities":[{"id":358,"label":"Math","start_offset":62,"end_offset":77}],"relations":[],"Comments":[]}
131
+ {"id":131,"text":"in general a system with fewer equations than unknowns has infinitely many solutions but it may have no solution","entities":[{"id":359,"label":"Math","start_offset":31,"end_offset":40}],"relations":[],"Comments":[]}
132
+ {"id":132,"text":"such a system is known as an underdetermined system","entities":[{"id":360,"label":"Math","start_offset":29,"end_offset":51}],"relations":[],"Comments":[]}
133
+ {"id":133,"text":"in general a system with the same number of equations and unknowns has a single unique solution","entities":[{"id":362,"label":"Math","start_offset":44,"end_offset":53},{"id":363,"label":"Math","start_offset":87,"end_offset":95}],"relations":[{"id":169,"from_id":362,"to_id":363,"type":"Relation"}],"Comments":[]}
134
+ {"id":134,"text":"in general a system with more equations than unknowns has no solution","entities":[{"id":364,"label":"Math","start_offset":30,"end_offset":39},{"id":365,"label":"Math","start_offset":61,"end_offset":69}],"relations":[{"id":170,"from_id":364,"to_id":365,"type":"Relation"}],"Comments":[]}
135
+ {"id":135,"text":"such a system is also known as an overdetermined system","entities":[{"id":366,"label":"Math","start_offset":34,"end_offset":55}],"relations":[],"Comments":[]}
136
+ {"id":136,"text":"in the first case the dimension of the solution set is in general equal to n m where n is the number of variables and m is the number of equations","entities":[{"id":368,"label":"Math","start_offset":22,"end_offset":31},{"id":369,"label":"Math","start_offset":39,"end_offset":51},{"id":370,"label":"Math","start_offset":138,"end_offset":147},{"id":371,"label":"Math","start_offset":105,"end_offset":114}],"relations":[{"id":171,"from_id":369,"to_id":368,"type":"Relation"},{"id":172,"from_id":369,"to_id":371,"type":"Relation"},{"id":173,"from_id":369,"to_id":370,"type":"Relation"}],"Comments":[]}
137
+ {"id":137,"text":"the following pictures illustrate this trichotomy in the case of two variables","entities":[{"id":373,"label":"Math","start_offset":69,"end_offset":78}],"relations":[],"Comments":[]}
138
+ {"id":138,"text":"the first system has infinitely many solutions namely all of the points on the blue line","entities":[{"id":374,"label":"Math","start_offset":65,"end_offset":71},{"id":375,"label":"Math","start_offset":37,"end_offset":46}],"relations":[{"id":174,"from_id":375,"to_id":374,"type":"Another_name"}],"Comments":[]}
139
+ {"id":139,"text":"the second system has a single unique solution namely the intersection of the two lines","entities":[{"id":378,"label":"Math","start_offset":58,"end_offset":70},{"id":379,"label":"Math","start_offset":24,"end_offset":46}],"relations":[{"id":175,"from_id":379,"to_id":378,"type":"Another_name"}],"Comments":[]}
140
+ {"id":140,"text":"the third system has no solutions since the three lines share no common point","entities":[{"id":382,"label":"Math","start_offset":72,"end_offset":77}],"relations":[],"Comments":[]}
141
+ {"id":141,"text":"it must be kept in mind that the pictures above show only the most common case the general case","entities":[],"relations":[],"Comments":[]}
142
+ {"id":142,"text":"it is possible for a system of two equations and two unknowns to have no solution if the two lines are parallel or for a system of three equations and two unknowns to be solvable if the three lines intersect at a single point","entities":[{"id":383,"label":"Math","start_offset":103,"end_offset":111},{"id":384,"label":"Math","start_offset":73,"end_offset":81},{"id":385,"label":"Math","start_offset":220,"end_offset":225}],"relations":[{"id":177,"from_id":385,"to_id":384,"type":"Relation"},{"id":178,"from_id":383,"to_id":384,"type":"Relation"}],"Comments":[]}
143
+ {"id":143,"text":"a system of linear equations behave differently from the general case if the equations are linearly dependent or if it is inconsistent and has no more equations than unknowns","entities":[{"id":386,"label":"Math","start_offset":12,"end_offset":28},{"id":387,"label":"Math","start_offset":91,"end_offset":109}],"relations":[{"id":179,"from_id":387,"to_id":386,"type":"Relation"}],"Comments":[]}
144
+ {"id":144,"text":"a differential equation can be homogeneous in either of two respects","entities":[{"id":390,"label":"Math","start_offset":2,"end_offset":23},{"id":391,"label":"Math","start_offset":31,"end_offset":42}],"relations":[{"id":180,"from_id":391,"to_id":390,"type":"Elements"}],"Comments":[]}
145
+ {"id":145,"text":"a first order differential equation is said to be homogeneous if it may be written","entities":[{"id":392,"label":"Math","start_offset":0,"end_offset":35},{"id":393,"label":"Math","start_offset":50,"end_offset":61}],"relations":[{"id":181,"from_id":392,"to_id":393,"type":"Another_name"}],"Comments":[]}
146
+ {"id":146,"text":"where f and g are homogeneous functions of the same degree of x and y","entities":[{"id":395,"label":"Math","start_offset":18,"end_offset":39}],"relations":[],"Comments":[]}
147
+ {"id":147,"text":" in this case the change of variable y ux leads to an equation of the form","entities":[{"id":398,"label":"Math","start_offset":55,"end_offset":63}],"relations":[],"Comments":[]}
148
+ {"id":148,"text":"which is easy to solve by integration of the two members","entities":[],"relations":[],"Comments":[]}
149
+ {"id":149,"text":"otherwise a differential equation is homogeneous if it is a homogeneous function of the unknown function and its derivatives","entities":[{"id":401,"label":"Math","start_offset":12,"end_offset":33},{"id":402,"label":"Math","start_offset":60,"end_offset":80}],"relations":[],"Comments":[]}
150
+ {"id":150,"text":"in the case of linear differential equations this means that there are no constant terms","entities":[{"id":403,"label":"Math","start_offset":14,"end_offset":44}],"relations":[],"Comments":[]}
151
+ {"id":151,"text":"the solutions of any linear ordinary differential equation of any order may be deduced by integration from the solution of the homogeneous equation obtained by removing the constant term","entities":[{"id":404,"label":"Math","start_offset":21,"end_offset":58},{"id":406,"label":"Math","start_offset":173,"end_offset":186},{"id":407,"label":"Math","start_offset":127,"end_offset":147}],"relations":[{"id":182,"from_id":406,"to_id":407,"type":"Relation"},{"id":183,"from_id":407,"to_id":404,"type":"Relation"}],"Comments":[]}
152
+ {"id":152,"text":"there is a strong relationship between linear algebra and geometry which started with the introduction by rené descartes in of cartesian coordinates","entities":[{"id":410,"label":"Math","start_offset":39,"end_offset":53},{"id":411,"label":"Math","start_offset":58,"end_offset":66}],"relations":[{"id":184,"from_id":411,"to_id":410,"type":"Relation"}],"Comments":[]}
153
+ {"id":153,"text":"in this new at that time geometry now called cartesian geometry points are represented by cartesian coordinates which are sequences of three real numbers in the case of the usual threedimensional space","entities":[{"id":412,"label":"Math","start_offset":25,"end_offset":33},{"id":413,"label":"Math","start_offset":45,"end_offset":63}],"relations":[{"id":185,"from_id":413,"to_id":412,"type":"Relation"}],"Comments":[]}
154
+ {"id":154,"text":"the basic objects of geometry which are lines and planes are represented by linear equations","entities":[{"id":414,"label":"Math","start_offset":21,"end_offset":29},{"id":415,"label":"Math","start_offset":40,"end_offset":45},{"id":416,"label":"Math","start_offset":50,"end_offset":56},{"id":417,"label":"Math","start_offset":76,"end_offset":92}],"relations":[{"id":186,"from_id":415,"to_id":414,"type":"Elements"},{"id":187,"from_id":416,"to_id":414,"type":"Elements"},{"id":188,"from_id":417,"to_id":414,"type":"Relation"}],"Comments":[]}
155
+ {"id":155,"text":"thus computing intersections of lines and planes amounts to solving systems of linear equations","entities":[{"id":418,"label":"Math","start_offset":79,"end_offset":95},{"id":419,"label":"Math","start_offset":32,"end_offset":37},{"id":420,"label":"Math","start_offset":42,"end_offset":48}],"relations":[{"id":189,"from_id":419,"to_id":418,"type":"Relation"},{"id":190,"from_id":420,"to_id":418,"type":"Relation"}],"Comments":[]}
156
+ {"id":156,"text":"this was one of the main motivations for developing linear algebra","entities":[{"id":421,"label":"Math","start_offset":52,"end_offset":66}],"relations":[],"Comments":[]}
157
+ {"id":157,"text":"most geometric transformation such as translations rotations reflections rigid motions isometries and projections transform lines into lines","entities":[{"id":422,"label":"Math","start_offset":5,"end_offset":29},{"id":423,"label":"Attributes","start_offset":38,"end_offset":50},{"id":424,"label":"Attributes","start_offset":51,"end_offset":60},{"id":425,"label":"Attributes","start_offset":61,"end_offset":72},{"id":426,"label":"Attributes","start_offset":73,"end_offset":86},{"id":427,"label":"Attributes","start_offset":87,"end_offset":97},{"id":428,"label":"Attributes","start_offset":102,"end_offset":123}],"relations":[{"id":191,"from_id":423,"to_id":422,"type":"Elements"},{"id":192,"from_id":424,"to_id":422,"type":"Elements"},{"id":193,"from_id":425,"to_id":422,"type":"Elements"},{"id":194,"from_id":426,"to_id":422,"type":"Elements"},{"id":195,"from_id":427,"to_id":422,"type":"Elements"},{"id":196,"from_id":428,"to_id":422,"type":"Elements"}],"Comments":[]}
158
+ {"id":158,"text":"it follows that they can be defined specified and studied in terms of linear maps","entities":[{"id":429,"label":"Math","start_offset":70,"end_offset":81}],"relations":[],"Comments":[]}
159
+ {"id":159,"text":"this is also the case of homographies and möbius transformations when considered as transformations of a projective space","entities":[{"id":430,"label":"Math","start_offset":105,"end_offset":121}],"relations":[],"Comments":[]}
160
+ {"id":160,"text":"until the end of the th century geometric spaces were defined by axioms relating points lines and planes synthetic geometry","entities":[{"id":431,"label":"Math","start_offset":32,"end_offset":48},{"id":432,"label":"Math","start_offset":105,"end_offset":123}],"relations":[{"id":197,"from_id":431,"to_id":432,"type":"Relation"}],"Comments":[]}
161
+ {"id":161,"text":"around this date it appeared that one may also define geometric spaces by constructions involving vector spaces see for example projective space and affine space","entities":[{"id":434,"label":"Math","start_offset":54,"end_offset":70},{"id":435,"label":"Math","start_offset":98,"end_offset":111},{"id":436,"label":"Math","start_offset":128,"end_offset":144},{"id":437,"label":"Math","start_offset":149,"end_offset":161}],"relations":[{"id":198,"from_id":436,"to_id":435,"type":"Elements"},{"id":199,"from_id":437,"to_id":435,"type":"Elements"},{"id":200,"from_id":435,"to_id":434,"type":"Relation"}],"Comments":[]}
162
+ {"id":162,"text":"it has been shown that the two approaches are essentially equivalent","entities":[{"id":439,"label":"Math","start_offset":58,"end_offset":68}],"relations":[],"Comments":[]}
163
+ {"id":163,"text":" in classical geometry the involved vector spaces are vector spaces over the reals but the constructions may be extended to vector spaces over any field allowing considering geometry over arbitrary fields including finite fields","entities":[{"id":440,"label":"Math","start_offset":4,"end_offset":22},{"id":441,"label":"Math","start_offset":36,"end_offset":49},{"id":442,"label":"Math","start_offset":147,"end_offset":152}],"relations":[{"id":201,"from_id":442,"to_id":441,"type":"Elements"},{"id":202,"from_id":441,"to_id":440,"type":"Relation"}],"Comments":[]}
164
+ {"id":164,"text":"presently most textbooks introduce geometric spaces from linear algebra and geometry is often presented at elementary level as a subfield of linear algebra","entities":[{"id":443,"label":"Math","start_offset":57,"end_offset":71},{"id":444,"label":"Math","start_offset":35,"end_offset":51},{"id":445,"label":"Math","start_offset":76,"end_offset":84},{"id":446,"label":"Math","start_offset":141,"end_offset":155}],"relations":[{"id":203,"from_id":443,"to_id":444,"type":"Relation"},{"id":204,"from_id":446,"to_id":445,"type":"Relation"}],"Comments":[]}
165
+ {"id":165,"text":"linear algebra is used in almost all areas of mathematics thus making it relevant in almost all scientific domains that use mathematics","entities":[{"id":447,"label":"Math","start_offset":0,"end_offset":14},{"id":448,"label":"Math","start_offset":46,"end_offset":57}],"relations":[{"id":205,"from_id":447,"to_id":448,"type":"Elements"}],"Comments":[]}
166
+ {"id":166,"text":"these applications may be divided into several wide categories","entities":[],"relations":[],"Comments":[]}
167
+ {"id":167,"text":"functional analysis studies function spaces","entities":[{"id":449,"label":"Math","start_offset":0,"end_offset":19},{"id":450,"label":"Math","start_offset":28,"end_offset":43}],"relations":[{"id":206,"from_id":450,"to_id":449,"type":"Elements"}],"Comments":[]}
168
+ {"id":168,"text":"these are vector spaces with additional structure such as hilbert spaces","entities":[{"id":451,"label":"Math","start_offset":10,"end_offset":23},{"id":452,"label":"Math","start_offset":58,"end_offset":72}],"relations":[{"id":207,"from_id":452,"to_id":451,"type":"Elements"}],"Comments":[]}
169
+ {"id":169,"text":"linear algebra is thus a fundamental part of functional analysis and its applications which include in particular quantum mechanics wave functions and fourier analysis orthogonal basis","entities":[{"id":453,"label":"Math","start_offset":0,"end_offset":14},{"id":454,"label":"Math","start_offset":45,"end_offset":64},{"id":455,"label":"Math","start_offset":151,"end_offset":184}],"relations":[{"id":208,"from_id":454,"to_id":453,"type":"Relation"},{"id":209,"from_id":455,"to_id":454,"type":"Elements"}],"Comments":[]}
170
+ {"id":170,"text":"nearly all scientific computations involve linear algebra","entities":[{"id":456,"label":"Math","start_offset":43,"end_offset":57}],"relations":[],"Comments":[]}
171
+ {"id":171,"text":" consequently linear algebra algorithms have been highly optimized","entities":[{"id":457,"label":"Math","start_offset":14,"end_offset":28}],"relations":[],"Comments":[]}
172
+ {"id":172,"text":"blas and lapack are the best known implementations","entities":[],"relations":[],"Comments":[]}
173
+ {"id":173,"text":"for improving efficiency some of them configure the algorithms automatically at run time for adapting them to the specificities of the computer cache size number of available cores","entities":[{"id":458,"label":"Attributes","start_offset":52,"end_offset":62}],"relations":[],"Comments":[]}
174
+ {"id":174,"text":"some processors typically graphics processing units gpu are designed with a matrix structure for optimizing the operations of linear algebra","entities":[{"id":459,"label":"Attributes","start_offset":76,"end_offset":92},{"id":460,"label":"Math","start_offset":126,"end_offset":140}],"relations":[{"id":210,"from_id":459,"to_id":460,"type":"Relation"}],"Comments":[]}
175
+ {"id":175,"text":"citation needed","entities":[],"relations":[],"Comments":[]}
176
+ {"id":176,"text":"the modeling of ambient space is based on geometry","entities":[{"id":462,"label":"Math","start_offset":42,"end_offset":50}],"relations":[],"Comments":[]}
177
+ {"id":177,"text":"sciences concerned with this space use geometry widely","entities":[{"id":463,"label":"Math","start_offset":39,"end_offset":47},{"id":464,"label":"Attributes","start_offset":0,"end_offset":8}],"relations":[{"id":211,"from_id":463,"to_id":464,"type":"Relation"}],"Comments":[]}
178
+ {"id":178,"text":"this is the case with mechanics and robotics for describing rigid body dynamics geodesy for describing earth shape perspectivity computer vision and computer graphics for describing the relationship between a scene and its plane representation and many other scientific domains","entities":[{"id":465,"label":"Attributes","start_offset":60,"end_offset":70}],"relations":[],"Comments":[]}
179
+ {"id":179,"text":"in all these applications synthetic geometry is often used for general descriptions and a qualitative approach but for the study of explicit situations one must compute with coordinates","entities":[{"id":466,"label":"Math","start_offset":26,"end_offset":44},{"id":468,"label":"Math","start_offset":174,"end_offset":185}],"relations":[{"id":212,"from_id":468,"to_id":466,"type":"Elements"}],"Comments":[]}
180
+ {"id":180,"text":"this requires the heavy use of linear algebra","entities":[{"id":469,"label":"Math","start_offset":31,"end_offset":45}],"relations":[],"Comments":[]}
181
+ {"id":181,"text":"most physical phenomena are modeled by partial differential equations","entities":[{"id":470,"label":"Math","start_offset":39,"end_offset":69}],"relations":[],"Comments":[]}
182
+ {"id":182,"text":"to solve them one usually decomposes the space in which the solutions are searched into small mutually interacting cells","entities":[{"id":471,"label":"Math","start_offset":60,"end_offset":69}],"relations":[],"Comments":[]}
183
+ {"id":183,"text":"for linear systems this interaction involves linear functions","entities":[{"id":472,"label":"Math","start_offset":4,"end_offset":18},{"id":473,"label":"Math","start_offset":45,"end_offset":61}],"relations":[{"id":213,"from_id":473,"to_id":472,"type":"Elements"}],"Comments":[]}
184
+ {"id":184,"text":"for nonlinear systems this interaction is often approximated by linear functions","entities":[{"id":474,"label":"Math","start_offset":4,"end_offset":21},{"id":475,"label":"Math","start_offset":64,"end_offset":80}],"relations":[{"id":214,"from_id":474,"to_id":475,"type":"Elements"}],"Comments":[]}
185
+ {"id":185,"text":"bthis is called a linear model or firstorder approximation","entities":[{"id":476,"label":"Math","start_offset":18,"end_offset":30},{"id":477,"label":"Math","start_offset":34,"end_offset":58}],"relations":[{"id":215,"from_id":476,"to_id":477,"type":"Relation"}],"Comments":[]}
186
+ {"id":186,"text":"linear models are frequently used for complex nonlinear realworld systems because it makes parametrization more manageable","entities":[{"id":478,"label":"Math","start_offset":0,"end_offset":13},{"id":479,"label":"Attributes","start_offset":38,"end_offset":73}],"relations":[{"id":216,"from_id":478,"to_id":479,"type":"Relation"}],"Comments":[]}
187
+ {"id":187,"text":" in both cases very large matrices are generally involved","entities":[{"id":481,"label":"Math","start_offset":26,"end_offset":34}],"relations":[],"Comments":[]}
188
+ {"id":188,"text":"weather forecasting or more specifically parametrization for atmospheric modeling is a typical example of a realworld application where the whole earth atmosphere is divided into cells of say km of width and km of height","entities":[{"id":482,"label":"Attributes","start_offset":73,"end_offset":81}],"relations":[],"Comments":[]}
189
+ {"id":189,"text":"fluid mechanics fluid dynamics and thermal energy systems","entities":[{"id":483,"label":"Attributes","start_offset":0,"end_offset":15},{"id":485,"label":"Attributes","start_offset":16,"end_offset":30},{"id":486,"label":"Attributes","start_offset":35,"end_offset":57}],"relations":[{"id":217,"from_id":486,"to_id":485,"type":"Relation"},{"id":218,"from_id":485,"to_id":483,"type":"Relation"},{"id":219,"from_id":483,"to_id":486,"type":"Relation"}],"Comments":[]}
190
+ {"id":190,"text":"linear algebra a branch of mathematics dealing with vector spaces and linear mappings between these spaces plays a critical role in various engineering disciplines including fluid mechanics fluid dynamics and thermal energy systems","entities":[{"id":488,"label":"Math","start_offset":0,"end_offset":14},{"id":489,"label":"Math","start_offset":27,"end_offset":38},{"id":490,"label":"Math","start_offset":52,"end_offset":65},{"id":491,"label":"Math","start_offset":70,"end_offset":85},{"id":492,"label":"Attributes","start_offset":174,"end_offset":189},{"id":493,"label":"Attributes","start_offset":190,"end_offset":204},{"id":495,"label":"Attributes","start_offset":209,"end_offset":231}],"relations":[{"id":220,"from_id":488,"to_id":489,"type":"Elements"},{"id":221,"from_id":491,"to_id":490,"type":"Elements"},{"id":222,"from_id":492,"to_id":488,"type":"Relation"},{"id":223,"from_id":493,"to_id":488,"type":"Relation"},{"id":224,"from_id":495,"to_id":488,"type":"Relation"}],"Comments":[]}
191
+ {"id":191,"text":"its application in these fields is multifaceted and indispensable for solving complex problems","entities":[],"relations":[],"Comments":[]}
192
+ {"id":192,"text":"in fluid mechanics linear algebra is integral to understanding and solving problems related to the behavior of fluids","entities":[{"id":497,"label":"Attributes","start_offset":3,"end_offset":18},{"id":498,"label":"Math","start_offset":19,"end_offset":33}],"relations":[{"id":225,"from_id":497,"to_id":498,"type":"Relation"}],"Comments":[]}
193
+ {"id":193,"text":"it assists in the modeling and simulation of fluid flow providing essential tools for the analysis of fluid dynamics problems","entities":[{"id":499,"label":"Attributes","start_offset":102,"end_offset":125}],"relations":[],"Comments":[]}
194
+ {"id":194,"text":"for instance linear algebraic techniques are used to solve systems of differential equations that describe fluid motion","entities":[{"id":500,"label":"Math","start_offset":13,"end_offset":29},{"id":501,"label":"Attributes","start_offset":107,"end_offset":119}],"relations":[{"id":226,"from_id":500,"to_id":501,"type":"Relation"}],"Comments":[]}
195
+ {"id":195,"text":"these equations often complex and nonlinear can be linearized using linear algebra methods allowing for simpler solutions and analyses","entities":[{"id":502,"label":"Math","start_offset":68,"end_offset":82}],"relations":[],"Comments":[]}
196
+ {"id":196,"text":"in the field of fluid dynamics linear algebra finds its application in computational fluid dynamics cfd a branch that uses numerical analysis and data structures to solve and analyze problems involving fluid flows","entities":[{"id":504,"label":"Math","start_offset":31,"end_offset":45}],"relations":[],"Comments":[]}
197
+ {"id":197,"text":"cfd relies heavily on linear algebra for the computation of fluid flow and heat transfer in various applications","entities":[{"id":505,"label":"Math","start_offset":22,"end_offset":36}],"relations":[],"Comments":[]}
198
+ {"id":198,"text":"for example the navierstokes equations fundamental in fluid dynamics are often solved using techniques derived from linear algebra","entities":[{"id":506,"label":"Math","start_offset":116,"end_offset":130}],"relations":[],"Comments":[]}
199
+ {"id":199,"text":"this includes the use of matrices and vectors to represent and manipulate fluid flow fields","entities":[{"id":507,"label":"Math","start_offset":25,"end_offset":33},{"id":508,"label":"Math","start_offset":38,"end_offset":45},{"id":509,"label":"Attributes","start_offset":73,"end_offset":91}],"relations":[{"id":227,"from_id":508,"to_id":507,"type":"Relation"},{"id":228,"from_id":509,"to_id":508,"type":"Relation"},{"id":229,"from_id":509,"to_id":507,"type":"Relation"}],"Comments":[]}
200
+ {"id":200,"text":"furthermore linear algebra plays a crucial role in thermal energy systems particularly in power systems analysis","entities":[{"id":510,"label":"Math","start_offset":12,"end_offset":26},{"id":511,"label":"Attributes","start_offset":51,"end_offset":73}],"relations":[{"id":230,"from_id":511,"to_id":510,"type":"Relation"}],"Comments":[]}
201
+ {"id":201,"text":"it is used to model and optimize the generation transmission and distribution of electric power","entities":[],"relations":[],"Comments":[]}
202
+ {"id":202,"text":"linear algebraic concepts such as matrix operations and eigenvalue problems are employed to enhance the efficiency reliability and economic performance of power systems","entities":[{"id":512,"label":"Math","start_offset":34,"end_offset":40},{"id":513,"label":"Math","start_offset":56,"end_offset":66},{"id":514,"label":"Math","start_offset":0,"end_offset":16}],"relations":[{"id":231,"from_id":512,"to_id":514,"type":"Elements"},{"id":232,"from_id":513,"to_id":514,"type":"Elements"}],"Comments":[]}
203
+ {"id":203,"text":"the application of linear algebra in this context is vital for the design and operation of modern power systems including renewable energy sources and smart grids","entities":[{"id":515,"label":"Math","start_offset":19,"end_offset":33}],"relations":[],"Comments":[]}
204
+ {"id":204,"text":"overall the application of linear algebra in fluid mechanics fluid dynamics and thermal energy systems is an example of the profound interconnection between mathematics and engineering","entities":[{"id":516,"label":"Math","start_offset":27,"end_offset":41},{"id":517,"label":"Attributes","start_offset":45,"end_offset":60},{"id":518,"label":"Attributes","start_offset":61,"end_offset":75}],"relations":[{"id":233,"from_id":517,"to_id":516,"type":"Relation"},{"id":234,"from_id":518,"to_id":516,"type":"Relation"}],"Comments":[]}
205
+ {"id":205,"text":"it provides engineers with the necessary tools to model analyze and solve complex problems in these domains leading to advancements in technology and industry","entities":[],"relations":[],"Comments":[]}
206
+ {"id":206,"text":"the existence of multiplicative inverses in fields is not involved in the axioms defining a vector space","entities":[{"id":520,"label":"Math","start_offset":92,"end_offset":104}],"relations":[],"Comments":[]}
207
+ {"id":207,"text":"one may thus replace the field of scalars by a ring r and this gives the structure called a module over r or rmodule","entities":[{"id":521,"label":"Math","start_offset":47,"end_offset":51}],"relations":[],"Comments":[]}
208
+ {"id":208,"text":"the concepts of linear independence span basis and linear maps also called module homomorphisms are defined for modules exactly as for vector spaces with the essential difference that if r is not a field there are modules that do not have any basis","entities":[{"id":522,"label":"Math","start_offset":16,"end_offset":46},{"id":523,"label":"Math","start_offset":51,"end_offset":62},{"id":524,"label":"Math","start_offset":75,"end_offset":95}],"relations":[{"id":235,"from_id":524,"to_id":523,"type":"Another_name"},{"id":236,"from_id":523,"to_id":522,"type":"Relation"}],"Comments":[]}
209
+ {"id":209,"text":"the modules that have a basis are the free modules and those that are spanned by a finite set are the finitely generated modules","entities":[],"relations":[],"Comments":[]}
210
+ {"id":210,"text":"module homomorphisms between finitely generated free modules may be represented by matrices","entities":[{"id":525,"label":"Math","start_offset":83,"end_offset":91}],"relations":[],"Comments":[]}
211
+ {"id":211,"text":"the theory of matrices over a ring is similar to that of matrices over a field except that determinants exist only if the ring is commutative and that a square matrix over a commutative ring is invertible only if its determinant has a multiplicative inverse in the ring","entities":[{"id":526,"label":"Math","start_offset":14,"end_offset":22},{"id":527,"label":"Math","start_offset":30,"end_offset":34},{"id":528,"label":"Math","start_offset":73,"end_offset":78},{"id":529,"label":"Math","start_offset":57,"end_offset":65}],"relations":[{"id":237,"from_id":526,"to_id":527,"type":"Relation"},{"id":238,"from_id":529,"to_id":528,"type":"Relation"}],"Comments":[]}
212
+ {"id":212,"text":"vector spaces are completely characterized by their dimension up to an isomorphism","entities":[{"id":530,"label":"Math","start_offset":0,"end_offset":13},{"id":531,"label":"Math","start_offset":52,"end_offset":61},{"id":532,"label":"Math","start_offset":71,"end_offset":82}],"relations":[{"id":239,"from_id":531,"to_id":530,"type":"Elements"},{"id":240,"from_id":532,"to_id":530,"type":"Elements"}],"Comments":[]}
213
+ {"id":213,"text":"in general there is not such a complete classification for modules even if one restricts oneself to finitely generated modules","entities":[{"id":534,"label":"Math","start_offset":59,"end_offset":66}],"relations":[],"Comments":[]}
214
+ {"id":214,"text":"however every module is a cokernel of a homomorphism of free modules","entities":[{"id":533,"label":"Math","start_offset":14,"end_offset":20}],"relations":[],"Comments":[]}
215
+ {"id":215,"text":"modules over the integers can be identified with abelian groups since the multiplication by an integer may be identified to a repeated addition","entities":[{"id":535,"label":"Math","start_offset":0,"end_offset":7},{"id":536,"label":"Math","start_offset":49,"end_offset":63},{"id":538,"label":"Attributes","start_offset":74,"end_offset":88},{"id":539,"label":"Attributes","start_offset":135,"end_offset":143},{"id":540,"label":"Math","start_offset":17,"end_offset":25}],"relations":[{"id":241,"from_id":535,"to_id":540,"type":"Relation"},{"id":242,"from_id":536,"to_id":540,"type":"Relation"},{"id":243,"from_id":539,"to_id":535,"type":"Relation"},{"id":244,"from_id":538,"to_id":535,"type":"Relation"}],"Comments":[]}
216
+ {"id":216,"text":"most of the theory of abelian groups may be extended to modules over a principal ideal domain","entities":[{"id":541,"label":"Math","start_offset":22,"end_offset":36},{"id":542,"label":"Math","start_offset":56,"end_offset":63}],"relations":[{"id":245,"from_id":542,"to_id":541,"type":"Relation"}],"Comments":[]}
217
+ {"id":217,"text":"in particular over a principal ideal domain every submodule of a free module is free and the fundamental theorem of finitely generated abelian groups may be extended straightforwardly to finitely generated modules over a principal ring","entities":[{"id":543,"label":"Math","start_offset":50,"end_offset":59},{"id":544,"label":"Math","start_offset":70,"end_offset":76}],"relations":[{"id":246,"from_id":543,"to_id":544,"type":"Elements"}],"Comments":[]}
218
+ {"id":218,"text":"there are many rings for which there are algorithms for solving linear equations and systems of linear equations","entities":[{"id":545,"label":"Math","start_offset":64,"end_offset":80},{"id":546,"label":"Math","start_offset":15,"end_offset":20}],"relations":[{"id":247,"from_id":546,"to_id":545,"type":"Relation"}],"Comments":[]}
219
+ {"id":219,"text":"however these algorithms have generally a computational complexity that is much higher than the similar algorithms over a field","entities":[],"relations":[],"Comments":[]}
220
+ {"id":220,"text":"for more details see linear equation over a ring","entities":[{"id":547,"label":"Math","start_offset":21,"end_offset":36},{"id":548,"label":"Math","start_offset":44,"end_offset":48}],"relations":[{"id":248,"from_id":547,"to_id":548,"type":"Relation"}],"Comments":[]}
221
+ {"id":221,"text":"in multilinear algebra one considers multivariable linear transformations that is mappings that are linear in each of a number of different variables","entities":[{"id":550,"label":"Math","start_offset":3,"end_offset":22},{"id":552,"label":"Math","start_offset":51,"end_offset":73}],"relations":[{"id":249,"from_id":552,"to_id":550,"type":"Relation"}],"Comments":[]}
222
+ {"id":222,"text":"this line of inquiry naturally leads to the idea of the dual space the vector space v consisting of linear maps f v f where f is the field of scalars","entities":[{"id":553,"label":"Math","start_offset":56,"end_offset":66},{"id":554,"label":"Math","start_offset":100,"end_offset":111},{"id":555,"label":"Math","start_offset":71,"end_offset":83}],"relations":[{"id":250,"from_id":553,"to_id":555,"type":"Relation"},{"id":251,"from_id":554,"to_id":555,"type":"Elements"}],"Comments":[]}
223
+ {"id":223,"text":"multilinear maps t vn f can be described via tensor products of elements of v","entities":[{"id":556,"label":"Math","start_offset":0,"end_offset":16},{"id":557,"label":"Math","start_offset":47,"end_offset":53}],"relations":[{"id":252,"from_id":557,"to_id":556,"type":"Elements"}],"Comments":[]}
224
+ {"id":224,"text":"if in addition to vector addition and scalar multiplication there is a bilinear vector product v v v the vector space is called an algebra for instance associative algebras are algebras with an associate vector product like the algebra of square matrices or the algebra of polynomials","entities":[{"id":558,"label":"Math","start_offset":18,"end_offset":33},{"id":559,"label":"Math","start_offset":38,"end_offset":59},{"id":560,"label":"Math","start_offset":71,"end_offset":94},{"id":562,"label":"Math","start_offset":107,"end_offset":119}],"relations":[{"id":253,"from_id":558,"to_id":559,"type":"Relation"},{"id":254,"from_id":560,"to_id":562,"type":"Elements"}],"Comments":[]}
225
+ {"id":225,"text":"vector spaces that are not finite dimensional often require additional structure to be tractable","entities":[{"id":563,"label":"Math","start_offset":0,"end_offset":13}],"relations":[],"Comments":[]}
226
+ {"id":226,"text":"a normed vector space is a vector space along with a function called a norm which measures the size of elements","entities":[{"id":564,"label":"Math","start_offset":2,"end_offset":21},{"id":565,"label":"Math","start_offset":27,"end_offset":39}],"relations":[{"id":255,"from_id":564,"to_id":565,"type":"Elements"}],"Comments":[]}
227
+ {"id":227,"text":"the norm induces a metric which measures the distance between elements and induces a topology which allows for a definition of continuous maps","entities":[{"id":566,"label":"Math","start_offset":4,"end_offset":8},{"id":567,"label":"Attributes","start_offset":45,"end_offset":53}],"relations":[{"id":256,"from_id":567,"to_id":566,"type":"Relation"}],"Comments":[]}
228
+ {"id":228,"text":"the metric also allows for a definition of limits and completeness a metric space that is complete is known as a banach space","entities":[{"id":568,"label":"Math","start_offset":114,"end_offset":126},{"id":569,"label":"Math","start_offset":70,"end_offset":82}],"relations":[{"id":258,"from_id":568,"to_id":569,"type":"Elements"}],"Comments":[]}
229
+ {"id":229,"text":"a complete metric space along with the additional structure of an inner product a conjugate symmetric sesquilinear form is known as a hilbert space which is in some sense a particularly wellbehaved banach space","entities":[{"id":570,"label":"Math","start_offset":2,"end_offset":23},{"id":571,"label":"Math","start_offset":134,"end_offset":147}],"relations":[{"id":259,"from_id":570,"to_id":571,"type":"Another_name"}],"Comments":[]}
230
+ {"id":230,"text":"functional analysis applies the methods of linear algebra alongside those of mathematical analysis to study various function spaces the central objects of study in functional analysis are lp spaces which are banach spaces and especially the l space of square integrable functions which is the only hilbert space among them","entities":[{"id":572,"label":"Math","start_offset":0,"end_offset":19},{"id":573,"label":"Math","start_offset":43,"end_offset":57},{"id":574,"label":"Math","start_offset":208,"end_offset":221},{"id":575,"label":"Math","start_offset":298,"end_offset":311}],"relations":[{"id":260,"from_id":572,"to_id":573,"type":"Relation"},{"id":261,"from_id":574,"to_id":575,"type":"Relation"},{"id":263,"from_id":574,"to_id":572,"type":"Relation"}],"Comments":[]}
231
+ {"id":231,"text":"functional analysis is of particular importance to quantum mechanics the theory of partial differential equations digital signal processing and electrical engineering","entities":[{"id":576,"label":"Math","start_offset":0,"end_offset":19},{"id":577,"label":"Math","start_offset":83,"end_offset":113}],"relations":[{"id":264,"from_id":577,"to_id":576,"type":"Relation"}],"Comments":[]}
232
+ {"id":232,"text":"it also provides the foundation and theoretical framework that underlies the fourier transform and related methods","entities":[{"id":578,"label":"Math","start_offset":77,"end_offset":94}],"relations":[],"Comments":[]}
233
+ {"id":233,"text":"analysis is the branch of mathematics dealing with continuous functions limits and related theories such as differentiation integration measure infinite sequences series and analytic functions","entities":[{"id":579,"label":"Math","start_offset":0,"end_offset":8},{"id":580,"label":"Math","start_offset":51,"end_offset":78},{"id":581,"label":"Math","start_offset":174,"end_offset":192}],"relations":[{"id":265,"from_id":581,"to_id":579,"type":"Relation"},{"id":266,"from_id":580,"to_id":581,"type":"Relation"}],"Comments":[]}
234
+ {"id":234,"text":"these theories are usually studied in the context of real and complex numbers and functions","entities":[{"id":582,"label":"Math","start_offset":82,"end_offset":91}],"relations":[],"Comments":[]}
235
+ {"id":235,"text":"analysis evolved from calculus which involves the elementary concepts and techniques of analysis","entities":[{"id":583,"label":"Math","start_offset":22,"end_offset":30},{"id":584,"label":"Math","start_offset":0,"end_offset":8}],"relations":[{"id":267,"from_id":583,"to_id":584,"type":"Relation"}],"Comments":[]}
236
+ {"id":236,"text":"analysis may be distinguished from geometry however it can be applied to any space of mathematical objects that has a definition of nearness a topological space or specific distances between objects a metric space","entities":[{"id":585,"label":"Math","start_offset":0,"end_offset":8},{"id":586,"label":"Math","start_offset":35,"end_offset":43},{"id":587,"label":"Math","start_offset":143,"end_offset":160}],"relations":[{"id":268,"from_id":586,"to_id":585,"type":"Relation"},{"id":269,"from_id":587,"to_id":586,"type":"Elements"}],"Comments":[]}
237
+ {"id":237,"text":"in mathematics physics and engineering a euclidean vector or simply a vector sometimes called a geometric vector or spatial vector is a geometric object that has magnitude or length and direction","entities":[{"id":589,"label":"Math","start_offset":96,"end_offset":112},{"id":590,"label":"Attributes","start_offset":162,"end_offset":171},{"id":591,"label":"Attributes","start_offset":175,"end_offset":181},{"id":592,"label":"Attributes","start_offset":186,"end_offset":195}],"relations":[{"id":270,"from_id":590,"to_id":591,"type":"Elements"},{"id":271,"from_id":592,"to_id":589,"type":"Relation"},{"id":273,"from_id":591,"to_id":589,"type":"Relation"}],"Comments":[]}
238
+ {"id":238,"text":"vectors can be added to other vectors according to vector algebra","entities":[{"id":593,"label":"Math","start_offset":51,"end_offset":65},{"id":595,"label":"Math","start_offset":0,"end_offset":7}],"relations":[{"id":274,"from_id":595,"to_id":593,"type":"Elements"}],"Comments":[]}
239
+ {"id":239,"text":"a euclidean vector is frequently represented by a directed line segment or graphically as an arrow connecting an initial point a with a terminal point b and denoted by","entities":[{"id":596,"label":"Math","start_offset":12,"end_offset":18}],"relations":[],"Comments":[]}
240
+ {"id":240,"text":"a vector is what is needed to carry the point a to the point b the latin word vector means carrier","entities":[{"id":597,"label":"Math","start_offset":2,"end_offset":8}],"relations":[],"Comments":[]}
241
+ {"id":241,"text":" it was first used by th century astronomers investigating planetary revolution around the sun","entities":[],"relations":[],"Comments":[]}
242
+ {"id":242,"text":" the magnitude of the vector is the distance between the two points and the direction refers to the direction of displacement from a to b","entities":[{"id":600,"label":"Math","start_offset":22,"end_offset":28},{"id":601,"label":"Attributes","start_offset":36,"end_offset":44},{"id":602,"label":"Attributes","start_offset":76,"end_offset":85}],"relations":[{"id":275,"from_id":601,"to_id":600,"type":"Elements"},{"id":276,"from_id":602,"to_id":600,"type":"Elements"}],"Comments":[]}
243
+ {"id":243,"text":"many algebraic operations on real numbers such as addition subtraction multiplication and negation have close analogues for vectors operations which obey the familiar algebraic laws of commutativity associativity and distributivity","entities":[{"id":603,"label":"Math","start_offset":5,"end_offset":25},{"id":605,"label":"Attributes","start_offset":59,"end_offset":70},{"id":606,"label":"Attributes","start_offset":50,"end_offset":58},{"id":607,"label":"Attributes","start_offset":71,"end_offset":85},{"id":608,"label":"Attributes","start_offset":90,"end_offset":98},{"id":609,"label":"Attributes","start_offset":185,"end_offset":198},{"id":610,"label":"Attributes","start_offset":199,"end_offset":212},{"id":611,"label":"Attributes","start_offset":217,"end_offset":231}],"relations":[{"id":277,"from_id":609,"to_id":603,"type":"Elements"},{"id":278,"from_id":606,"to_id":603,"type":"Elements"},{"id":279,"from_id":605,"to_id":603,"type":"Elements"},{"id":280,"from_id":607,"to_id":603,"type":"Elements"},{"id":281,"from_id":608,"to_id":603,"type":"Elements"},{"id":282,"from_id":610,"to_id":603,"type":"Elements"},{"id":283,"from_id":611,"to_id":603,"type":"Elements"}],"Comments":[]}
244
+ {"id":244,"text":"these operations and associated laws qualify euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space","entities":[{"id":613,"label":"Math","start_offset":152,"end_offset":164}],"relations":[],"Comments":[]}
245
+ {"id":245,"text":"vectors play an important role in physics the velocity and acceleration of a moving object and the forces acting on it can all be described with vectors","entities":[{"id":614,"label":"Math","start_offset":0,"end_offset":7},{"id":615,"label":"Attributes","start_offset":77,"end_offset":83},{"id":616,"label":"Attributes","start_offset":99,"end_offset":105}],"relations":[{"id":284,"from_id":616,"to_id":614,"type":"Relation"},{"id":285,"from_id":615,"to_id":614,"type":"Relation"}],"Comments":[]}
246
+ {"id":246,"text":" many other physical quantities can be usefully thought of as vectors","entities":[{"id":617,"label":"Math","start_offset":62,"end_offset":69}],"relations":[],"Comments":[]}
247
+ {"id":247,"text":"although most of them do not represent distances except for example position or displacement their magnitude and direction can still be represented by the length and direction of an arrow","entities":[],"relations":[],"Comments":[]}
248
+ {"id":248,"text":"the mathematical representation of a physical vector depends on the coordinate system used to describe it","entities":[{"id":618,"label":"Math","start_offset":68,"end_offset":85},{"id":619,"label":"Math","start_offset":46,"end_offset":52}],"relations":[{"id":286,"from_id":619,"to_id":618,"type":"Relation"}],"Comments":[]}
249
+ {"id":249,"text":"other vectorlike objects that describe physical quantities and transform in a similar way under changes of the coordinate system include pseudovectors and tensors","entities":[{"id":620,"label":"Math","start_offset":155,"end_offset":162}],"relations":[],"Comments":[]}
jsonl_data/test.jsonl ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"id":192,"text":"in fluid mechanics linear algebra is integral to understanding and solving problems related to the behavior of fluids","entities":[{"id":497,"label":"Attributes","start_offset":3,"end_offset":18},{"id":498,"label":"Math","start_offset":19,"end_offset":33}],"relations":[{"id":225,"from_id":497,"to_id":498,"type":"Relation"}],"Comments":[]}
2
+ {"id":33,"text":"a vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors","entities":[{"id":85,"label":"Math","start_offset":2,"end_offset":14},{"id":86,"label":"Math","start_offset":25,"end_offset":41},{"id":87,"label":"Math","start_offset":45,"end_offset":63}],"relations":[{"id":35,"from_id":86,"to_id":85,"type":"Elements"},{"id":36,"from_id":87,"to_id":85,"type":"Elements"}],"Comments":[]}
3
+ {"id":175,"text":"citation needed","entities":[],"relations":[],"Comments":[]}
4
+ {"id":211,"text":"the theory of matrices over a ring is similar to that of matrices over a field except that determinants exist only if the ring is commutative and that a square matrix over a commutative ring is invertible only if its determinant has a multiplicative inverse in the ring","entities":[{"id":526,"label":"Math","start_offset":14,"end_offset":22},{"id":527,"label":"Math","start_offset":30,"end_offset":34},{"id":528,"label":"Math","start_offset":73,"end_offset":78},{"id":529,"label":"Math","start_offset":57,"end_offset":65}],"relations":[{"id":237,"from_id":526,"to_id":527,"type":"Relation"},{"id":238,"from_id":529,"to_id":528,"type":"Relation"}],"Comments":[]}
5
+ {"id":73,"text":"sometimes the term linear operator refers to this case but the term linear operator can have different meanings for different conventions for example it can be used to emphasize that and are real vector spaces not necessarily with citation needed or it can be used to emphasize that is a function space which is a common convention in functional analysis","entities":[{"id":201,"label":"Math","start_offset":19,"end_offset":34},{"id":203,"label":"Math","start_offset":335,"end_offset":355},{"id":204,"label":"Math","start_offset":289,"end_offset":303}],"relations":[],"Comments":[]}
6
+ {"id":19,"text":"a vector space over a field f is a nonempty set v together with a binary operation and a binary function that satisfy the eight axioms listed below","entities":[{"id":49,"label":"Math","start_offset":2,"end_offset":14},{"id":50,"label":"Math","start_offset":22,"end_offset":28},{"id":53,"label":"Math","start_offset":35,"end_offset":47}],"relations":[],"Comments":[]}
7
+ {"id":186,"text":"linear models are frequently used for complex nonlinear realworld systems because it makes parametrization more manageable","entities":[{"id":478,"label":"Math","start_offset":0,"end_offset":13},{"id":479,"label":"Attributes","start_offset":38,"end_offset":73}],"relations":[{"id":216,"from_id":478,"to_id":479,"type":"Relation"}],"Comments":[]}
8
+ {"id":230,"text":"functional analysis applies the methods of linear algebra alongside those of mathematical analysis to study various function spaces the central objects of study in functional analysis are lp spaces which are banach spaces and especially the l space of square integrable functions which is the only hilbert space among them","entities":[{"id":572,"label":"Math","start_offset":0,"end_offset":19},{"id":573,"label":"Math","start_offset":43,"end_offset":57},{"id":574,"label":"Math","start_offset":208,"end_offset":221},{"id":575,"label":"Math","start_offset":298,"end_offset":311}],"relations":[{"id":260,"from_id":572,"to_id":573,"type":"Relation"},{"id":261,"from_id":574,"to_id":575,"type":"Relation"},{"id":263,"from_id":574,"to_id":572,"type":"Relation"}],"Comments":[]}
9
+ {"id":147,"text":" in this case the change of variable y ux leads to an equation of the form","entities":[{"id":398,"label":"Math","start_offset":55,"end_offset":63}],"relations":[],"Comments":[]}
10
+ {"id":14,"text":"for example polynomial rings are countably infinitedimensional vector spaces and many function spaces have the cardinality of the continuum as a dimension","entities":[{"id":35,"label":"Math","start_offset":12,"end_offset":28},{"id":36,"label":"Attributes","start_offset":43,"end_offset":62},{"id":37,"label":"Math","start_offset":63,"end_offset":76}],"relations":[],"Comments":[]}
11
+ {"id":189,"text":"fluid mechanics fluid dynamics and thermal energy systems","entities":[{"id":483,"label":"Attributes","start_offset":0,"end_offset":15},{"id":485,"label":"Attributes","start_offset":16,"end_offset":30},{"id":486,"label":"Attributes","start_offset":35,"end_offset":57}],"relations":[{"id":217,"from_id":486,"to_id":485,"type":"Relation"},{"id":218,"from_id":485,"to_id":483,"type":"Relation"},{"id":219,"from_id":483,"to_id":486,"type":"Relation"}],"Comments":[]}
12
+ {"id":190,"text":"linear algebra a branch of mathematics dealing with vector spaces and linear mappings between these spaces plays a critical role in various engineering disciplines including fluid mechanics fluid dynamics and thermal energy systems","entities":[{"id":488,"label":"Math","start_offset":0,"end_offset":14},{"id":489,"label":"Math","start_offset":27,"end_offset":38},{"id":490,"label":"Math","start_offset":52,"end_offset":65},{"id":491,"label":"Math","start_offset":70,"end_offset":85},{"id":492,"label":"Attributes","start_offset":174,"end_offset":189},{"id":493,"label":"Attributes","start_offset":190,"end_offset":204},{"id":495,"label":"Attributes","start_offset":209,"end_offset":231}],"relations":[{"id":220,"from_id":488,"to_id":489,"type":"Elements"},{"id":221,"from_id":491,"to_id":490,"type":"Elements"},{"id":222,"from_id":492,"to_id":488,"type":"Relation"},{"id":223,"from_id":493,"to_id":488,"type":"Relation"},{"id":224,"from_id":495,"to_id":488,"type":"Relation"}],"Comments":[]}
13
+ {"id":103,"text":"in the example above a solution is given by the ordered triple since it makes all three equations valid","entities":[{"id":291,"label":"Math","start_offset":23,"end_offset":31},{"id":293,"label":"Math","start_offset":89,"end_offset":98}],"relations":[],"Comments":[]}
14
+ {"id":110,"text":"integer linear programming is a collection of methods for finding the best integer solution when there are many","entities":[{"id":308,"label":"Math","start_offset":0,"end_offset":26}],"relations":[],"Comments":[]}
15
+ {"id":108,"text":"very often and in this article the coefficients of the equations are real or complex numbers and the solutions are searched in the same set of numbers but the theory and the algorithms apply for coefficients and solutions in any field","entities":[{"id":304,"label":"Math","start_offset":195,"end_offset":207},{"id":305,"label":"Math","start_offset":212,"end_offset":221}],"relations":[],"Comments":[]}
16
+ {"id":114,"text":"if v has a basis of n elements such an endomorphism is represented by a square matrix of size n","entities":[{"id":318,"label":"Math","start_offset":11,"end_offset":16},{"id":319,"label":"Math","start_offset":72,"end_offset":85}],"relations":[{"id":152,"from_id":318,"to_id":319,"type":"Elements"}],"Comments":[]}
17
+ {"id":45,"text":"not all matrices are related to linear algebra","entities":[{"id":115,"label":"Math","start_offset":8,"end_offset":16},{"id":116,"label":"Math","start_offset":32,"end_offset":46}],"relations":[{"id":55,"from_id":115,"to_id":116,"type":"Elements"}],"Comments":[]}
18
+ {"id":93,"text":" bases if every element of v may be written in a unique way as a finite linear combination of elements of b","entities":[{"id":266,"label":"Attributes","start_offset":1,"end_offset":6},{"id":267,"label":"Math","start_offset":72,"end_offset":90}],"relations":[{"id":132,"from_id":266,"to_id":267,"type":"Elements"}],"Comments":[]}
19
+ {"id":149,"text":"otherwise a differential equation is homogeneous if it is a homogeneous function of the unknown function and its derivatives","entities":[{"id":401,"label":"Math","start_offset":12,"end_offset":33},{"id":402,"label":"Math","start_offset":60,"end_offset":80}],"relations":[],"Comments":[]}
20
+ {"id":18,"text":"in this article vectors are represented in boldface to distinguish them from scalars","entities":[{"id":47,"label":"Math","start_offset":16,"end_offset":23},{"id":48,"label":"Math","start_offset":77,"end_offset":84}],"relations":[],"Comments":[]}
21
+ {"id":131,"text":"in general a system with fewer equations than unknowns has infinitely many solutions but it may have no solution","entities":[{"id":359,"label":"Math","start_offset":31,"end_offset":40}],"relations":[],"Comments":[]}
22
+ {"id":162,"text":"it has been shown that the two approaches are essentially equivalent","entities":[{"id":439,"label":"Math","start_offset":58,"end_offset":68}],"relations":[],"Comments":[]}
23
+ {"id":219,"text":"however these algorithms have generally a computational complexity that is much higher than the similar algorithms over a field","entities":[],"relations":[],"Comments":[]}
24
+ {"id":216,"text":"most of the theory of abelian groups may be extended to modules over a principal ideal domain","entities":[{"id":541,"label":"Math","start_offset":22,"end_offset":36},{"id":542,"label":"Math","start_offset":56,"end_offset":63}],"relations":[{"id":245,"from_id":542,"to_id":541,"type":"Relation"}],"Comments":[]}
25
+ {"id":170,"text":"nearly all scientific computations involve linear algebra","entities":[{"id":456,"label":"Math","start_offset":43,"end_offset":57}],"relations":[],"Comments":[]}
26
+ {"id":176,"text":"the modeling of ambient space is based on geometry","entities":[{"id":462,"label":"Math","start_offset":42,"end_offset":50}],"relations":[],"Comments":[]}
27
+ {"id":153,"text":"in this new at that time geometry now called cartesian geometry points are represented by cartesian coordinates which are sequences of three real numbers in the case of the usual threedimensional space","entities":[{"id":412,"label":"Math","start_offset":25,"end_offset":33},{"id":413,"label":"Math","start_offset":45,"end_offset":63}],"relations":[{"id":185,"from_id":413,"to_id":412,"type":"Relation"}],"Comments":[]}
28
+ {"id":220,"text":"for more details see linear equation over a ring","entities":[{"id":547,"label":"Math","start_offset":21,"end_offset":36},{"id":548,"label":"Math","start_offset":44,"end_offset":48}],"relations":[{"id":248,"from_id":547,"to_id":548,"type":"Relation"}],"Comments":[]}
29
+ {"id":63,"text":"hadamard also founded the modern school of linear functional analysis further developed by riesz and the group of polish mathematicians around stefan banach","entities":[{"id":168,"label":"Math","start_offset":43,"end_offset":69}],"relations":[],"Comments":[]}
30
+ {"id":23,"text":"to have a vector space the eight following axioms must be satisfied for every u v and w in v and a and b in f","entities":[{"id":63,"label":"Math","start_offset":10,"end_offset":22}],"relations":[],"Comments":[]}
31
+ {"id":25,"text":"these two cases are the most common ones but vector spaces with scalars in an arbitrary field f are also commonly considered","entities":[{"id":67,"label":"Math","start_offset":45,"end_offset":58},{"id":68,"label":"Math","start_offset":64,"end_offset":71}],"relations":[],"Comments":[]}
32
+ {"id":56,"text":"functional analysis is a branch of mathematical analysis the core of which is formed by the study of vector spaces endowed with some kind of limitrelated structure for example inner product norm or topology and the linear functions defined on these spaces and suitably respecting these structures","entities":[{"id":151,"label":"Math","start_offset":0,"end_offset":19},{"id":152,"label":"Math","start_offset":35,"end_offset":56},{"id":153,"label":"Math","start_offset":101,"end_offset":114},{"id":155,"label":"Math","start_offset":176,"end_offset":189},{"id":156,"label":"Math","start_offset":190,"end_offset":194},{"id":157,"label":"Math","start_offset":198,"end_offset":206},{"id":158,"label":"Math","start_offset":215,"end_offset":231}],"relations":[{"id":77,"from_id":151,"to_id":152,"type":"Elements"},{"id":78,"from_id":155,"to_id":153,"type":"Elements"},{"id":79,"from_id":156,"to_id":153,"type":"Elements"},{"id":80,"from_id":157,"to_id":153,"type":"Elements"},{"id":81,"from_id":158,"to_id":151,"type":"Relation"}],"Comments":[]}
33
+ {"id":59,"text":"the usage of the word functional as a noun goes back to the calculus of variations implying a function whose argument is a function","entities":[{"id":164,"label":"Math","start_offset":72,"end_offset":82},{"id":165,"label":"Math","start_offset":123,"end_offset":131}],"relations":[],"Comments":[]}
34
+ {"id":87,"text":"if v is a vector space over a field k and if w is a subset of v then w is a linear subspace of v if under the operations of v w is a vector space over k equivalently a nonempty subset w is a linear subspace of v if whenever w w are elements of w and α β are elements of k it follows that αw βw is in w","entities":[{"id":243,"label":"Math","start_offset":191,"end_offset":206},{"id":244,"label":"Math","start_offset":10,"end_offset":23}],"relations":[{"id":122,"from_id":243,"to_id":244,"type":"Elements"}],"Comments":[]}
35
+ {"id":49,"text":"square matrices of a given dimension form a noncommutative ring which is one of the most common examples of a noncommutative ring","entities":[{"id":125,"label":"Math","start_offset":0,"end_offset":15},{"id":126,"label":"Math","start_offset":27,"end_offset":36},{"id":127,"label":"Math","start_offset":44,"end_offset":63}],"relations":[{"id":60,"from_id":126,"to_id":125,"type":"Elements"},{"id":61,"from_id":125,"to_id":127,"type":"Elements"}],"Comments":[]}
36
+ {"id":194,"text":"for instance linear algebraic techniques are used to solve systems of differential equations that describe fluid motion","entities":[{"id":500,"label":"Math","start_offset":13,"end_offset":29},{"id":501,"label":"Attributes","start_offset":107,"end_offset":119}],"relations":[{"id":226,"from_id":500,"to_id":501,"type":"Relation"}],"Comments":[]}
37
+ {"id":165,"text":"linear algebra is used in almost all areas of mathematics thus making it relevant in almost all scientific domains that use mathematics","entities":[{"id":447,"label":"Math","start_offset":0,"end_offset":14},{"id":448,"label":"Math","start_offset":46,"end_offset":57}],"relations":[{"id":205,"from_id":447,"to_id":448,"type":"Elements"}],"Comments":[]}
38
+ {"id":214,"text":"however every module is a cokernel of a homomorphism of free modules","entities":[{"id":533,"label":"Math","start_offset":14,"end_offset":20}],"relations":[],"Comments":[]}
jsonl_data/train.jsonl ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"id":96,"text":"equivalently a set b is a basis if its elements are linearly independent and every element of v is a linear combination of elements of b","entities":[{"id":273,"label":"Math","start_offset":52,"end_offset":72},{"id":274,"label":"Math","start_offset":101,"end_offset":119}],"relations":[{"id":137,"from_id":274,"to_id":273,"type":"Relation"}],"Comments":[]}
2
+ {"id":125,"text":"thus the solution set may be a plane a line a single point or the empty set","entities":[{"id":341,"label":"Math","start_offset":9,"end_offset":21},{"id":342,"label":"Math","start_offset":31,"end_offset":36},{"id":343,"label":"Math","start_offset":39,"end_offset":43},{"id":344,"label":"Math","start_offset":46,"end_offset":58},{"id":345,"label":"Math","start_offset":66,"end_offset":75}],"relations":[{"id":161,"from_id":345,"to_id":341,"type":"Relation"},{"id":162,"from_id":344,"to_id":341,"type":"Relation"},{"id":163,"from_id":343,"to_id":341,"type":"Relation"},{"id":164,"from_id":342,"to_id":341,"type":"Relation"}],"Comments":[]}
3
+ {"id":166,"text":"these applications may be divided into several wide categories","entities":[],"relations":[],"Comments":[]}
4
+ {"id":248,"text":"the mathematical representation of a physical vector depends on the coordinate system used to describe it","entities":[{"id":618,"label":"Math","start_offset":68,"end_offset":85},{"id":619,"label":"Math","start_offset":46,"end_offset":52}],"relations":[{"id":286,"from_id":619,"to_id":618,"type":"Relation"}],"Comments":[]}
5
+ {"id":134,"text":"in general a system with more equations than unknowns has no solution","entities":[{"id":364,"label":"Math","start_offset":30,"end_offset":39},{"id":365,"label":"Math","start_offset":61,"end_offset":69}],"relations":[{"id":170,"from_id":364,"to_id":365,"type":"Relation"}],"Comments":[]}
6
+ {"id":55,"text":"it was initially a subbranch of linear algebra but soon grew to include subjects related to graph theory algebra combinatorics and statistics","entities":[{"id":145,"label":"Math","start_offset":32,"end_offset":46},{"id":146,"label":"Math","start_offset":92,"end_offset":104},{"id":147,"label":"Math","start_offset":131,"end_offset":141},{"id":149,"label":"Math","start_offset":105,"end_offset":112},{"id":150,"label":"Math","start_offset":113,"end_offset":126}],"relations":[{"id":73,"from_id":146,"to_id":149,"type":"Relation"},{"id":74,"from_id":149,"to_id":150,"type":"Relation"},{"id":75,"from_id":150,"to_id":147,"type":"Relation"},{"id":76,"from_id":146,"to_id":145,"type":"Relation"}],"Comments":[]}
7
+ {"id":124,"text":"for three variables each linear equation determines a plane in threedimensional space and the solution set is the intersection of these planes","entities":[{"id":337,"label":"Math","start_offset":25,"end_offset":40},{"id":338,"label":"Math","start_offset":54,"end_offset":59},{"id":339,"label":"Math","start_offset":94,"end_offset":102}],"relations":[{"id":159,"from_id":339,"to_id":338,"type":"Relation"},{"id":160,"from_id":337,"to_id":338,"type":"Relation"}],"Comments":[]}
8
+ {"id":53,"text":"matrices are used in most areas of mathematics and most scientific fields either directly or through their use in geometry and numerical analysis","entities":[{"id":138,"label":"Math","start_offset":0,"end_offset":8},{"id":140,"label":"Math","start_offset":35,"end_offset":46},{"id":141,"label":"Math","start_offset":127,"end_offset":145}],"relations":[{"id":68,"from_id":138,"to_id":140,"type":"Elements"},{"id":69,"from_id":138,"to_id":141,"type":"Elements"}],"Comments":[]}
9
+ {"id":168,"text":"these are vector spaces with additional structure such as hilbert spaces","entities":[{"id":451,"label":"Math","start_offset":10,"end_offset":23},{"id":452,"label":"Math","start_offset":58,"end_offset":72}],"relations":[{"id":207,"from_id":452,"to_id":451,"type":"Elements"}],"Comments":[]}
10
+ {"id":86,"text":"these are called the trivial subspaces of the vector space","entities":[{"id":241,"label":"Math","start_offset":21,"end_offset":39},{"id":242,"label":"Math","start_offset":46,"end_offset":58}],"relations":[{"id":121,"from_id":241,"to_id":242,"type":"Elements"}],"Comments":[]}
11
+ {"id":15,"text":"many vector spaces that are considered in mathematics are also endowed with other structures","entities":[{"id":38,"label":"Math","start_offset":5,"end_offset":18},{"id":39,"label":"Math","start_offset":42,"end_offset":53}],"relations":[],"Comments":[]}
12
+ {"id":249,"text":"other vectorlike objects that describe physical quantities and transform in a similar way under changes of the coordinate system include pseudovectors and tensors","entities":[{"id":620,"label":"Math","start_offset":155,"end_offset":162}],"relations":[],"Comments":[]}
13
+ {"id":235,"text":"analysis evolved from calculus which involves the elementary concepts and techniques of analysis","entities":[{"id":583,"label":"Math","start_offset":22,"end_offset":30},{"id":584,"label":"Math","start_offset":0,"end_offset":8}],"relations":[{"id":267,"from_id":583,"to_id":584,"type":"Relation"}],"Comments":[]}
14
+ {"id":222,"text":"this line of inquiry naturally leads to the idea of the dual space the vector space v consisting of linear maps f v f where f is the field of scalars","entities":[{"id":553,"label":"Math","start_offset":56,"end_offset":66},{"id":554,"label":"Math","start_offset":100,"end_offset":111},{"id":555,"label":"Math","start_offset":71,"end_offset":83}],"relations":[{"id":250,"from_id":553,"to_id":555,"type":"Relation"},{"id":251,"from_id":554,"to_id":555,"type":"Elements"}],"Comments":[]}
15
+ {"id":29,"text":"most of this article deals with linear combinations in the context of a vector space over a field with some generalizations given at the end of the article","entities":[{"id":76,"label":"Math","start_offset":32,"end_offset":51},{"id":77,"label":"Math","start_offset":72,"end_offset":84}],"relations":[{"id":31,"from_id":76,"to_id":77,"type":"Elements"}],"Comments":[]}
16
+ {"id":163,"text":" in classical geometry the involved vector spaces are vector spaces over the reals but the constructions may be extended to vector spaces over any field allowing considering geometry over arbitrary fields including finite fields","entities":[{"id":440,"label":"Math","start_offset":4,"end_offset":22},{"id":441,"label":"Math","start_offset":36,"end_offset":49},{"id":442,"label":"Math","start_offset":147,"end_offset":152}],"relations":[{"id":201,"from_id":442,"to_id":441,"type":"Elements"},{"id":202,"from_id":441,"to_id":440,"type":"Relation"}],"Comments":[]}
17
+ {"id":159,"text":"this is also the case of homographies and möbius transformations when considered as transformations of a projective space","entities":[{"id":430,"label":"Math","start_offset":105,"end_offset":121}],"relations":[],"Comments":[]}
18
+ {"id":140,"text":"the third system has no solutions since the three lines share no common point","entities":[{"id":382,"label":"Math","start_offset":72,"end_offset":77}],"relations":[],"Comments":[]}
19
+ {"id":154,"text":"the basic objects of geometry which are lines and planes are represented by linear equations","entities":[{"id":414,"label":"Math","start_offset":21,"end_offset":29},{"id":415,"label":"Math","start_offset":40,"end_offset":45},{"id":416,"label":"Math","start_offset":50,"end_offset":56},{"id":417,"label":"Math","start_offset":76,"end_offset":92}],"relations":[{"id":186,"from_id":415,"to_id":414,"type":"Elements"},{"id":187,"from_id":416,"to_id":414,"type":"Elements"},{"id":188,"from_id":417,"to_id":414,"type":"Relation"}],"Comments":[]}
20
+ {"id":17,"text":"this is also the case of topological vector spaces which include function spaces inner product spaces normed spaces hilbert spaces and banach spaces","entities":[{"id":44,"label":"Math","start_offset":25,"end_offset":50},{"id":45,"label":"Math","start_offset":116,"end_offset":130},{"id":46,"label":"Math","start_offset":135,"end_offset":148}],"relations":[],"Comments":[]}
21
+ {"id":89,"text":"the linear span can be characterized either as the intersection of all linear subspaces that contain s or as the smallest subspace containing s the linear span of a set of vectors is therefore a vector space itself","entities":[{"id":250,"label":"Math","start_offset":4,"end_offset":15},{"id":251,"label":"Math","start_offset":71,"end_offset":87},{"id":253,"label":"Math","start_offset":195,"end_offset":207},{"id":255,"label":"Math","start_offset":172,"end_offset":180}],"relations":[{"id":124,"from_id":250,"to_id":251,"type":"Relation"},{"id":125,"from_id":255,"to_id":253,"type":"Elements"}],"Comments":[]}
22
+ {"id":142,"text":"it is possible for a system of two equations and two unknowns to have no solution if the two lines are parallel or for a system of three equations and two unknowns to be solvable if the three lines intersect at a single point","entities":[{"id":383,"label":"Math","start_offset":103,"end_offset":111},{"id":384,"label":"Math","start_offset":73,"end_offset":81},{"id":385,"label":"Math","start_offset":220,"end_offset":225}],"relations":[{"id":177,"from_id":385,"to_id":384,"type":"Relation"},{"id":178,"from_id":383,"to_id":384,"type":"Relation"}],"Comments":[]}
23
+ {"id":26,"text":"in mathematics a linear combination is an expression constructed from a set of terms by multiplying each term by a constant and adding the results eg","entities":[{"id":69,"label":"Math","start_offset":17,"end_offset":35},{"id":70,"label":"Math","start_offset":42,"end_offset":52}],"relations":[{"id":27,"from_id":69,"to_id":70,"type":"Relation"}],"Comments":[]}
24
+ {"id":4,"text":"real vector space and complex vector space are kinds of vector spaces based on different kinds of scalars real coordinate space or complex coordinate space","entities":[{"id":9,"label":"Math","start_offset":56,"end_offset":70},{"id":10,"label":"Math","start_offset":106,"end_offset":128},{"id":11,"label":"Math","start_offset":131,"end_offset":155}],"relations":[{"id":10,"from_id":9,"to_id":10,"type":"Relation"},{"id":11,"from_id":9,"to_id":11,"type":"Relation"}],"Comments":[]}
25
+ {"id":157,"text":"most geometric transformation such as translations rotations reflections rigid motions isometries and projections transform lines into lines","entities":[{"id":422,"label":"Math","start_offset":5,"end_offset":29},{"id":423,"label":"Attributes","start_offset":38,"end_offset":50},{"id":424,"label":"Attributes","start_offset":51,"end_offset":60},{"id":425,"label":"Attributes","start_offset":61,"end_offset":72},{"id":426,"label":"Attributes","start_offset":73,"end_offset":86},{"id":427,"label":"Attributes","start_offset":87,"end_offset":97},{"id":428,"label":"Attributes","start_offset":102,"end_offset":123}],"relations":[{"id":191,"from_id":423,"to_id":422,"type":"Elements"},{"id":192,"from_id":424,"to_id":422,"type":"Elements"},{"id":193,"from_id":425,"to_id":422,"type":"Elements"},{"id":194,"from_id":426,"to_id":422,"type":"Elements"},{"id":195,"from_id":427,"to_id":422,"type":"Elements"},{"id":196,"from_id":428,"to_id":422,"type":"Elements"}],"Comments":[]}
26
+ {"id":77,"text":"moreover it maps linear subspaces in onto linear subspaces in possibly of a lower dimension for example it maps a plane through the origin in to either a plane through the origin in a line through the origin in or just the origin in","entities":[{"id":213,"label":"Math","start_offset":17,"end_offset":33},{"id":214,"label":"Math","start_offset":84,"end_offset":93}],"relations":[{"id":104,"from_id":214,"to_id":213,"type":"Elements"}],"Comments":[]}
27
+ {"id":143,"text":"a system of linear equations behave differently from the general case if the equations are linearly dependent or if it is inconsistent and has no more equations than unknowns","entities":[{"id":386,"label":"Math","start_offset":12,"end_offset":28},{"id":387,"label":"Math","start_offset":91,"end_offset":109}],"relations":[{"id":179,"from_id":387,"to_id":386,"type":"Relation"}],"Comments":[]}
28
+ {"id":21,"text":"the binary operation called vector addition or simply addition assigns to any two vectors v and w in v a third vector in v which is commonly written as v w and called the sum of these two vectors","entities":[{"id":57,"label":"Math","start_offset":82,"end_offset":89}],"relations":[],"Comments":[]}
29
+ {"id":172,"text":"blas and lapack are the best known implementations","entities":[],"relations":[],"Comments":[]}
30
+ {"id":58,"text":"this point of view turned out to be particularly useful for the study of differential and integral equations","entities":[{"id":163,"label":"Math","start_offset":73,"end_offset":108}],"relations":[],"Comments":[]}
31
+ {"id":31,"text":"if such a linear combination exists then the vectors are said to be linearly dependent","entities":[{"id":82,"label":"Math","start_offset":10,"end_offset":28},{"id":83,"label":"Math","start_offset":68,"end_offset":86}],"relations":[{"id":34,"from_id":83,"to_id":82,"type":"Elements"}],"Comments":[]}
32
+ {"id":178,"text":"this is the case with mechanics and robotics for describing rigid body dynamics geodesy for describing earth shape perspectivity computer vision and computer graphics for describing the relationship between a scene and its plane representation and many other scientific domains","entities":[{"id":465,"label":"Attributes","start_offset":60,"end_offset":70}],"relations":[],"Comments":[]}
33
+ {"id":246,"text":" many other physical quantities can be usefully thought of as vectors","entities":[{"id":617,"label":"Math","start_offset":62,"end_offset":69}],"relations":[],"Comments":[]}
34
+ {"id":82,"text":"all these questions can be solved by using gaussian elimination or some variant of this algorithm","entities":[{"id":227,"label":"Math","start_offset":43,"end_offset":63}],"relations":[],"Comments":[]}
35
+ {"id":181,"text":"most physical phenomena are modeled by partial differential equations","entities":[{"id":470,"label":"Math","start_offset":39,"end_offset":69}],"relations":[],"Comments":[]}
36
+ {"id":22,"text":"the binary function called scalar multiplicationassigns to any scalar a in f and any vector v in v another vector in v which is denoted av","entities":[{"id":59,"label":"Math","start_offset":34,"end_offset":55},{"id":60,"label":"Math","start_offset":63,"end_offset":69},{"id":62,"label":"Math","start_offset":85,"end_offset":91}],"relations":[{"id":24,"from_id":62,"to_id":60,"type":"Relation"}],"Comments":[]}
37
+ {"id":12,"text":"finitedimensional vector spaces occur naturally in geometry and related areas","entities":[{"id":28,"label":"Math","start_offset":18,"end_offset":31},{"id":29,"label":"Math","start_offset":51,"end_offset":59},{"id":32,"label":"Attributes","start_offset":0,"end_offset":17}],"relations":[{"id":22,"from_id":32,"to_id":29,"type":"Relation"}],"Comments":[]}
38
+ {"id":195,"text":"these equations often complex and nonlinear can be linearized using linear algebra methods allowing for simpler solutions and analyses","entities":[{"id":502,"label":"Math","start_offset":68,"end_offset":82}],"relations":[],"Comments":[]}
39
+ {"id":61,"text":"however the general concept of a functional had previously been introduced in by the italian mathematician and physicist vito volterra","entities":[{"id":166,"label":"Math","start_offset":33,"end_offset":43}],"relations":[],"Comments":[]}
40
+ {"id":9,"text":"this means that for two vector spaces over a given field and with the same dimension the properties that depend only on the vectorspace structure are exactly the same technically the vector spaces are isomorphic","entities":[{"id":22,"label":"Math","start_offset":24,"end_offset":37},{"id":23,"label":"Attributes","start_offset":201,"end_offset":211},{"id":24,"label":"Math","start_offset":75,"end_offset":85}],"relations":[{"id":18,"from_id":22,"to_id":23,"type":"Elements"},{"id":19,"from_id":22,"to_id":24,"type":"Elements"}],"Comments":[]}
41
+ {"id":5,"text":"vector spaces generalize euclidean vectors which allow modeling of physical quantities such as forces and velocity that have not only a magnitude but also a direction","entities":[{"id":12,"label":"Math","start_offset":0,"end_offset":13},{"id":13,"label":"Attributes","start_offset":136,"end_offset":145},{"id":14,"label":"Attributes","start_offset":157,"end_offset":166},{"id":15,"label":"Math","start_offset":35,"end_offset":42}],"relations":[{"id":14,"from_id":15,"to_id":13,"type":"Elements"},{"id":15,"from_id":15,"to_id":14,"type":"Elements"}],"Comments":[]}
42
+ {"id":205,"text":"it provides engineers with the necessary tools to model analyze and solve complex problems in these domains leading to advancements in technology and industry","entities":[],"relations":[],"Comments":[]}
43
+ {"id":120,"text":"this is important because if we have m independent vectors a solution is guaranteed regardless of the righthand side and otherwise not guaranteed","entities":[{"id":333,"label":"Math","start_offset":39,"end_offset":58}],"relations":[],"Comments":[]}
44
+ {"id":243,"text":"many algebraic operations on real numbers such as addition subtraction multiplication and negation have close analogues for vectors operations which obey the familiar algebraic laws of commutativity associativity and distributivity","entities":[{"id":603,"label":"Math","start_offset":5,"end_offset":25},{"id":605,"label":"Attributes","start_offset":59,"end_offset":70},{"id":606,"label":"Attributes","start_offset":50,"end_offset":58},{"id":607,"label":"Attributes","start_offset":71,"end_offset":85},{"id":608,"label":"Attributes","start_offset":90,"end_offset":98},{"id":609,"label":"Attributes","start_offset":185,"end_offset":198},{"id":610,"label":"Attributes","start_offset":199,"end_offset":212},{"id":611,"label":"Attributes","start_offset":217,"end_offset":231}],"relations":[{"id":277,"from_id":609,"to_id":603,"type":"Elements"},{"id":278,"from_id":606,"to_id":603,"type":"Elements"},{"id":279,"from_id":605,"to_id":603,"type":"Elements"},{"id":280,"from_id":607,"to_id":603,"type":"Elements"},{"id":281,"from_id":608,"to_id":603,"type":"Elements"},{"id":282,"from_id":610,"to_id":603,"type":"Elements"},{"id":283,"from_id":611,"to_id":603,"type":"Elements"}],"Comments":[]}
45
+ {"id":242,"text":" the magnitude of the vector is the distance between the two points and the direction refers to the direction of displacement from a to b","entities":[{"id":600,"label":"Math","start_offset":22,"end_offset":28},{"id":601,"label":"Attributes","start_offset":36,"end_offset":44},{"id":602,"label":"Attributes","start_offset":76,"end_offset":85}],"relations":[{"id":275,"from_id":601,"to_id":600,"type":"Elements"},{"id":276,"from_id":602,"to_id":600,"type":"Elements"}],"Comments":[]}
46
+ {"id":40,"text":"in mathematics a matrix pl","entities":[{"id":103,"label":"Math","start_offset":3,"end_offset":14},{"id":104,"label":"Math","start_offset":17,"end_offset":23}],"relations":[{"id":48,"from_id":104,"to_id":103,"type":"Elements"}],"Comments":[]}
47
+ {"id":6,"text":"the concept of vector spaces is fundamental for linear algebra together with the concept of matrices which allows computing in vector spaces","entities":[{"id":16,"label":"Math","start_offset":15,"end_offset":28},{"id":17,"label":"Math","start_offset":48,"end_offset":62},{"id":18,"label":"Math","start_offset":92,"end_offset":100}],"relations":[{"id":16,"from_id":16,"to_id":18,"type":"Elements"}],"Comments":[]}
48
+ {"id":116,"text":"this allows all the language and theory of vector spaces or more generally modules to be brought to bear","entities":[{"id":327,"label":"Math","start_offset":43,"end_offset":56}],"relations":[],"Comments":[]}
49
+ {"id":151,"text":"the solutions of any linear ordinary differential equation of any order may be deduced by integration from the solution of the homogeneous equation obtained by removing the constant term","entities":[{"id":404,"label":"Math","start_offset":21,"end_offset":58},{"id":406,"label":"Math","start_offset":173,"end_offset":186},{"id":407,"label":"Math","start_offset":127,"end_offset":147}],"relations":[{"id":182,"from_id":406,"to_id":407,"type":"Relation"},{"id":183,"from_id":407,"to_id":404,"type":"Relation"}],"Comments":[]}
50
+ {"id":111,"text":"gröbner basis theory provides algorithms when coefficients and unknowns are polynomials","entities":[{"id":309,"label":"Math","start_offset":30,"end_offset":40}],"relations":[],"Comments":[]}
51
+ {"id":229,"text":"a complete metric space along with the additional structure of an inner product a conjugate symmetric sesquilinear form is known as a hilbert space which is in some sense a particularly wellbehaved banach space","entities":[{"id":570,"label":"Math","start_offset":2,"end_offset":23},{"id":571,"label":"Math","start_offset":134,"end_offset":147}],"relations":[{"id":259,"from_id":570,"to_id":571,"type":"Another_name"}],"Comments":[]}
52
+ {"id":35,"text":"linear algebra is central to almost all areas of mathematics","entities":[{"id":91,"label":"Math","start_offset":0,"end_offset":14},{"id":92,"label":"Math","start_offset":49,"end_offset":60}],"relations":[{"id":38,"from_id":91,"to_id":92,"type":"Elements"}],"Comments":[]}
53
+ {"id":34,"text":"the definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space","entities":[{"id":89,"label":"Math","start_offset":18,"end_offset":35},{"id":90,"label":"Math","start_offset":98,"end_offset":110}],"relations":[{"id":37,"from_id":89,"to_id":90,"type":"Elements"}],"Comments":[]}
54
+ {"id":2,"text":"scalars are often real numbers but can be complex numbers or more generally elements of any field","entities":[{"id":7,"label":"Math","start_offset":0,"end_offset":7},{"id":8,"label":"Math","start_offset":92,"end_offset":97}],"relations":[{"id":9,"from_id":8,"to_id":7,"type":"Elements"}],"Comments":[]}
55
+ {"id":144,"text":"a differential equation can be homogeneous in either of two respects","entities":[{"id":390,"label":"Math","start_offset":2,"end_offset":23},{"id":391,"label":"Math","start_offset":31,"end_offset":42}],"relations":[{"id":180,"from_id":391,"to_id":390,"type":"Elements"}],"Comments":[]}
56
+ {"id":78,"text":"linear maps can often be represented as matrices and simple examples include rotation and reflection linear transformations","entities":[{"id":215,"label":"Math","start_offset":0,"end_offset":11},{"id":216,"label":"Math","start_offset":40,"end_offset":48},{"id":217,"label":"Attributes","start_offset":77,"end_offset":85},{"id":218,"label":"Math","start_offset":101,"end_offset":123}],"relations":[{"id":105,"from_id":218,"to_id":216,"type":"Relation"},{"id":106,"from_id":216,"to_id":215,"type":"Elements"},{"id":107,"from_id":217,"to_id":216,"type":"Relation"}],"Comments":[]}
57
+ {"id":148,"text":"which is easy to solve by integration of the two members","entities":[],"relations":[],"Comments":[]}
58
+ {"id":164,"text":"presently most textbooks introduce geometric spaces from linear algebra and geometry is often presented at elementary level as a subfield of linear algebra","entities":[{"id":443,"label":"Math","start_offset":57,"end_offset":71},{"id":444,"label":"Math","start_offset":35,"end_offset":51},{"id":445,"label":"Math","start_offset":76,"end_offset":84},{"id":446,"label":"Math","start_offset":141,"end_offset":155}],"relations":[{"id":203,"from_id":443,"to_id":444,"type":"Relation"},{"id":204,"from_id":446,"to_id":445,"type":"Relation"}],"Comments":[]}
59
+ {"id":133,"text":"in general a system with the same number of equations and unknowns has a single unique solution","entities":[{"id":362,"label":"Math","start_offset":44,"end_offset":53},{"id":363,"label":"Math","start_offset":87,"end_offset":95}],"relations":[{"id":169,"from_id":362,"to_id":363,"type":"Relation"}],"Comments":[]}
60
+ {"id":161,"text":"around this date it appeared that one may also define geometric spaces by constructions involving vector spaces see for example projective space and affine space","entities":[{"id":434,"label":"Math","start_offset":54,"end_offset":70},{"id":435,"label":"Math","start_offset":98,"end_offset":111},{"id":436,"label":"Math","start_offset":128,"end_offset":144},{"id":437,"label":"Math","start_offset":149,"end_offset":161}],"relations":[{"id":198,"from_id":436,"to_id":435,"type":"Elements"},{"id":199,"from_id":437,"to_id":435,"type":"Elements"},{"id":200,"from_id":435,"to_id":434,"type":"Relation"}],"Comments":[]}
61
+ {"id":62,"text":" the theory of nonlinear functionals was continued by students of hadamard in particular fréchet and lévy","entities":[{"id":167,"label":"Math","start_offset":1,"end_offset":37}],"relations":[],"Comments":[]}
62
+ {"id":47,"text":" this article focuses on matrices related to linear algebra and unless otherwise specified all matrices represent linear maps or may be viewed as such","entities":[{"id":119,"label":"Math","start_offset":25,"end_offset":33},{"id":120,"label":"Math","start_offset":45,"end_offset":59},{"id":121,"label":"Math","start_offset":95,"end_offset":103},{"id":122,"label":"Math","start_offset":114,"end_offset":125}],"relations":[{"id":57,"from_id":119,"to_id":120,"type":"Elements"},{"id":58,"from_id":121,"to_id":122,"type":"Elements"}],"Comments":[]}
63
+ {"id":206,"text":"the existence of multiplicative inverses in fields is not involved in the axioms defining a vector space","entities":[{"id":520,"label":"Math","start_offset":92,"end_offset":104}],"relations":[],"Comments":[]}
64
+ {"id":41,"text":" matrices is a rectangular array or table of numbers symbols or expressions arranged in rows and columns which is used to represent a mathematical object or a property of such an object","entities":[{"id":105,"label":"Math","start_offset":1,"end_offset":9}],"relations":[],"Comments":[]}
65
+ {"id":179,"text":"in all these applications synthetic geometry is often used for general descriptions and a qualitative approach but for the study of explicit situations one must compute with coordinates","entities":[{"id":466,"label":"Math","start_offset":26,"end_offset":44},{"id":468,"label":"Math","start_offset":174,"end_offset":185}],"relations":[{"id":212,"from_id":468,"to_id":466,"type":"Elements"}],"Comments":[]}
66
+ {"id":79,"text":"a bijective linear map between two vector spaces that is every vector from the second space is associated with exactly one in the first is an isomorphism","entities":[{"id":219,"label":"Math","start_offset":142,"end_offset":153}],"relations":[],"Comments":[]}
67
+ {"id":83,"text":"in mathematics and more specifically in linear algebra a linear subspace or vector subspacenote is a vector space that is a subset of some larger vector space","entities":[{"id":230,"label":"Math","start_offset":3,"end_offset":14},{"id":231,"label":"Math","start_offset":40,"end_offset":54},{"id":232,"label":"Math","start_offset":57,"end_offset":72},{"id":233,"label":"Math","start_offset":76,"end_offset":95},{"id":234,"label":"Math","start_offset":147,"end_offset":159}],"relations":[{"id":113,"from_id":233,"to_id":232,"type":"Another_name"},{"id":114,"from_id":232,"to_id":231,"type":"Elements"},{"id":115,"from_id":231,"to_id":230,"type":"Elements"},{"id":116,"from_id":234,"to_id":231,"type":"Elements"}],"Comments":[]}
68
+ {"id":180,"text":"this requires the heavy use of linear algebra","entities":[{"id":469,"label":"Math","start_offset":31,"end_offset":45}],"relations":[],"Comments":[]}
69
+ {"id":39,"text":"for nonlinear systems which cannot be modeled with linear algebra it is often used for dealing with firstorder approximations using the fact that the differential of a multivariate function at a point is the linear map that best approximates the function near that point","entities":[{"id":101,"label":"Math","start_offset":208,"end_offset":218},{"id":102,"label":"Math","start_offset":51,"end_offset":65}],"relations":[{"id":47,"from_id":101,"to_id":102,"type":"Elements"}],"Comments":[]}
70
+ {"id":228,"text":"the metric also allows for a definition of limits and completeness a metric space that is complete is known as a banach space","entities":[{"id":568,"label":"Math","start_offset":114,"end_offset":126},{"id":569,"label":"Math","start_offset":70,"end_offset":82}],"relations":[{"id":258,"from_id":568,"to_id":569,"type":"Elements"}],"Comments":[]}
71
+ {"id":158,"text":"it follows that they can be defined specified and studied in terms of linear maps","entities":[{"id":429,"label":"Math","start_offset":70,"end_offset":81}],"relations":[],"Comments":[]}
72
+ {"id":196,"text":"in the field of fluid dynamics linear algebra finds its application in computational fluid dynamics cfd a branch that uses numerical analysis and data structures to solve and analyze problems involving fluid flows","entities":[{"id":504,"label":"Math","start_offset":31,"end_offset":45}],"relations":[],"Comments":[]}
73
+ {"id":138,"text":"the first system has infinitely many solutions namely all of the points on the blue line","entities":[{"id":374,"label":"Math","start_offset":65,"end_offset":71},{"id":375,"label":"Math","start_offset":37,"end_offset":46}],"relations":[{"id":174,"from_id":375,"to_id":374,"type":"Another_name"}],"Comments":[]}
74
+ {"id":188,"text":"weather forecasting or more specifically parametrization for atmospheric modeling is a typical example of a realworld application where the whole earth atmosphere is divided into cells of say km of width and km of height","entities":[{"id":482,"label":"Attributes","start_offset":73,"end_offset":81}],"relations":[],"Comments":[]}
75
+ {"id":10,"text":"a vector space is finitedimensional if its dimension is a natural number","entities":[{"id":25,"label":"Math","start_offset":2,"end_offset":14},{"id":26,"label":"Attributes","start_offset":18,"end_offset":35}],"relations":[{"id":20,"from_id":25,"to_id":26,"type":"Elements"}],"Comments":[]}
76
+ {"id":182,"text":"to solve them one usually decomposes the space in which the solutions are searched into small mutually interacting cells","entities":[{"id":471,"label":"Math","start_offset":60,"end_offset":69}],"relations":[],"Comments":[]}
77
+ {"id":126,"text":"for example as three parallel planes do not have a common point the solution set of their equations is empty the solution set of the equations of three planes intersecting at a point is single point if three planes pass through two points their equations have at least two common solutions in fact the solution set is infinite and consists in all the line passing through these points","entities":[{"id":346,"label":"Math","start_offset":302,"end_offset":314}],"relations":[],"Comments":[]}
78
+ {"id":67,"text":"in mathematics differential refers to several related notions derived from the early days of calculus put on a rigorous footing such as infinitesimal differences and the derivatives of functions","entities":[{"id":181,"label":"Math","start_offset":15,"end_offset":27},{"id":182,"label":"Attributes","start_offset":136,"end_offset":161},{"id":183,"label":"Math","start_offset":170,"end_offset":181}],"relations":[{"id":90,"from_id":182,"to_id":181,"type":"Elements"},{"id":91,"from_id":183,"to_id":181,"type":"Elements"}],"Comments":[]}
79
+ {"id":65,"text":" in contrast linear algebra deals mostly with finitedimensional spaces and does not use topology","entities":[{"id":172,"label":"Math","start_offset":13,"end_offset":27},{"id":173,"label":"Math","start_offset":46,"end_offset":70},{"id":174,"label":"Math","start_offset":88,"end_offset":96}],"relations":[{"id":86,"from_id":174,"to_id":172,"type":"Elements"},{"id":87,"from_id":173,"to_id":172,"type":"Relation"}],"Comments":[]}
80
+ {"id":46,"text":"this is in particular the case in graph theory of incidence matrices and adjacency matrices","entities":[{"id":117,"label":"Math","start_offset":34,"end_offset":47},{"id":118,"label":"Math","start_offset":60,"end_offset":68}],"relations":[{"id":56,"from_id":118,"to_id":117,"type":"Elements"}],"Comments":[]}
81
+ {"id":118,"text":"if every vector within that span has exactly one expression as a linear combination of the given lefthand vectors then any solution is unique","entities":[{"id":330,"label":"Math","start_offset":9,"end_offset":15},{"id":331,"label":"Math","start_offset":65,"end_offset":83}],"relations":[{"id":158,"from_id":330,"to_id":331,"type":"Elements"}],"Comments":[]}
82
+ {"id":32,"text":"these concepts are central to the definition of dimension","entities":[{"id":84,"label":"Math","start_offset":48,"end_offset":57}],"relations":[],"Comments":[]}
83
+ {"id":191,"text":"its application in these fields is multifaceted and indispensable for solving complex problems","entities":[],"relations":[],"Comments":[]}
84
+ {"id":92,"text":"in mathematics a set b of vectors in a vector space v is called a basis pl","entities":[{"id":263,"label":"Attributes","start_offset":66,"end_offset":71},{"id":264,"label":"Math","start_offset":39,"end_offset":51},{"id":265,"label":"Math","start_offset":26,"end_offset":33}],"relations":[{"id":129,"from_id":265,"to_id":263,"type":"Another_name"},{"id":130,"from_id":264,"to_id":265,"type":"Elements"},{"id":131,"from_id":263,"to_id":264,"type":"Elements"}],"Comments":[]}
85
+ {"id":115,"text":"with respect to general linear maps linear endomorphisms and square matrices have some specific properties that make their study an important part of linear algebra which is used in many parts of mathematics including geometric transformations coordinate changes quadratic forms and many other part of mathematics","entities":[{"id":320,"label":"Math","start_offset":24,"end_offset":35},{"id":321,"label":"Math","start_offset":36,"end_offset":56},{"id":322,"label":"Math","start_offset":61,"end_offset":76},{"id":324,"label":"Math","start_offset":244,"end_offset":262},{"id":325,"label":"Math","start_offset":263,"end_offset":278},{"id":326,"label":"Math","start_offset":218,"end_offset":243}],"relations":[{"id":153,"from_id":322,"to_id":321,"type":"Elements"},{"id":154,"from_id":320,"to_id":326,"type":"Relation"},{"id":155,"from_id":320,"to_id":324,"type":"Relation"},{"id":156,"from_id":320,"to_id":325,"type":"Relation"}],"Comments":[]}
86
+ {"id":177,"text":"sciences concerned with this space use geometry widely","entities":[{"id":463,"label":"Math","start_offset":39,"end_offset":47},{"id":464,"label":"Attributes","start_offset":0,"end_offset":8}],"relations":[{"id":211,"from_id":463,"to_id":464,"type":"Relation"}],"Comments":[]}
87
+ {"id":3,"text":"the operations of vector addition and scalar multiplication must satisfy certain requirements called vector axioms","entities":[],"relations":[],"Comments":[]}
88
+ {"id":187,"text":" in both cases very large matrices are generally involved","entities":[{"id":481,"label":"Math","start_offset":26,"end_offset":34}],"relations":[],"Comments":[]}
89
+ {"id":137,"text":"the following pictures illustrate this trichotomy in the case of two variables","entities":[{"id":373,"label":"Math","start_offset":69,"end_offset":78}],"relations":[],"Comments":[]}
90
+ {"id":245,"text":"vectors play an important role in physics the velocity and acceleration of a moving object and the forces acting on it can all be described with vectors","entities":[{"id":614,"label":"Math","start_offset":0,"end_offset":7},{"id":615,"label":"Attributes","start_offset":77,"end_offset":83},{"id":616,"label":"Attributes","start_offset":99,"end_offset":105}],"relations":[{"id":284,"from_id":616,"to_id":614,"type":"Relation"},{"id":285,"from_id":615,"to_id":614,"type":"Relation"}],"Comments":[]}
91
+ {"id":193,"text":"it assists in the modeling and simulation of fluid flow providing essential tools for the analysis of fluid dynamics problems","entities":[{"id":499,"label":"Attributes","start_offset":102,"end_offset":125}],"relations":[],"Comments":[]}
92
+ {"id":209,"text":"the modules that have a basis are the free modules and those that are spanned by a finite set are the finitely generated modules","entities":[],"relations":[],"Comments":[]}
93
+ {"id":68,"text":"the term is used in various branches of mathematics such as calculus differential geometry algebraic geometry and algebraic topology","entities":[{"id":184,"label":"Math","start_offset":60,"end_offset":90},{"id":185,"label":"Math","start_offset":91,"end_offset":109},{"id":186,"label":"Math","start_offset":114,"end_offset":132}],"relations":[{"id":92,"from_id":186,"to_id":185,"type":"Relation"},{"id":93,"from_id":185,"to_id":184,"type":"Relation"}],"Comments":[]}
94
+ {"id":27,"text":"a linear combination of x and y would be any expression of the form ax by where a and b are constants","entities":[{"id":71,"label":"Math","start_offset":2,"end_offset":20},{"id":72,"label":"Math","start_offset":45,"end_offset":55}],"relations":[{"id":28,"from_id":71,"to_id":72,"type":"Relation"}],"Comments":[]}
95
+ {"id":91,"text":"to express that a vector space v is a linear span of a subset s one commonly uses the following phraseseither s spans v s is a spanning set of v v is spannedgenerated by s or s is a generator or generator set of v","entities":[{"id":260,"label":"Math","start_offset":38,"end_offset":49},{"id":262,"label":"Math","start_offset":18,"end_offset":30}],"relations":[{"id":128,"from_id":260,"to_id":262,"type":"Elements"}],"Comments":[]}
96
+ {"id":90,"text":"spans can be generalized to matroids and modules","entities":[{"id":256,"label":"Attributes","start_offset":27,"end_offset":36},{"id":257,"label":"Attributes","start_offset":41,"end_offset":48},{"id":258,"label":"Math","start_offset":0,"end_offset":5}],"relations":[{"id":126,"from_id":256,"to_id":258,"type":"Elements"},{"id":127,"from_id":257,"to_id":258,"type":"Elements"}],"Comments":[]}
97
+ {"id":95,"text":"the elements of a basis are called basis vectors","entities":[{"id":271,"label":"Attributes","start_offset":18,"end_offset":23},{"id":272,"label":"Math","start_offset":35,"end_offset":48}],"relations":[{"id":136,"from_id":271,"to_id":272,"type":"Another_name"}],"Comments":[]}
98
+ {"id":71,"text":"f a linear map is a bijection then it is called a linear isomorphism","entities":[{"id":195,"label":"Math","start_offset":4,"end_offset":14},{"id":196,"label":"Math","start_offset":50,"end_offset":68},{"id":197,"label":"Attributes","start_offset":20,"end_offset":29}],"relations":[{"id":97,"from_id":196,"to_id":195,"type":"Relation"},{"id":98,"from_id":197,"to_id":195,"type":"Elements"}],"Comments":[]}
99
+ {"id":1,"text":"in mathematics and physics a vector space also called a linear space is a set whose elements often called vectors may be added together and multiplied scaled by numbers called scalars","entities":[{"id":3,"label":"Math","start_offset":3,"end_offset":14},{"id":4,"label":"Math","start_offset":29,"end_offset":41},{"id":5,"label":"Math","start_offset":56,"end_offset":68},{"id":6,"label":"Math","start_offset":106,"end_offset":113}],"relations":[{"id":6,"from_id":4,"to_id":5,"type":"Another_name"},{"id":7,"from_id":3,"to_id":4,"type":"Relation"},{"id":8,"from_id":4,"to_id":6,"type":"Elements"}],"Comments":[]}
100
+ {"id":70,"text":"the same names and the same definition are also used for the more general case of modules over a ring see module homomorphism","entities":[{"id":193,"label":"Math","start_offset":106,"end_offset":125}],"relations":[],"Comments":[]}
101
+ {"id":123,"text":"because a solution to a linear system must satisfy all of the equations the solution set is the intersection of these lines and is hence either a line a single point or the empty set","entities":[{"id":336,"label":"Math","start_offset":24,"end_offset":37}],"relations":[],"Comments":[]}
102
+ {"id":173,"text":"for improving efficiency some of them configure the algorithms automatically at run time for adapting them to the specificities of the computer cache size number of available cores","entities":[{"id":458,"label":"Attributes","start_offset":52,"end_offset":62}],"relations":[],"Comments":[]}
103
+ {"id":66,"text":"an important part of functional analysis is the extension of the theories of measure integration and probability to infinite dimensional spaces also known as infinite dimensional analysis","entities":[{"id":177,"label":"Math","start_offset":77,"end_offset":96},{"id":178,"label":"Math","start_offset":101,"end_offset":112},{"id":179,"label":"Math","start_offset":21,"end_offset":40}],"relations":[{"id":88,"from_id":177,"to_id":179,"type":"Elements"},{"id":89,"from_id":178,"to_id":179,"type":"Elements"}],"Comments":[]}
104
+ {"id":231,"text":"functional analysis is of particular importance to quantum mechanics the theory of partial differential equations digital signal processing and electrical engineering","entities":[{"id":576,"label":"Math","start_offset":0,"end_offset":19},{"id":577,"label":"Math","start_offset":83,"end_offset":113}],"relations":[{"id":264,"from_id":577,"to_id":576,"type":"Relation"}],"Comments":[]}
105
+ {"id":198,"text":"for example the navierstokes equations fundamental in fluid dynamics are often solved using techniques derived from linear algebra","entities":[{"id":506,"label":"Math","start_offset":116,"end_offset":130}],"relations":[],"Comments":[]}
106
+ {"id":236,"text":"analysis may be distinguished from geometry however it can be applied to any space of mathematical objects that has a definition of nearness a topological space or specific distances between objects a metric space","entities":[{"id":585,"label":"Math","start_offset":0,"end_offset":8},{"id":586,"label":"Math","start_offset":35,"end_offset":43},{"id":587,"label":"Math","start_offset":143,"end_offset":160}],"relations":[{"id":268,"from_id":586,"to_id":585,"type":"Relation"},{"id":269,"from_id":587,"to_id":586,"type":"Elements"}],"Comments":[]}
107
+ {"id":28,"text":"the concept of linear combinations is central to linear algebra and related fields of mathematics","entities":[{"id":73,"label":"Math","start_offset":15,"end_offset":34},{"id":74,"label":"Math","start_offset":49,"end_offset":63},{"id":75,"label":"Math","start_offset":86,"end_offset":97}],"relations":[{"id":29,"from_id":73,"to_id":74,"type":"Elements"},{"id":30,"from_id":74,"to_id":75,"type":"Elements"}],"Comments":[]}
108
+ {"id":81,"text":"an essential question in linear algebra is testing whether a linear map is an isomorphism or not and if it is not an isomorphism finding its range or image and the set of elements that are mapped to the zero vector called the kernel of the map","entities":[{"id":223,"label":"Math","start_offset":25,"end_offset":39},{"id":224,"label":"Math","start_offset":61,"end_offset":71},{"id":225,"label":"Attributes","start_offset":78,"end_offset":89},{"id":226,"label":"Math","start_offset":226,"end_offset":232}],"relations":[{"id":110,"from_id":225,"to_id":226,"type":"Relation"},{"id":111,"from_id":225,"to_id":224,"type":"Elements"},{"id":112,"from_id":224,"to_id":223,"type":"Elements"}],"Comments":[]}
109
+ {"id":69,"text":"in mathematics and more specifically in linear algebra a linear map also called a linear mapping linear transformation vector space homomorphism or in some contexts linear function is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication","entities":[{"id":187,"label":"Math","start_offset":40,"end_offset":54},{"id":188,"label":"Math","start_offset":57,"end_offset":67},{"id":189,"label":"Math","start_offset":82,"end_offset":97},{"id":191,"label":"Math","start_offset":97,"end_offset":118},{"id":192,"label":"Math","start_offset":119,"end_offset":144}],"relations":[{"id":94,"from_id":189,"to_id":188,"type":"Another_name"},{"id":95,"from_id":192,"to_id":188,"type":"Another_name"},{"id":96,"from_id":191,"to_id":188,"type":"Another_name"}],"Comments":[]}
110
+ {"id":204,"text":"overall the application of linear algebra in fluid mechanics fluid dynamics and thermal energy systems is an example of the profound interconnection between mathematics and engineering","entities":[{"id":516,"label":"Math","start_offset":27,"end_offset":41},{"id":517,"label":"Attributes","start_offset":45,"end_offset":60},{"id":518,"label":"Attributes","start_offset":61,"end_offset":75}],"relations":[{"id":233,"from_id":517,"to_id":516,"type":"Relation"},{"id":234,"from_id":518,"to_id":516,"type":"Relation"}],"Comments":[]}
111
+ {"id":43,"text":"therefore the study of matrices is a large part of linear algebra and most properties and operations of abstract linear algebra can be expressed in terms of matrices","entities":[{"id":109,"label":"Math","start_offset":23,"end_offset":31},{"id":110,"label":"Math","start_offset":51,"end_offset":65},{"id":111,"label":"Math","start_offset":113,"end_offset":127},{"id":112,"label":"Math","start_offset":157,"end_offset":165}],"relations":[{"id":51,"from_id":109,"to_id":110,"type":"Elements"},{"id":52,"from_id":112,"to_id":111,"type":"Elements"}],"Comments":[]}
112
+ {"id":160,"text":"until the end of the th century geometric spaces were defined by axioms relating points lines and planes synthetic geometry","entities":[{"id":431,"label":"Math","start_offset":32,"end_offset":48},{"id":432,"label":"Math","start_offset":105,"end_offset":123}],"relations":[{"id":197,"from_id":431,"to_id":432,"type":"Relation"}],"Comments":[]}
113
+ {"id":127,"text":"for n variables each linear equation determines a hyperplane in ndimensional space","entities":[{"id":348,"label":"Math","start_offset":64,"end_offset":82},{"id":349,"label":"Math","start_offset":37,"end_offset":47},{"id":350,"label":"Math","start_offset":6,"end_offset":15}],"relations":[{"id":165,"from_id":350,"to_id":349,"type":"Relation"},{"id":166,"from_id":349,"to_id":348,"type":"Relation"}],"Comments":[]}
114
+ {"id":234,"text":"these theories are usually studied in the context of real and complex numbers and functions","entities":[{"id":582,"label":"Math","start_offset":82,"end_offset":91}],"relations":[],"Comments":[]}
115
+ {"id":167,"text":"functional analysis studies function spaces","entities":[{"id":449,"label":"Math","start_offset":0,"end_offset":19},{"id":450,"label":"Math","start_offset":28,"end_offset":43}],"relations":[{"id":206,"from_id":450,"to_id":449,"type":"Elements"}],"Comments":[]}
116
+ {"id":85,"text":"as a corollary all vector spaces are equipped with at least two possibly different linear subspaces the zero vector space consisting of the zero vector alone and the entire vector space itself","entities":[{"id":238,"label":"Math","start_offset":173,"end_offset":185},{"id":239,"label":"Math","start_offset":83,"end_offset":99},{"id":240,"label":"Math","start_offset":104,"end_offset":121}],"relations":[{"id":118,"from_id":239,"to_id":238,"type":"Relation"},{"id":119,"from_id":240,"to_id":238,"type":"Relation"},{"id":120,"from_id":239,"to_id":240,"type":"Relation"}],"Comments":[]}
117
+ {"id":139,"text":"the second system has a single unique solution namely the intersection of the two lines","entities":[{"id":378,"label":"Math","start_offset":58,"end_offset":70},{"id":379,"label":"Math","start_offset":24,"end_offset":46}],"relations":[{"id":175,"from_id":379,"to_id":378,"type":"Another_name"}],"Comments":[]}
118
+ {"id":169,"text":"linear algebra is thus a fundamental part of functional analysis and its applications which include in particular quantum mechanics wave functions and fourier analysis orthogonal basis","entities":[{"id":453,"label":"Math","start_offset":0,"end_offset":14},{"id":454,"label":"Math","start_offset":45,"end_offset":64},{"id":455,"label":"Math","start_offset":151,"end_offset":184}],"relations":[{"id":208,"from_id":454,"to_id":453,"type":"Relation"},{"id":209,"from_id":455,"to_id":454,"type":"Elements"}],"Comments":[]}
119
+ {"id":7,"text":"this provides a concise and synthetic way for manipulating and studying systems of linear equations","entities":[{"id":19,"label":"Math","start_offset":83,"end_offset":99}],"relations":[],"Comments":[]}
120
+ {"id":44,"text":"for example matrix multiplication represents the composition of linear maps","entities":[{"id":113,"label":"Math","start_offset":12,"end_offset":18},{"id":114,"label":"Math","start_offset":64,"end_offset":75}],"relations":[{"id":54,"from_id":113,"to_id":114,"type":"Elements"}],"Comments":[]}
121
+ {"id":105,"text":"linear systems are the basis and a fundamental part of linear algebra a subject used in most modern mathematics","entities":[{"id":296,"label":"Math","start_offset":55,"end_offset":69},{"id":297,"label":"Math","start_offset":100,"end_offset":111},{"id":298,"label":"Math","start_offset":0,"end_offset":14}],"relations":[{"id":146,"from_id":298,"to_id":296,"type":"Relation"},{"id":147,"from_id":296,"to_id":297,"type":"Another_name"}],"Comments":[]}
122
+ {"id":183,"text":"for linear systems this interaction involves linear functions","entities":[{"id":472,"label":"Math","start_offset":4,"end_offset":18},{"id":473,"label":"Math","start_offset":45,"end_offset":61}],"relations":[{"id":213,"from_id":473,"to_id":472,"type":"Elements"}],"Comments":[]}
123
+ {"id":72,"text":"in the case where a linear map is called a linear endomorphism","entities":[{"id":198,"label":"Math","start_offset":20,"end_offset":30},{"id":199,"label":"Math","start_offset":43,"end_offset":62}],"relations":[{"id":99,"from_id":199,"to_id":198,"type":"Relation"}],"Comments":[]}
124
+ {"id":174,"text":"some processors typically graphics processing units gpu are designed with a matrix structure for optimizing the operations of linear algebra","entities":[{"id":459,"label":"Attributes","start_offset":76,"end_offset":92},{"id":460,"label":"Math","start_offset":126,"end_offset":140}],"relations":[{"id":210,"from_id":459,"to_id":460,"type":"Relation"}],"Comments":[]}
125
+ {"id":48,"text":"square matrices matrices with the same number of rows and columns play a major role in matrix theory","entities":[{"id":123,"label":"Math","start_offset":0,"end_offset":15},{"id":124,"label":"Math","start_offset":87,"end_offset":100}],"relations":[{"id":59,"from_id":123,"to_id":124,"type":"Elements"}],"Comments":[]}
126
+ {"id":197,"text":"cfd relies heavily on linear algebra for the computation of fluid flow and heat transfer in various applications","entities":[{"id":505,"label":"Math","start_offset":22,"end_offset":36}],"relations":[],"Comments":[]}
127
+ {"id":202,"text":"linear algebraic concepts such as matrix operations and eigenvalue problems are employed to enhance the efficiency reliability and economic performance of power systems","entities":[{"id":512,"label":"Math","start_offset":34,"end_offset":40},{"id":513,"label":"Math","start_offset":56,"end_offset":66},{"id":514,"label":"Math","start_offset":0,"end_offset":16}],"relations":[{"id":231,"from_id":512,"to_id":514,"type":"Elements"},{"id":232,"from_id":513,"to_id":514,"type":"Elements"}],"Comments":[]}
128
+ {"id":8,"text":"vector spaces are characterized by their dimension which roughly speaking specifies the number of independent directions in the space","entities":[{"id":20,"label":"Math","start_offset":0,"end_offset":13},{"id":21,"label":"Attributes","start_offset":41,"end_offset":50}],"relations":[{"id":17,"from_id":20,"to_id":21,"type":"Elements"}],"Comments":[]}
129
+ {"id":51,"text":"in geometry matrices are widely used for specifying and representing geometric transformations for example rotations and coordinate changes","entities":[{"id":133,"label":"Math","start_offset":12,"end_offset":20},{"id":134,"label":"Attributes","start_offset":107,"end_offset":116},{"id":135,"label":"Attributes","start_offset":121,"end_offset":139}],"relations":[{"id":65,"from_id":134,"to_id":133,"type":"Elements"},{"id":66,"from_id":135,"to_id":133,"type":"Elements"}],"Comments":[]}
130
+ {"id":218,"text":"there are many rings for which there are algorithms for solving linear equations and systems of linear equations","entities":[{"id":545,"label":"Math","start_offset":64,"end_offset":80},{"id":546,"label":"Math","start_offset":15,"end_offset":20}],"relations":[{"id":247,"from_id":546,"to_id":545,"type":"Relation"}],"Comments":[]}
131
+ {"id":227,"text":"the norm induces a metric which measures the distance between elements and induces a topology which allows for a definition of continuous maps","entities":[{"id":566,"label":"Math","start_offset":4,"end_offset":8},{"id":567,"label":"Attributes","start_offset":45,"end_offset":53}],"relations":[{"id":256,"from_id":567,"to_id":566,"type":"Relation"}],"Comments":[]}
132
+ {"id":36,"text":"for instance linear algebra is fundamental in modern presentations of geometry including for defining basic objects such as lines planes and rotations","entities":[{"id":93,"label":"Math","start_offset":13,"end_offset":27},{"id":94,"label":"Math","start_offset":70,"end_offset":78},{"id":95,"label":"Math","start_offset":124,"end_offset":136},{"id":96,"label":"Math","start_offset":141,"end_offset":150}],"relations":[{"id":39,"from_id":93,"to_id":94,"type":"Relation"},{"id":43,"from_id":95,"to_id":94,"type":"Elements"},{"id":44,"from_id":96,"to_id":94,"type":"Elements"}],"Comments":[]}
133
+ {"id":104,"text":"the word system indicates that the equations should be considered collectively rather than individually","entities":[],"relations":[],"Comments":[]}
134
+ {"id":38,"text":"linear algebra is also used in most sciences and fields of engineering because it allows modeling many natural phenomena and computing efficiently with such models","entities":[{"id":99,"label":"Math","start_offset":0,"end_offset":14}],"relations":[],"Comments":[]}
135
+ {"id":239,"text":"a euclidean vector is frequently represented by a directed line segment or graphically as an arrow connecting an initial point a with a terminal point b and denoted by","entities":[{"id":596,"label":"Math","start_offset":12,"end_offset":18}],"relations":[],"Comments":[]}
136
+ {"id":146,"text":"where f and g are homogeneous functions of the same degree of x and y","entities":[{"id":395,"label":"Math","start_offset":18,"end_offset":39}],"relations":[],"Comments":[]}
137
+ {"id":97,"text":" in other words a basis is a linearly independent spanning set","entities":[{"id":275,"label":"Attributes","start_offset":18,"end_offset":23},{"id":276,"label":"Math","start_offset":29,"end_offset":62}],"relations":[{"id":138,"from_id":275,"to_id":276,"type":"Elements"}],"Comments":[]}
138
+ {"id":75,"text":"in the language of category theory linear maps are the morphisms of vector spaces","entities":[{"id":209,"label":"Math","start_offset":19,"end_offset":34},{"id":210,"label":"Math","start_offset":35,"end_offset":46},{"id":211,"label":"Math","start_offset":68,"end_offset":81}],"relations":[{"id":102,"from_id":211,"to_id":210,"type":"Relation"},{"id":103,"from_id":210,"to_id":209,"type":"Elements"}],"Comments":[]}
139
+ {"id":107,"text":"a system of nonlinear equations can often be approximated by a linear system see linearization a helpful technique when making a mathematical model or computer simulation of a relatively complex system","entities":[{"id":301,"label":"Math","start_offset":12,"end_offset":31},{"id":302,"label":"Math","start_offset":63,"end_offset":76}],"relations":[],"Comments":[]}
140
+ {"id":84,"text":"a linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces","entities":[{"id":235,"label":"Math","start_offset":2,"end_offset":17},{"id":237,"label":"Math","start_offset":45,"end_offset":53}],"relations":[{"id":117,"from_id":237,"to_id":235,"type":"Another_name"}],"Comments":[]}
141
+ {"id":128,"text":"the solution set is the intersection of these hyperplanes and is a flat which may have any dimension lower than n","entities":[{"id":352,"label":"Math","start_offset":4,"end_offset":16},{"id":353,"label":"Math","start_offset":91,"end_offset":100},{"id":354,"label":"Math","start_offset":46,"end_offset":58}],"relations":[{"id":167,"from_id":352,"to_id":354,"type":"Relation"},{"id":168,"from_id":354,"to_id":353,"type":"Relation"}],"Comments":[]}
142
+ {"id":156,"text":"this was one of the main motivations for developing linear algebra","entities":[{"id":421,"label":"Math","start_offset":52,"end_offset":66}],"relations":[],"Comments":[]}
143
+ {"id":199,"text":"this includes the use of matrices and vectors to represent and manipulate fluid flow fields","entities":[{"id":507,"label":"Math","start_offset":25,"end_offset":33},{"id":508,"label":"Math","start_offset":38,"end_offset":45},{"id":509,"label":"Attributes","start_offset":73,"end_offset":91}],"relations":[{"id":227,"from_id":508,"to_id":507,"type":"Relation"},{"id":228,"from_id":509,"to_id":508,"type":"Relation"},{"id":229,"from_id":509,"to_id":507,"type":"Relation"}],"Comments":[]}
144
+ {"id":16,"text":"this is the case of algebras which include field extensions polynomial rings associative algebras and lie algebras","entities":[{"id":41,"label":"Math","start_offset":49,"end_offset":76}],"relations":[],"Comments":[]}
145
+ {"id":212,"text":"vector spaces are completely characterized by their dimension up to an isomorphism","entities":[{"id":530,"label":"Math","start_offset":0,"end_offset":13},{"id":531,"label":"Math","start_offset":52,"end_offset":61},{"id":532,"label":"Math","start_offset":71,"end_offset":82}],"relations":[{"id":239,"from_id":531,"to_id":530,"type":"Elements"},{"id":240,"from_id":532,"to_id":530,"type":"Elements"}],"Comments":[]}
146
+ {"id":60,"text":"the term was first used in hadamards book on that subject","entities":[],"relations":[],"Comments":[]}
147
+ {"id":98,"text":"a vector space can have several bases however all the bases have the same number of elements called the dimension of the vector space","entities":[{"id":277,"label":"Math","start_offset":2,"end_offset":14},{"id":278,"label":"Attributes","start_offset":32,"end_offset":37},{"id":280,"label":"Math","start_offset":104,"end_offset":113}],"relations":[{"id":139,"from_id":280,"to_id":278,"type":"Relation"},{"id":141,"from_id":278,"to_id":277,"type":"Elements"}],"Comments":[]}
148
+ {"id":122,"text":"for a system involving two variables x and y each linear equation determines a line on the xyplane","entities":[{"id":335,"label":"Math","start_offset":50,"end_offset":65}],"relations":[],"Comments":[]}
149
+ {"id":112,"text":"tropical geometry is another example of linear algebra in a more exotic structure","entities":[{"id":311,"label":"Math","start_offset":0,"end_offset":17},{"id":312,"label":"Math","start_offset":39,"end_offset":54}],"relations":[{"id":149,"from_id":311,"to_id":312,"type":"Relation"}],"Comments":[]}
150
+ {"id":52,"text":"in numerical analysis many computational problems are solved by reducing them to a matrix computation and this often involves computing with matrices of huge dimension","entities":[{"id":136,"label":"Math","start_offset":3,"end_offset":21},{"id":137,"label":"Math","start_offset":83,"end_offset":90}],"relations":[{"id":67,"from_id":137,"to_id":136,"type":"Elements"}],"Comments":[]}
151
+ {"id":129,"text":"in general the behavior of a linear system is determined by the relationship between the number of equations and the number of unknowns","entities":[{"id":356,"label":"Math","start_offset":29,"end_offset":42}],"relations":[],"Comments":[]}
152
+ {"id":121,"text":"geometric interpretation","entities":[{"id":334,"label":"Math","start_offset":0,"end_offset":9}],"relations":[],"Comments":[]}
153
+ {"id":145,"text":"a first order differential equation is said to be homogeneous if it may be written","entities":[{"id":392,"label":"Math","start_offset":0,"end_offset":35},{"id":393,"label":"Math","start_offset":50,"end_offset":61}],"relations":[{"id":181,"from_id":392,"to_id":393,"type":"Another_name"}],"Comments":[]}
154
+ {"id":201,"text":"it is used to model and optimize the generation transmission and distribution of electric power","entities":[],"relations":[],"Comments":[]}
155
+ {"id":101,"text":"in mathematics a system of linear equations or linear system is a collection of one or more linear equations involving the same variables","entities":[{"id":283,"label":"Math","start_offset":3,"end_offset":14},{"id":284,"label":"Math","start_offset":27,"end_offset":43},{"id":285,"label":"Math","start_offset":47,"end_offset":60}],"relations":[{"id":142,"from_id":284,"to_id":283,"type":"Elements"},{"id":143,"from_id":285,"to_id":284,"type":"Relation"}],"Comments":[]}
156
+ {"id":109,"text":"for solutions in an integral domain like the ring of the integers or in other algebraic structures other theories have been developed see linear equation over a ring","entities":[{"id":307,"label":"Math","start_offset":138,"end_offset":153}],"relations":[],"Comments":[]}
157
+ {"id":215,"text":"modules over the integers can be identified with abelian groups since the multiplication by an integer may be identified to a repeated addition","entities":[{"id":535,"label":"Math","start_offset":0,"end_offset":7},{"id":536,"label":"Math","start_offset":49,"end_offset":63},{"id":538,"label":"Attributes","start_offset":74,"end_offset":88},{"id":539,"label":"Attributes","start_offset":135,"end_offset":143},{"id":540,"label":"Math","start_offset":17,"end_offset":25}],"relations":[{"id":241,"from_id":535,"to_id":540,"type":"Relation"},{"id":242,"from_id":536,"to_id":540,"type":"Relation"},{"id":243,"from_id":539,"to_id":535,"type":"Relation"},{"id":244,"from_id":538,"to_id":535,"type":"Relation"}],"Comments":[]}
158
+ {"id":155,"text":"thus computing intersections of lines and planes amounts to solving systems of linear equations","entities":[{"id":418,"label":"Math","start_offset":79,"end_offset":95},{"id":419,"label":"Math","start_offset":32,"end_offset":37},{"id":420,"label":"Math","start_offset":42,"end_offset":48}],"relations":[{"id":189,"from_id":419,"to_id":418,"type":"Relation"},{"id":190,"from_id":420,"to_id":418,"type":"Relation"}],"Comments":[]}
159
+ {"id":208,"text":"the concepts of linear independence span basis and linear maps also called module homomorphisms are defined for modules exactly as for vector spaces with the essential difference that if r is not a field there are modules that do not have any basis","entities":[{"id":522,"label":"Math","start_offset":16,"end_offset":46},{"id":523,"label":"Math","start_offset":51,"end_offset":62},{"id":524,"label":"Math","start_offset":75,"end_offset":95}],"relations":[{"id":235,"from_id":524,"to_id":523,"type":"Another_name"},{"id":236,"from_id":523,"to_id":522,"type":"Relation"}],"Comments":[]}
160
+ {"id":119,"text":"in any event the span has a basis of linearly independent vectors that do guarantee exactly one expression and the number of vectors in that basis its dimension cannot be larger than m or n but it can be smaller","entities":[{"id":332,"label":"Math","start_offset":125,"end_offset":132}],"relations":[],"Comments":[]}
161
+ {"id":171,"text":" consequently linear algebra algorithms have been highly optimized","entities":[{"id":457,"label":"Math","start_offset":14,"end_offset":28}],"relations":[],"Comments":[]}
162
+ {"id":244,"text":"these operations and associated laws qualify euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space","entities":[{"id":613,"label":"Math","start_offset":152,"end_offset":164}],"relations":[],"Comments":[]}
163
+ {"id":76,"text":"a linear map from to always maps the origin of to the origin of","entities":[{"id":212,"label":"Math","start_offset":2,"end_offset":12}],"relations":[],"Comments":[]}
164
+ {"id":64,"text":"in modern introductory texts on functional analysis the subject is seen as the study of vector spaces endowed with a topology in particular infinitedimensional spaces","entities":[{"id":169,"label":"Math","start_offset":32,"end_offset":51},{"id":170,"label":"Math","start_offset":88,"end_offset":101},{"id":171,"label":"Math","start_offset":117,"end_offset":125}],"relations":[{"id":84,"from_id":171,"to_id":170,"type":"Relation"},{"id":85,"from_id":170,"to_id":169,"type":"Relation"}],"Comments":[]}
165
+ {"id":99,"text":"this article deals mainly with finitedimensional vector spaces","entities":[{"id":281,"label":"Math","start_offset":49,"end_offset":62}],"relations":[],"Comments":[]}
166
+ {"id":54,"text":"matrix theory is the branch of mathematics that focuses on the study of matrices","entities":[{"id":142,"label":"Math","start_offset":0,"end_offset":13},{"id":143,"label":"Math","start_offset":31,"end_offset":42},{"id":144,"label":"Math","start_offset":72,"end_offset":80}],"relations":[{"id":71,"from_id":142,"to_id":143,"type":"Elements"},{"id":72,"from_id":144,"to_id":142,"type":"Elements"}],"Comments":[]}
167
+ {"id":102,"text":"a solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied","entities":[{"id":287,"label":"Math","start_offset":2,"end_offset":10},{"id":288,"label":"Math","start_offset":64,"end_offset":74},{"id":289,"label":"Math","start_offset":106,"end_offset":120}],"relations":[{"id":144,"from_id":288,"to_id":287,"type":"Another_name"},{"id":145,"from_id":289,"to_id":288,"type":"Relation"}],"Comments":[]}
168
+ {"id":221,"text":"in multilinear algebra one considers multivariable linear transformations that is mappings that are linear in each of a number of different variables","entities":[{"id":550,"label":"Math","start_offset":3,"end_offset":22},{"id":552,"label":"Math","start_offset":51,"end_offset":73}],"relations":[{"id":249,"from_id":552,"to_id":550,"type":"Relation"}],"Comments":[]}
169
+ {"id":11,"text":"otherwise it is infinitedimensional and its dimension is an infinite cardinal","entities":[{"id":27,"label":"Attributes","start_offset":16,"end_offset":35}],"relations":[],"Comments":[]}
170
+ {"id":226,"text":"a normed vector space is a vector space along with a function called a norm which measures the size of elements","entities":[{"id":564,"label":"Math","start_offset":2,"end_offset":21},{"id":565,"label":"Math","start_offset":27,"end_offset":39}],"relations":[{"id":255,"from_id":564,"to_id":565,"type":"Elements"}],"Comments":[]}
171
+ {"id":132,"text":"such a system is known as an underdetermined system","entities":[{"id":360,"label":"Math","start_offset":29,"end_offset":51}],"relations":[],"Comments":[]}
172
+ {"id":224,"text":"if in addition to vector addition and scalar multiplication there is a bilinear vector product v v v the vector space is called an algebra for instance associative algebras are algebras with an associate vector product like the algebra of square matrices or the algebra of polynomials","entities":[{"id":558,"label":"Math","start_offset":18,"end_offset":33},{"id":559,"label":"Math","start_offset":38,"end_offset":59},{"id":560,"label":"Math","start_offset":71,"end_offset":94},{"id":562,"label":"Math","start_offset":107,"end_offset":119}],"relations":[{"id":253,"from_id":558,"to_id":559,"type":"Relation"},{"id":254,"from_id":560,"to_id":562,"type":"Elements"}],"Comments":[]}
173
+ {"id":233,"text":"analysis is the branch of mathematics dealing with continuous functions limits and related theories such as differentiation integration measure infinite sequences series and analytic functions","entities":[{"id":579,"label":"Math","start_offset":0,"end_offset":8},{"id":580,"label":"Math","start_offset":51,"end_offset":78},{"id":581,"label":"Math","start_offset":174,"end_offset":192}],"relations":[{"id":265,"from_id":581,"to_id":579,"type":"Relation"},{"id":266,"from_id":580,"to_id":581,"type":"Relation"}],"Comments":[]}
174
+ {"id":238,"text":"vectors can be added to other vectors according to vector algebra","entities":[{"id":593,"label":"Math","start_offset":51,"end_offset":65},{"id":595,"label":"Math","start_offset":0,"end_offset":7}],"relations":[{"id":274,"from_id":595,"to_id":593,"type":"Elements"}],"Comments":[]}
jsonl_data/valid.jsonl ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"id":185,"text":"bthis is called a linear model or firstorder approximation","entities":[{"id":476,"label":"Math","start_offset":18,"end_offset":30},{"id":477,"label":"Math","start_offset":34,"end_offset":58}],"relations":[{"id":215,"from_id":476,"to_id":477,"type":"Relation"}],"Comments":[]}
2
+ {"id":232,"text":"it also provides the foundation and theoretical framework that underlies the fourier transform and related methods","entities":[{"id":578,"label":"Math","start_offset":77,"end_offset":94}],"relations":[],"Comments":[]}
3
+ {"id":117,"text":"for example the collection of all possible linear combinations of the vectors on the lefthand side is called their span and the equations have a solution just when the righthand vector is within that span","entities":[{"id":328,"label":"Math","start_offset":43,"end_offset":62},{"id":329,"label":"Math","start_offset":70,"end_offset":77}],"relations":[{"id":157,"from_id":329,"to_id":328,"type":"Elements"}],"Comments":[]}
4
+ {"id":94,"text":"the coefficients of this linear combination are referred to as components or coordinates of the vector with respect to b","entities":[{"id":268,"label":"Math","start_offset":63,"end_offset":73},{"id":269,"label":"Math","start_offset":77,"end_offset":88},{"id":270,"label":"Math","start_offset":25,"end_offset":43}],"relations":[{"id":133,"from_id":268,"to_id":270,"type":"Elements"},{"id":134,"from_id":269,"to_id":268,"type":"Another_name"},{"id":135,"from_id":269,"to_id":270,"type":"Elements"}],"Comments":[]}
5
+ {"id":184,"text":"for nonlinear systems this interaction is often approximated by linear functions","entities":[{"id":474,"label":"Math","start_offset":4,"end_offset":21},{"id":475,"label":"Math","start_offset":64,"end_offset":80}],"relations":[{"id":214,"from_id":474,"to_id":475,"type":"Elements"}],"Comments":[]}
6
+ {"id":141,"text":"it must be kept in mind that the pictures above show only the most common case the general case","entities":[],"relations":[],"Comments":[]}
7
+ {"id":30,"text":"in the theory of vector spaces a set of vectors is said to be linearly independent if there exists no nontrivial linear combination of the vectors that equals the zero vector","entities":[{"id":78,"label":"Math","start_offset":17,"end_offset":30},{"id":79,"label":"Math","start_offset":40,"end_offset":47},{"id":80,"label":"Math","start_offset":62,"end_offset":82},{"id":81,"label":"Math","start_offset":113,"end_offset":131}],"relations":[{"id":32,"from_id":81,"to_id":78,"type":"Elements"},{"id":33,"from_id":80,"to_id":78,"type":"Elements"}],"Comments":[]}
8
+ {"id":88,"text":"in mathematics the linear span also called the linear hull or just span of a set s of vectors from a vector space denoted spans is defined as the set of all linear combinations of the vectors in s for example two linearly independent vectors span a plane","entities":[{"id":245,"label":"Math","start_offset":3,"end_offset":15},{"id":246,"label":"Math","start_offset":19,"end_offset":30},{"id":247,"label":"Math","start_offset":47,"end_offset":58}],"relations":[{"id":123,"from_id":247,"to_id":246,"type":"Another_name"}],"Comments":[]}
9
+ {"id":100,"text":"however many of the principles are also valid for infinitedimensional vector spaces","entities":[{"id":282,"label":"Math","start_offset":70,"end_offset":83}],"relations":[],"Comments":[]}
10
+ {"id":37,"text":"also functional analysis a branch of mathematical analysis may be viewed as the application of linear algebra to function spaces","entities":[{"id":97,"label":"Math","start_offset":5,"end_offset":24},{"id":98,"label":"Math","start_offset":95,"end_offset":109}],"relations":[{"id":45,"from_id":97,"to_id":98,"type":"Relation"}],"Comments":[]}
11
+ {"id":237,"text":"in mathematics physics and engineering a euclidean vector or simply a vector sometimes called a geometric vector or spatial vector is a geometric object that has magnitude or length and direction","entities":[{"id":589,"label":"Math","start_offset":96,"end_offset":112},{"id":590,"label":"Attributes","start_offset":162,"end_offset":171},{"id":591,"label":"Attributes","start_offset":175,"end_offset":181},{"id":592,"label":"Attributes","start_offset":186,"end_offset":195}],"relations":[{"id":270,"from_id":590,"to_id":591,"type":"Elements"},{"id":271,"from_id":592,"to_id":589,"type":"Relation"},{"id":273,"from_id":591,"to_id":589,"type":"Relation"}],"Comments":[]}
12
+ {"id":241,"text":" it was first used by th century astronomers investigating planetary revolution around the sun","entities":[],"relations":[],"Comments":[]}
13
+ {"id":130,"text":"here in general means that a different behavior may occur for specific values of the coefficients of the equations","entities":[{"id":358,"label":"Math","start_offset":62,"end_offset":77}],"relations":[],"Comments":[]}
14
+ {"id":223,"text":"multilinear maps t vn f can be described via tensor products of elements of v","entities":[{"id":556,"label":"Math","start_offset":0,"end_offset":16},{"id":557,"label":"Math","start_offset":47,"end_offset":53}],"relations":[{"id":252,"from_id":557,"to_id":556,"type":"Elements"}],"Comments":[]}
15
+ {"id":240,"text":"a vector is what is needed to carry the point a to the point b the latin word vector means carrier","entities":[{"id":597,"label":"Math","start_offset":2,"end_offset":8}],"relations":[],"Comments":[]}
16
+ {"id":203,"text":"the application of linear algebra in this context is vital for the design and operation of modern power systems including renewable energy sources and smart grids","entities":[{"id":515,"label":"Math","start_offset":19,"end_offset":33}],"relations":[],"Comments":[]}
17
+ {"id":207,"text":"one may thus replace the field of scalars by a ring r and this gives the structure called a module over r or rmodule","entities":[{"id":521,"label":"Math","start_offset":47,"end_offset":51}],"relations":[],"Comments":[]}
18
+ {"id":24,"text":"when the scalar field is the real numbers the vector space is called a real vector space and when the scalar field is the complex numbers the vector space is called a complex vector space","entities":[{"id":64,"label":"Math","start_offset":46,"end_offset":58},{"id":65,"label":"Math","start_offset":167,"end_offset":187},{"id":66,"label":"Math","start_offset":71,"end_offset":88}],"relations":[{"id":25,"from_id":64,"to_id":66,"type":"Elements"},{"id":26,"from_id":64,"to_id":65,"type":"Elements"}],"Comments":[]}
19
+ {"id":106,"text":"computational algorithms for finding the solutions are an important part of numerical linear algebra and play a prominent role in engineering physics chemistry computer science and economics","entities":[{"id":299,"label":"Math","start_offset":86,"end_offset":100},{"id":300,"label":"Math","start_offset":41,"end_offset":50}],"relations":[],"Comments":[]}
20
+ {"id":136,"text":"in the first case the dimension of the solution set is in general equal to n m where n is the number of variables and m is the number of equations","entities":[{"id":368,"label":"Math","start_offset":22,"end_offset":31},{"id":369,"label":"Math","start_offset":39,"end_offset":51},{"id":370,"label":"Math","start_offset":138,"end_offset":147},{"id":371,"label":"Math","start_offset":105,"end_offset":114}],"relations":[{"id":171,"from_id":369,"to_id":368,"type":"Relation"},{"id":172,"from_id":369,"to_id":371,"type":"Relation"},{"id":173,"from_id":369,"to_id":370,"type":"Relation"}],"Comments":[]}
21
+ {"id":150,"text":"in the case of linear differential equations this means that there are no constant terms","entities":[{"id":403,"label":"Math","start_offset":14,"end_offset":44}],"relations":[],"Comments":[]}
22
+ {"id":200,"text":"furthermore linear algebra plays a crucial role in thermal energy systems particularly in power systems analysis","entities":[{"id":510,"label":"Math","start_offset":12,"end_offset":26},{"id":511,"label":"Attributes","start_offset":51,"end_offset":73}],"relations":[{"id":230,"from_id":511,"to_id":510,"type":"Relation"}],"Comments":[]}
23
+ {"id":225,"text":"vector spaces that are not finite dimensional often require additional structure to be tractable","entities":[{"id":563,"label":"Math","start_offset":0,"end_offset":13}],"relations":[],"Comments":[]}
24
+ {"id":57,"text":"the historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the fourier transform as transformations defining for example continuous or unitary operators between function spaces","entities":[{"id":159,"label":"Math","start_offset":24,"end_offset":43},{"id":161,"label":"Math","start_offset":162,"end_offset":179},{"id":162,"label":"Math","start_offset":234,"end_offset":251}],"relations":[{"id":82,"from_id":161,"to_id":159,"type":"Elements"},{"id":83,"from_id":162,"to_id":159,"type":"Elements"}],"Comments":[]}
25
+ {"id":213,"text":"in general there is not such a complete classification for modules even if one restricts oneself to finitely generated modules","entities":[{"id":534,"label":"Math","start_offset":59,"end_offset":66}],"relations":[],"Comments":[]}
26
+ {"id":152,"text":"there is a strong relationship between linear algebra and geometry which started with the introduction by rené descartes in of cartesian coordinates","entities":[{"id":410,"label":"Math","start_offset":39,"end_offset":53},{"id":411,"label":"Math","start_offset":58,"end_offset":66}],"relations":[{"id":184,"from_id":411,"to_id":410,"type":"Relation"}],"Comments":[]}
27
+ {"id":247,"text":"although most of them do not represent distances except for example position or displacement their magnitude and direction can still be represented by the length and direction of an arrow","entities":[],"relations":[],"Comments":[]}
28
+ {"id":113,"text":"a linear endomorphism is a linear map that maps a vector space v to itself","entities":[{"id":314,"label":"Math","start_offset":2,"end_offset":21},{"id":315,"label":"Math","start_offset":27,"end_offset":37},{"id":316,"label":"Math","start_offset":50,"end_offset":62}],"relations":[{"id":150,"from_id":314,"to_id":315,"type":"Relation"},{"id":151,"from_id":315,"to_id":316,"type":"Elements"}],"Comments":[]}
29
+ {"id":50,"text":"the determinant of a square matrix is a number associated to the matrix which is fundamental for the study of a square matrix for example a square matrix is invertible if and only if it has a nonzero determinant and the eigenvalues of a square matrix are the roots of a polynomial determinant","entities":[{"id":128,"label":"Math","start_offset":4,"end_offset":15},{"id":129,"label":"Math","start_offset":21,"end_offset":34},{"id":130,"label":"Math","start_offset":220,"end_offset":231},{"id":131,"label":"Math","start_offset":237,"end_offset":250},{"id":132,"label":"Math","start_offset":270,"end_offset":292}],"relations":[{"id":62,"from_id":130,"to_id":132,"type":"Relation"},{"id":63,"from_id":130,"to_id":131,"type":"Elements"},{"id":64,"from_id":128,"to_id":129,"type":"Elements"}],"Comments":[]}
30
+ {"id":20,"text":"in this context the elements of v are commonly called vectors and the elements of f are called scalars","entities":[{"id":54,"label":"Math","start_offset":54,"end_offset":61},{"id":55,"label":"Math","start_offset":95,"end_offset":102}],"relations":[],"Comments":[]}
31
+ {"id":42,"text":"matrices are used to represent linear maps and allow explicit computations in linear algebra","entities":[{"id":106,"label":"Math","start_offset":0,"end_offset":8},{"id":107,"label":"Math","start_offset":31,"end_offset":42},{"id":108,"label":"Math","start_offset":78,"end_offset":92}],"relations":[{"id":49,"from_id":106,"to_id":107,"type":"Elements"},{"id":50,"from_id":107,"to_id":108,"type":"Elements"}],"Comments":[]}
32
+ {"id":135,"text":"such a system is also known as an overdetermined system","entities":[{"id":366,"label":"Math","start_offset":34,"end_offset":55}],"relations":[],"Comments":[]}
33
+ {"id":80,"text":"because an isomorphism preserves linear structure two isomorphic vector spaces are essentially the same from the linear algebra point of view in the sense that they cannot be distinguished by using vector space properties","entities":[{"id":220,"label":"Math","start_offset":11,"end_offset":22},{"id":221,"label":"Math","start_offset":113,"end_offset":127},{"id":222,"label":"Math","start_offset":54,"end_offset":78}],"relations":[{"id":108,"from_id":222,"to_id":221,"type":"Relation"},{"id":109,"from_id":220,"to_id":222,"type":"Relation"}],"Comments":[]}
34
+ {"id":74,"text":" sometimes the term linear function has the same meaning as linear map while in analysis it does not","entities":[{"id":205,"label":"Math","start_offset":60,"end_offset":70},{"id":208,"label":"Math","start_offset":20,"end_offset":35}],"relations":[{"id":101,"from_id":205,"to_id":208,"type":"Relation"}],"Comments":[]}
35
+ {"id":13,"text":"infinitedimensional vector spaces occur in many areas of mathematics","entities":[{"id":30,"label":"Math","start_offset":20,"end_offset":33},{"id":31,"label":"Math","start_offset":57,"end_offset":68},{"id":34,"label":"Attributes","start_offset":0,"end_offset":19}],"relations":[{"id":23,"from_id":34,"to_id":31,"type":"Relation"}],"Comments":[]}
36
+ {"id":217,"text":"in particular over a principal ideal domain every submodule of a free module is free and the fundamental theorem of finitely generated abelian groups may be extended straightforwardly to finitely generated modules over a principal ring","entities":[{"id":543,"label":"Math","start_offset":50,"end_offset":59},{"id":544,"label":"Math","start_offset":70,"end_offset":76}],"relations":[{"id":246,"from_id":543,"to_id":544,"type":"Elements"}],"Comments":[]}
37
+ {"id":210,"text":"module homomorphisms between finitely generated free modules may be represented by matrices","entities":[{"id":525,"label":"Math","start_offset":83,"end_offset":91}],"relations":[],"Comments":[]}
txt_data/test.txt ADDED
@@ -0,0 +1,1882 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ in O
2
+ fluid B-Attributes
3
+ mechanics I-Attributes
4
+ linear O
5
+ algebra O
6
+ is O
7
+ integral O
8
+ to O
9
+ understanding O
10
+ and O
11
+ solving O
12
+ problems O
13
+ related O
14
+ to O
15
+ the O
16
+ behavior O
17
+ of O
18
+ fluid O
19
+ linear B-Math
20
+ algebra I-Math
21
+ is O
22
+ integral O
23
+ to O
24
+ understanding O
25
+ and O
26
+ solving O
27
+ problems O
28
+ related O
29
+ to O
30
+ the O
31
+ behavior O
32
+ of O
33
+ fluid O
34
+
35
+ a O
36
+ vector B-Math
37
+ space I-Math
38
+ can O
39
+ be O
40
+ of O
41
+ finite O
42
+ dimension O
43
+ or O
44
+ infinite O
45
+ dimension O
46
+ depending O
47
+ on O
48
+ the O
49
+ maximum O
50
+ number O
51
+ of O
52
+ linearly O
53
+ independent O
54
+ vector O
55
+ can O
56
+ be O
57
+ of O
58
+ finite B-Math
59
+ dimension I-Math
60
+ or O
61
+ infinite O
62
+ dimension O
63
+ depending O
64
+ on O
65
+ the O
66
+ maximum O
67
+ number O
68
+ of O
69
+ linearly O
70
+ independent O
71
+ vector O
72
+ or O
73
+ infinite B-Math
74
+ dimension I-Math
75
+ depending O
76
+ on O
77
+ the O
78
+ maximum O
79
+ number O
80
+ of O
81
+ linearly O
82
+ independent O
83
+ vector O
84
+
85
+ the O
86
+ theory O
87
+ of O
88
+ matrices B-Math
89
+ over O
90
+ a O
91
+ ring O
92
+ is O
93
+ similar O
94
+ to O
95
+ that O
96
+ of O
97
+ matrices O
98
+ over O
99
+ a O
100
+ field O
101
+ except O
102
+ that O
103
+ determinants O
104
+ exist O
105
+ only O
106
+ if O
107
+ the O
108
+ ring O
109
+ is O
110
+ commutative O
111
+ and O
112
+ that O
113
+ a O
114
+ square O
115
+ matrix O
116
+ over O
117
+ a O
118
+ commutative O
119
+ ring O
120
+ is O
121
+ invertible O
122
+ only O
123
+ if O
124
+ its O
125
+ determinant O
126
+ has O
127
+ a O
128
+ multiplicative O
129
+ inverse O
130
+ in O
131
+ the O
132
+ rin O
133
+ over O
134
+ a O
135
+ ring B-Math
136
+ is O
137
+ similar O
138
+ to O
139
+ that O
140
+ of O
141
+ matrices O
142
+ over O
143
+ a O
144
+ field O
145
+ except O
146
+ that O
147
+ determinants O
148
+ exist O
149
+ only O
150
+ if O
151
+ the O
152
+ ring O
153
+ is O
154
+ commutative O
155
+ and O
156
+ that O
157
+ a O
158
+ square O
159
+ matrix O
160
+ over O
161
+ a O
162
+ commutative O
163
+ ring O
164
+ is O
165
+ invertible O
166
+ only O
167
+ if O
168
+ its O
169
+ determinant O
170
+ has O
171
+ a O
172
+ multiplicative O
173
+ inverse O
174
+ in O
175
+ the O
176
+ rin O
177
+ is O
178
+ similar O
179
+ to O
180
+ that O
181
+ of O
182
+ matrices O
183
+ over O
184
+ a O
185
+ field B-Math
186
+ except O
187
+ that O
188
+ determinants O
189
+ exist O
190
+ only O
191
+ if O
192
+ the O
193
+ ring O
194
+ is O
195
+ commutative O
196
+ and O
197
+ that O
198
+ a O
199
+ square O
200
+ matrix O
201
+ over O
202
+ a O
203
+ commutative O
204
+ ring O
205
+ is O
206
+ invertible O
207
+ only O
208
+ if O
209
+ its O
210
+ determinant O
211
+ has O
212
+ a O
213
+ multiplicative O
214
+ inverse O
215
+ in O
216
+ the O
217
+ rin O
218
+ matrices B-Math
219
+ over O
220
+ a O
221
+ field O
222
+ except O
223
+ that O
224
+ determinants O
225
+ exist O
226
+ only O
227
+ if O
228
+ the O
229
+ ring O
230
+ is O
231
+ commutative O
232
+ and O
233
+ that O
234
+ a O
235
+ square O
236
+ matrix O
237
+ over O
238
+ a O
239
+ commutative O
240
+ ring O
241
+ is O
242
+ invertible O
243
+ only O
244
+ if O
245
+ its O
246
+ determinant O
247
+ has O
248
+ a O
249
+ multiplicative O
250
+ inverse O
251
+ in O
252
+ the O
253
+ rin O
254
+
255
+ sometimes O
256
+ the O
257
+ term O
258
+ linear B-Math
259
+ operator I-Math
260
+ refers O
261
+ to O
262
+ this O
263
+ case O
264
+ but O
265
+ the O
266
+ term O
267
+ linear O
268
+ operator O
269
+ can O
270
+ have O
271
+ different O
272
+ meanings O
273
+ for O
274
+ different O
275
+ conventions O
276
+ for O
277
+ example O
278
+ it O
279
+ can O
280
+ be O
281
+ used O
282
+ to O
283
+ emphasize O
284
+ that O
285
+ and O
286
+ are O
287
+ real O
288
+ vector O
289
+ spaces O
290
+ not O
291
+ necessarily O
292
+ with O
293
+ citation O
294
+ needed O
295
+ or O
296
+ it O
297
+ can O
298
+ be O
299
+ used O
300
+ to O
301
+ emphasize O
302
+ that O
303
+ is O
304
+ a O
305
+ function O
306
+ space O
307
+ which O
308
+ is O
309
+ a O
310
+ common O
311
+ convention O
312
+ in O
313
+ functional O
314
+ analysi O
315
+ refers O
316
+ to O
317
+ this O
318
+ case O
319
+ but O
320
+ the O
321
+ term O
322
+ linear O
323
+ operator O
324
+ can O
325
+ have O
326
+ different O
327
+ meanings O
328
+ for O
329
+ different O
330
+ conventions O
331
+ for O
332
+ example O
333
+ it O
334
+ can O
335
+ be O
336
+ used O
337
+ to O
338
+ emphasize O
339
+ that O
340
+ and O
341
+ are O
342
+ real O
343
+ vector O
344
+ spaces O
345
+ not O
346
+ necessarily O
347
+ with O
348
+ citation O
349
+ needed O
350
+ or O
351
+ it O
352
+ can O
353
+ be O
354
+ used O
355
+ to O
356
+ emphasize O
357
+ that O
358
+ is O
359
+ a O
360
+ function O
361
+ space O
362
+ which O
363
+ is O
364
+ a O
365
+ common O
366
+ convention O
367
+ in O
368
+ functional B-Math
369
+ analysis I-Math
370
+ function B-Math
371
+ space I-Math
372
+ which O
373
+ is O
374
+ a O
375
+ common O
376
+ convention O
377
+ in O
378
+ functional O
379
+ analysi O
380
+
381
+ a O
382
+ vector B-Math
383
+ space I-Math
384
+ over O
385
+ a O
386
+ field O
387
+ f O
388
+ is O
389
+ a O
390
+ nonempty O
391
+ set O
392
+ v O
393
+ together O
394
+ with O
395
+ a O
396
+ binary O
397
+ operation O
398
+ and O
399
+ a O
400
+ binary O
401
+ function O
402
+ that O
403
+ satisfy O
404
+ the O
405
+ eight O
406
+ axioms O
407
+ listed O
408
+ belo O
409
+ over O
410
+ a O
411
+ field B-Math
412
+ is O
413
+ a O
414
+ nonempty O
415
+ set O
416
+ v O
417
+ together O
418
+ with O
419
+ a O
420
+ binary O
421
+ operation O
422
+ and O
423
+ a O
424
+ binary O
425
+ function O
426
+ that O
427
+ satisfy O
428
+ the O
429
+ eight O
430
+ axioms O
431
+ listed O
432
+ belo O
433
+ is O
434
+ a O
435
+ nonempty B-Math
436
+ set I-Math
437
+ v O
438
+ together O
439
+ with O
440
+ a O
441
+ binary O
442
+ operation O
443
+ and O
444
+ a O
445
+ binary O
446
+ function O
447
+ that O
448
+ satisfy O
449
+ the O
450
+ eight O
451
+ axioms O
452
+ listed O
453
+ belo O
454
+
455
+ linear B-Math
456
+ models I-Math
457
+ are O
458
+ frequently O
459
+ used O
460
+ for O
461
+ complex O
462
+ nonlinear O
463
+ realworld O
464
+ systems O
465
+ because O
466
+ it O
467
+ makes O
468
+ parametrization O
469
+ more O
470
+ manageabl O
471
+ are O
472
+ frequently O
473
+ used O
474
+ for O
475
+ complex B-Attributes
476
+ nonlinear I-Attributes
477
+ realworld I-Attributes
478
+ systems I-Attributes
479
+ because O
480
+ it O
481
+ makes O
482
+ parametrization O
483
+ more O
484
+ manageabl O
485
+
486
+ functional B-Math
487
+ analysis I-Math
488
+ applies O
489
+ the O
490
+ methods O
491
+ of O
492
+ linear O
493
+ algebra O
494
+ alongside O
495
+ those O
496
+ of O
497
+ mathematical O
498
+ analysis O
499
+ to O
500
+ study O
501
+ various O
502
+ function O
503
+ spaces O
504
+ the O
505
+ central O
506
+ objects O
507
+ of O
508
+ study O
509
+ in O
510
+ functional O
511
+ analysis O
512
+ are O
513
+ lp O
514
+ spaces O
515
+ which O
516
+ are O
517
+ banach O
518
+ spaces O
519
+ and O
520
+ especially O
521
+ the O
522
+ l O
523
+ space O
524
+ of O
525
+ square O
526
+ integrable O
527
+ functions O
528
+ which O
529
+ is O
530
+ the O
531
+ only O
532
+ hilbert O
533
+ space O
534
+ among O
535
+ the O
536
+ applies O
537
+ the O
538
+ methods O
539
+ of O
540
+ linear B-Math
541
+ algebra I-Math
542
+ alongside O
543
+ those O
544
+ of O
545
+ mathematical O
546
+ analysis O
547
+ to O
548
+ study O
549
+ various O
550
+ function O
551
+ spaces O
552
+ the O
553
+ central O
554
+ objects O
555
+ of O
556
+ study O
557
+ in O
558
+ functional O
559
+ analysis O
560
+ are O
561
+ lp O
562
+ spaces O
563
+ which O
564
+ are O
565
+ banach O
566
+ spaces O
567
+ and O
568
+ especially O
569
+ the O
570
+ l O
571
+ space O
572
+ of O
573
+ square O
574
+ integrable O
575
+ functions O
576
+ which O
577
+ is O
578
+ the O
579
+ only O
580
+ hilbert O
581
+ space O
582
+ among O
583
+ the O
584
+ alongside O
585
+ those O
586
+ of O
587
+ mathematical O
588
+ analysis O
589
+ to O
590
+ study O
591
+ various O
592
+ function O
593
+ spaces O
594
+ the O
595
+ central O
596
+ objects O
597
+ of O
598
+ study O
599
+ in O
600
+ functional O
601
+ analysis O
602
+ are O
603
+ lp O
604
+ spaces O
605
+ which O
606
+ are O
607
+ banach B-Math
608
+ spaces I-Math
609
+ and O
610
+ especially O
611
+ the O
612
+ l O
613
+ space O
614
+ of O
615
+ square O
616
+ integrable O
617
+ functions O
618
+ which O
619
+ is O
620
+ the O
621
+ only O
622
+ hilbert O
623
+ space O
624
+ among O
625
+ the O
626
+ and O
627
+ especially O
628
+ the O
629
+ l O
630
+ space O
631
+ of O
632
+ square O
633
+ integrable O
634
+ functions O
635
+ which O
636
+ is O
637
+ the O
638
+ only O
639
+ hilbert B-Math
640
+ space I-Math
641
+ among O
642
+ the O
643
+
644
+ in O
645
+ this O
646
+ case O
647
+ the O
648
+ change O
649
+ of O
650
+ variable O
651
+ y O
652
+ ux O
653
+ leads O
654
+ to O
655
+ an O
656
+ equation B-Math
657
+ of O
658
+ the O
659
+ for O
660
+
661
+ for O
662
+ example O
663
+ polynomial B-Math
664
+ rings I-Math
665
+ are O
666
+ countably O
667
+ infinitedimensional O
668
+ vector O
669
+ spaces O
670
+ and O
671
+ many O
672
+ function O
673
+ spaces O
674
+ have O
675
+ the O
676
+ cardinality O
677
+ of O
678
+ the O
679
+ continuum O
680
+ as O
681
+ a O
682
+ dimensio O
683
+ are O
684
+ countably O
685
+ infinitedimensional B-Attributes
686
+ vector O
687
+ spaces O
688
+ and O
689
+ many O
690
+ function O
691
+ spaces O
692
+ have O
693
+ the O
694
+ cardinality O
695
+ of O
696
+ the O
697
+ continuum O
698
+ as O
699
+ a O
700
+ dimensio O
701
+ vector B-Math
702
+ spaces I-Math
703
+ and O
704
+ many O
705
+ function O
706
+ spaces O
707
+ have O
708
+ the O
709
+ cardinality O
710
+ of O
711
+ the O
712
+ continuum O
713
+ as O
714
+ a O
715
+ dimensio O
716
+
717
+ fluid B-Attributes
718
+ mechanics I-Attributes
719
+ fluid O
720
+ dynamics O
721
+ and O
722
+ thermal O
723
+ energy O
724
+ system O
725
+ fluid B-Attributes
726
+ dynamics I-Attributes
727
+ and O
728
+ thermal O
729
+ energy O
730
+ system O
731
+ and O
732
+ thermal B-Attributes
733
+ energy I-Attributes
734
+ systems I-Attributes
735
+
736
+ linear B-Math
737
+ algebra I-Math
738
+ a O
739
+ branch O
740
+ of O
741
+ mathematics O
742
+ dealing O
743
+ with O
744
+ vector O
745
+ spaces O
746
+ and O
747
+ linear O
748
+ mappings O
749
+ between O
750
+ these O
751
+ spaces O
752
+ plays O
753
+ a O
754
+ critical O
755
+ role O
756
+ in O
757
+ various O
758
+ engineering O
759
+ disciplines O
760
+ including O
761
+ fluid O
762
+ mechanics O
763
+ fluid O
764
+ dynamics O
765
+ and O
766
+ thermal O
767
+ energy O
768
+ system O
769
+ a O
770
+ branch O
771
+ of O
772
+ mathematics B-Math
773
+ dealing O
774
+ with O
775
+ vector O
776
+ spaces O
777
+ and O
778
+ linear O
779
+ mappings O
780
+ between O
781
+ these O
782
+ spaces O
783
+ plays O
784
+ a O
785
+ critical O
786
+ role O
787
+ in O
788
+ various O
789
+ engineering O
790
+ disciplines O
791
+ including O
792
+ fluid O
793
+ mechanics O
794
+ fluid O
795
+ dynamics O
796
+ and O
797
+ thermal O
798
+ energy O
799
+ system O
800
+ dealing O
801
+ with O
802
+ vector B-Math
803
+ spaces I-Math
804
+ and O
805
+ linear O
806
+ mappings O
807
+ between O
808
+ these O
809
+ spaces O
810
+ plays O
811
+ a O
812
+ critical O
813
+ role O
814
+ in O
815
+ various O
816
+ engineering O
817
+ disciplines O
818
+ including O
819
+ fluid O
820
+ mechanics O
821
+ fluid O
822
+ dynamics O
823
+ and O
824
+ thermal O
825
+ energy O
826
+ system O
827
+ and O
828
+ linear B-Math
829
+ mappings I-Math
830
+ between O
831
+ these O
832
+ spaces O
833
+ plays O
834
+ a O
835
+ critical O
836
+ role O
837
+ in O
838
+ various O
839
+ engineering O
840
+ disciplines O
841
+ including O
842
+ fluid O
843
+ mechanics O
844
+ fluid O
845
+ dynamics O
846
+ and O
847
+ thermal O
848
+ energy O
849
+ system O
850
+ between O
851
+ these O
852
+ spaces O
853
+ plays O
854
+ a O
855
+ critical O
856
+ role O
857
+ in O
858
+ various O
859
+ engineering O
860
+ disciplines O
861
+ including O
862
+ fluid B-Attributes
863
+ mechanics I-Attributes
864
+ fluid O
865
+ dynamics O
866
+ and O
867
+ thermal O
868
+ energy O
869
+ system O
870
+ fluid B-Attributes
871
+ dynamics I-Attributes
872
+ and O
873
+ thermal O
874
+ energy O
875
+ system O
876
+ and O
877
+ thermal B-Attributes
878
+ energy I-Attributes
879
+ systems I-Attributes
880
+
881
+ in O
882
+ the O
883
+ example O
884
+ above O
885
+ a O
886
+ solution B-Math
887
+ is O
888
+ given O
889
+ by O
890
+ the O
891
+ ordered O
892
+ triple O
893
+ since O
894
+ it O
895
+ makes O
896
+ all O
897
+ three O
898
+ equations O
899
+ vali O
900
+ is O
901
+ given O
902
+ by O
903
+ the O
904
+ ordered O
905
+ triple O
906
+ since O
907
+ it O
908
+ makes O
909
+ all O
910
+ three O
911
+ equations B-Math
912
+ vali O
913
+
914
+ integer B-Math
915
+ linear I-Math
916
+ programming I-Math
917
+ is O
918
+ a O
919
+ collection O
920
+ of O
921
+ methods O
922
+ for O
923
+ finding O
924
+ the O
925
+ best O
926
+ integer O
927
+ solution O
928
+ when O
929
+ there O
930
+ are O
931
+ man O
932
+
933
+ very O
934
+ often O
935
+ and O
936
+ in O
937
+ this O
938
+ article O
939
+ the O
940
+ coefficients O
941
+ of O
942
+ the O
943
+ equations O
944
+ are O
945
+ real O
946
+ or O
947
+ complex O
948
+ numbers O
949
+ and O
950
+ the O
951
+ solutions O
952
+ are O
953
+ searched O
954
+ in O
955
+ the O
956
+ same O
957
+ set O
958
+ of O
959
+ numbers O
960
+ but O
961
+ the O
962
+ theory O
963
+ and O
964
+ the O
965
+ algorithms O
966
+ apply O
967
+ for O
968
+ coefficients B-Math
969
+ and O
970
+ solutions O
971
+ in O
972
+ any O
973
+ fiel O
974
+ and O
975
+ solutions B-Math
976
+ in O
977
+ any O
978
+ fiel O
979
+
980
+ if O
981
+ v O
982
+ has O
983
+ a O
984
+ basis B-Math
985
+ of O
986
+ n O
987
+ elements O
988
+ such O
989
+ an O
990
+ endomorphism O
991
+ is O
992
+ represented O
993
+ by O
994
+ a O
995
+ square O
996
+ matrix O
997
+ of O
998
+ size O
999
+ of O
1000
+ n O
1001
+ elements O
1002
+ such O
1003
+ an O
1004
+ endomorphism O
1005
+ is O
1006
+ represented O
1007
+ by O
1008
+ a O
1009
+ square B-Math
1010
+ matrix I-Math
1011
+ of O
1012
+ size O
1013
+
1014
+ not O
1015
+ all O
1016
+ matrices B-Math
1017
+ are O
1018
+ related O
1019
+ to O
1020
+ linear O
1021
+ algebr O
1022
+ are O
1023
+ related O
1024
+ to O
1025
+ linear B-Math
1026
+ algebra I-Math
1027
+
1028
+ bases B-Attributes
1029
+ if O
1030
+ every O
1031
+ element O
1032
+ of O
1033
+ v O
1034
+ may O
1035
+ be O
1036
+ written O
1037
+ in O
1038
+ a O
1039
+ unique O
1040
+ way O
1041
+ as O
1042
+ a O
1043
+ finite O
1044
+ linear O
1045
+ combination O
1046
+ of O
1047
+ elements O
1048
+ of O
1049
+ if O
1050
+ every O
1051
+ element O
1052
+ of O
1053
+ v O
1054
+ may O
1055
+ be O
1056
+ written O
1057
+ in O
1058
+ a O
1059
+ unique O
1060
+ way O
1061
+ as O
1062
+ a O
1063
+ finite O
1064
+ linear B-Math
1065
+ combination I-Math
1066
+ of O
1067
+ elements O
1068
+ of O
1069
+
1070
+ otherwise O
1071
+ a O
1072
+ differential B-Math
1073
+ equation I-Math
1074
+ is O
1075
+ homogeneous O
1076
+ if O
1077
+ it O
1078
+ is O
1079
+ a O
1080
+ homogeneous O
1081
+ function O
1082
+ of O
1083
+ the O
1084
+ unknown O
1085
+ function O
1086
+ and O
1087
+ its O
1088
+ derivative O
1089
+ is O
1090
+ homogeneous O
1091
+ if O
1092
+ it O
1093
+ is O
1094
+ a O
1095
+ homogeneous B-Math
1096
+ function I-Math
1097
+ of O
1098
+ the O
1099
+ unknown O
1100
+ function O
1101
+ and O
1102
+ its O
1103
+ derivative O
1104
+
1105
+ in O
1106
+ this O
1107
+ article O
1108
+ vectors B-Math
1109
+ are O
1110
+ represented O
1111
+ in O
1112
+ boldface O
1113
+ to O
1114
+ distinguish O
1115
+ them O
1116
+ from O
1117
+ scalar O
1118
+ are O
1119
+ represented O
1120
+ in O
1121
+ boldface O
1122
+ to O
1123
+ distinguish O
1124
+ them O
1125
+ from O
1126
+ scalars B-Math
1127
+
1128
+ in O
1129
+ general O
1130
+ a O
1131
+ system O
1132
+ with O
1133
+ fewer O
1134
+ equations B-Math
1135
+ than O
1136
+ unknowns O
1137
+ has O
1138
+ infinitely O
1139
+ many O
1140
+ solutions O
1141
+ but O
1142
+ it O
1143
+ may O
1144
+ have O
1145
+ no O
1146
+ solutio O
1147
+
1148
+ it O
1149
+ has O
1150
+ been O
1151
+ shown O
1152
+ that O
1153
+ the O
1154
+ two O
1155
+ approaches O
1156
+ are O
1157
+ essentially O
1158
+ equivalent B-Math
1159
+
1160
+ most O
1161
+ of O
1162
+ the O
1163
+ theory O
1164
+ of O
1165
+ abelian B-Math
1166
+ groups I-Math
1167
+ may O
1168
+ be O
1169
+ extended O
1170
+ to O
1171
+ modules O
1172
+ over O
1173
+ a O
1174
+ principal O
1175
+ ideal O
1176
+ domai O
1177
+ may O
1178
+ be O
1179
+ extended O
1180
+ to O
1181
+ modules B-Math
1182
+ over O
1183
+ a O
1184
+ principal O
1185
+ ideal O
1186
+ domai O
1187
+
1188
+ nearly O
1189
+ all O
1190
+ scientific O
1191
+ computations O
1192
+ involve O
1193
+ linear B-Math
1194
+ algebra I-Math
1195
+
1196
+ the O
1197
+ modeling O
1198
+ of O
1199
+ ambient O
1200
+ space O
1201
+ is O
1202
+ based O
1203
+ on O
1204
+ geometry B-Math
1205
+
1206
+ in O
1207
+ this O
1208
+ new O
1209
+ at O
1210
+ that O
1211
+ time O
1212
+ geometry B-Math
1213
+ now O
1214
+ called O
1215
+ cartesian O
1216
+ geometry O
1217
+ points O
1218
+ are O
1219
+ represented O
1220
+ by O
1221
+ cartesian O
1222
+ coordinates O
1223
+ which O
1224
+ are O
1225
+ sequences O
1226
+ of O
1227
+ three O
1228
+ real O
1229
+ numbers O
1230
+ in O
1231
+ the O
1232
+ case O
1233
+ of O
1234
+ the O
1235
+ usual O
1236
+ threedimensional O
1237
+ spac O
1238
+ now O
1239
+ called O
1240
+ cartesian B-Math
1241
+ geometry I-Math
1242
+ points O
1243
+ are O
1244
+ represented O
1245
+ by O
1246
+ cartesian O
1247
+ coordinates O
1248
+ which O
1249
+ are O
1250
+ sequences O
1251
+ of O
1252
+ three O
1253
+ real O
1254
+ numbers O
1255
+ in O
1256
+ the O
1257
+ case O
1258
+ of O
1259
+ the O
1260
+ usual O
1261
+ threedimensional O
1262
+ spac O
1263
+
1264
+ for O
1265
+ more O
1266
+ details O
1267
+ see O
1268
+ linear B-Math
1269
+ equation I-Math
1270
+ over O
1271
+ a O
1272
+ rin O
1273
+ over O
1274
+ a O
1275
+ ring B-Math
1276
+
1277
+ hadamard O
1278
+ also O
1279
+ founded O
1280
+ the O
1281
+ modern O
1282
+ school O
1283
+ of O
1284
+ linear B-Math
1285
+ functional I-Math
1286
+ analysis I-Math
1287
+ further O
1288
+ developed O
1289
+ by O
1290
+ riesz O
1291
+ and O
1292
+ the O
1293
+ group O
1294
+ of O
1295
+ polish O
1296
+ mathematicians O
1297
+ around O
1298
+ stefan O
1299
+ banac O
1300
+
1301
+ to O
1302
+ have O
1303
+ a O
1304
+ vector B-Math
1305
+ space I-Math
1306
+ the O
1307
+ eight O
1308
+ following O
1309
+ axioms O
1310
+ must O
1311
+ be O
1312
+ satisfied O
1313
+ for O
1314
+ every O
1315
+ u O
1316
+ v O
1317
+ and O
1318
+ w O
1319
+ in O
1320
+ v O
1321
+ and O
1322
+ a O
1323
+ and O
1324
+ b O
1325
+ in O
1326
+
1327
+ these O
1328
+ two O
1329
+ cases O
1330
+ are O
1331
+ the O
1332
+ most O
1333
+ common O
1334
+ ones O
1335
+ but O
1336
+ vector B-Math
1337
+ spaces I-Math
1338
+ with O
1339
+ scalars O
1340
+ in O
1341
+ an O
1342
+ arbitrary O
1343
+ field O
1344
+ f O
1345
+ are O
1346
+ also O
1347
+ commonly O
1348
+ considere O
1349
+ with O
1350
+ scalars B-Math
1351
+ in O
1352
+ an O
1353
+ arbitrary O
1354
+ field O
1355
+ f O
1356
+ are O
1357
+ also O
1358
+ commonly O
1359
+ considere O
1360
+
1361
+ functional B-Math
1362
+ analysis I-Math
1363
+ is O
1364
+ a O
1365
+ branch O
1366
+ of O
1367
+ mathematical O
1368
+ analysis O
1369
+ the O
1370
+ core O
1371
+ of O
1372
+ which O
1373
+ is O
1374
+ formed O
1375
+ by O
1376
+ the O
1377
+ study O
1378
+ of O
1379
+ vector O
1380
+ spaces O
1381
+ endowed O
1382
+ with O
1383
+ some O
1384
+ kind O
1385
+ of O
1386
+ limitrelated O
1387
+ structure O
1388
+ for O
1389
+ example O
1390
+ inner O
1391
+ product O
1392
+ norm O
1393
+ or O
1394
+ topology O
1395
+ and O
1396
+ the O
1397
+ linear O
1398
+ functions O
1399
+ defined O
1400
+ on O
1401
+ these O
1402
+ spaces O
1403
+ and O
1404
+ suitably O
1405
+ respecting O
1406
+ these O
1407
+ structure O
1408
+ is O
1409
+ a O
1410
+ branch O
1411
+ of O
1412
+ mathematical B-Math
1413
+ analysis I-Math
1414
+ the O
1415
+ core O
1416
+ of O
1417
+ which O
1418
+ is O
1419
+ formed O
1420
+ by O
1421
+ the O
1422
+ study O
1423
+ of O
1424
+ vector O
1425
+ spaces O
1426
+ endowed O
1427
+ with O
1428
+ some O
1429
+ kind O
1430
+ of O
1431
+ limitrelated O
1432
+ structure O
1433
+ for O
1434
+ example O
1435
+ inner O
1436
+ product O
1437
+ norm O
1438
+ or O
1439
+ topology O
1440
+ and O
1441
+ the O
1442
+ linear O
1443
+ functions O
1444
+ defined O
1445
+ on O
1446
+ these O
1447
+ spaces O
1448
+ and O
1449
+ suitably O
1450
+ respecting O
1451
+ these O
1452
+ structure O
1453
+ the O
1454
+ core O
1455
+ of O
1456
+ which O
1457
+ is O
1458
+ formed O
1459
+ by O
1460
+ the O
1461
+ study O
1462
+ of O
1463
+ vector B-Math
1464
+ spaces I-Math
1465
+ endowed O
1466
+ with O
1467
+ some O
1468
+ kind O
1469
+ of O
1470
+ limitrelated O
1471
+ structure O
1472
+ for O
1473
+ example O
1474
+ inner O
1475
+ product O
1476
+ norm O
1477
+ or O
1478
+ topology O
1479
+ and O
1480
+ the O
1481
+ linear O
1482
+ functions O
1483
+ defined O
1484
+ on O
1485
+ these O
1486
+ spaces O
1487
+ and O
1488
+ suitably O
1489
+ respecting O
1490
+ these O
1491
+ structure O
1492
+ endowed O
1493
+ with O
1494
+ some O
1495
+ kind O
1496
+ of O
1497
+ limitrelated O
1498
+ structure O
1499
+ for O
1500
+ example O
1501
+ inner B-Math
1502
+ product I-Math
1503
+ norm O
1504
+ or O
1505
+ topology O
1506
+ and O
1507
+ the O
1508
+ linear O
1509
+ functions O
1510
+ defined O
1511
+ on O
1512
+ these O
1513
+ spaces O
1514
+ and O
1515
+ suitably O
1516
+ respecting O
1517
+ these O
1518
+ structure O
1519
+ norm B-Math
1520
+ or O
1521
+ topology O
1522
+ and O
1523
+ the O
1524
+ linear O
1525
+ functions O
1526
+ defined O
1527
+ on O
1528
+ these O
1529
+ spaces O
1530
+ and O
1531
+ suitably O
1532
+ respecting O
1533
+ these O
1534
+ structure O
1535
+ or O
1536
+ topology B-Math
1537
+ and O
1538
+ the O
1539
+ linear O
1540
+ functions O
1541
+ defined O
1542
+ on O
1543
+ these O
1544
+ spaces O
1545
+ and O
1546
+ suitably O
1547
+ respecting O
1548
+ these O
1549
+ structure O
1550
+ and O
1551
+ the O
1552
+ linear B-Math
1553
+ functions I-Math
1554
+ defined O
1555
+ on O
1556
+ these O
1557
+ spaces O
1558
+ and O
1559
+ suitably O
1560
+ respecting O
1561
+ these O
1562
+ structure O
1563
+
1564
+ the O
1565
+ usage O
1566
+ of O
1567
+ the O
1568
+ word O
1569
+ functional O
1570
+ as O
1571
+ a O
1572
+ noun O
1573
+ goes O
1574
+ back O
1575
+ to O
1576
+ the O
1577
+ calculus O
1578
+ of O
1579
+ variations B-Math
1580
+ implying O
1581
+ a O
1582
+ function O
1583
+ whose O
1584
+ argument O
1585
+ is O
1586
+ a O
1587
+ functio O
1588
+ implying O
1589
+ a O
1590
+ function O
1591
+ whose O
1592
+ argument O
1593
+ is O
1594
+ a O
1595
+ function B-Math
1596
+
1597
+ if O
1598
+ v O
1599
+ is O
1600
+ a O
1601
+ vector O
1602
+ space O
1603
+ over O
1604
+ a O
1605
+ field O
1606
+ k O
1607
+ and O
1608
+ if O
1609
+ w O
1610
+ is O
1611
+ a O
1612
+ subset O
1613
+ of O
1614
+ v O
1615
+ then O
1616
+ w O
1617
+ is O
1618
+ a O
1619
+ linear O
1620
+ subspace O
1621
+ of O
1622
+ v O
1623
+ if O
1624
+ under O
1625
+ the O
1626
+ operations O
1627
+ of O
1628
+ v O
1629
+ w O
1630
+ is O
1631
+ a O
1632
+ vector O
1633
+ space O
1634
+ over O
1635
+ k O
1636
+ equivalently O
1637
+ a O
1638
+ nonempty O
1639
+ subset O
1640
+ w O
1641
+ is O
1642
+ a O
1643
+ linear B-Math
1644
+ subspace I-Math
1645
+ of O
1646
+ v O
1647
+ if O
1648
+ whenever O
1649
+ w O
1650
+ w O
1651
+ are O
1652
+ elements O
1653
+ of O
1654
+ w O
1655
+ and O
1656
+ α O
1657
+ β O
1658
+ are O
1659
+ elements O
1660
+ of O
1661
+ k O
1662
+ it O
1663
+ follows O
1664
+ that O
1665
+ αw O
1666
+ βw O
1667
+ is O
1668
+ in O
1669
+ vector B-Math
1670
+ space I-Math
1671
+ ver O
1672
+ a O
1673
+ field O
1674
+ k O
1675
+ and O
1676
+ if O
1677
+ w O
1678
+ is O
1679
+ a O
1680
+ subset O
1681
+ of O
1682
+ v O
1683
+ then O
1684
+ w O
1685
+ is O
1686
+ a O
1687
+ linear O
1688
+ subspace O
1689
+ of O
1690
+ v O
1691
+ if O
1692
+ under O
1693
+ the O
1694
+ operations O
1695
+ of O
1696
+ v O
1697
+ w O
1698
+ is O
1699
+ a O
1700
+ vector O
1701
+ space O
1702
+ over O
1703
+ k O
1704
+ equivalently O
1705
+ a O
1706
+ nonempty O
1707
+ subset O
1708
+ w O
1709
+ is O
1710
+ a O
1711
+ linear O
1712
+ subspace O
1713
+ of O
1714
+ v O
1715
+ if O
1716
+ whenever O
1717
+ w O
1718
+ w O
1719
+ are O
1720
+ elements O
1721
+ of O
1722
+ w O
1723
+ and O
1724
+ α O
1725
+ β O
1726
+ are O
1727
+ elements O
1728
+ of O
1729
+ k O
1730
+ it O
1731
+ follows O
1732
+ that O
1733
+ αw O
1734
+ βw O
1735
+ is O
1736
+ in O
1737
+
1738
+ square B-Math
1739
+ matrices I-Math
1740
+ of O
1741
+ a O
1742
+ given O
1743
+ dimension O
1744
+ form O
1745
+ a O
1746
+ noncommutative O
1747
+ ring O
1748
+ which O
1749
+ is O
1750
+ one O
1751
+ of O
1752
+ the O
1753
+ most O
1754
+ common O
1755
+ examples O
1756
+ of O
1757
+ a O
1758
+ noncommutative O
1759
+ rin O
1760
+ of O
1761
+ a O
1762
+ given O
1763
+ dimension B-Math
1764
+ form O
1765
+ a O
1766
+ noncommutative O
1767
+ ring O
1768
+ which O
1769
+ is O
1770
+ one O
1771
+ of O
1772
+ the O
1773
+ most O
1774
+ common O
1775
+ examples O
1776
+ of O
1777
+ a O
1778
+ noncommutative O
1779
+ rin O
1780
+ form O
1781
+ a O
1782
+ noncommutative B-Math
1783
+ ring I-Math
1784
+ which O
1785
+ is O
1786
+ one O
1787
+ of O
1788
+ the O
1789
+ most O
1790
+ common O
1791
+ examples O
1792
+ of O
1793
+ a O
1794
+ noncommutative O
1795
+ rin O
1796
+
1797
+ for O
1798
+ instance O
1799
+ linear B-Math
1800
+ algebraic I-Math
1801
+ techniques O
1802
+ are O
1803
+ used O
1804
+ to O
1805
+ solve O
1806
+ systems O
1807
+ of O
1808
+ differential O
1809
+ equations O
1810
+ that O
1811
+ describe O
1812
+ fluid O
1813
+ motio O
1814
+ techniques O
1815
+ are O
1816
+ used O
1817
+ to O
1818
+ solve O
1819
+ systems O
1820
+ of O
1821
+ differential O
1822
+ equations O
1823
+ that O
1824
+ describe O
1825
+ fluid B-Attributes
1826
+ motion I-Attributes
1827
+
1828
+ linear B-Math
1829
+ algebra I-Math
1830
+ is O
1831
+ used O
1832
+ in O
1833
+ almost O
1834
+ all O
1835
+ areas O
1836
+ of O
1837
+ mathematics O
1838
+ thus O
1839
+ making O
1840
+ it O
1841
+ relevant O
1842
+ in O
1843
+ almost O
1844
+ all O
1845
+ scientific O
1846
+ domains O
1847
+ that O
1848
+ use O
1849
+ mathematic O
1850
+ is O
1851
+ used O
1852
+ in O
1853
+ almost O
1854
+ all O
1855
+ areas O
1856
+ of O
1857
+ mathematics B-Math
1858
+ thus O
1859
+ making O
1860
+ it O
1861
+ relevant O
1862
+ in O
1863
+ almost O
1864
+ all O
1865
+ scientific O
1866
+ domains O
1867
+ that O
1868
+ use O
1869
+ mathematic O
1870
+
1871
+ however O
1872
+ every O
1873
+ module B-Math
1874
+ is O
1875
+ a O
1876
+ cokernel O
1877
+ of O
1878
+ a O
1879
+ homomorphism O
1880
+ of O
1881
+ free O
1882
+ module O
txt_data/train.txt ADDED
@@ -0,0 +1,6963 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ equivalently O
2
+ a O
3
+ set O
4
+ b O
5
+ is O
6
+ a O
7
+ basis O
8
+ if O
9
+ its O
10
+ elements O
11
+ are O
12
+ linearly B-Math
13
+ independent I-Math
14
+ and O
15
+ every O
16
+ element O
17
+ of O
18
+ v O
19
+ is O
20
+ a O
21
+ linear O
22
+ combination O
23
+ of O
24
+ elements O
25
+ of O
26
+ and O
27
+ every O
28
+ element O
29
+ of O
30
+ v O
31
+ is O
32
+ a O
33
+ linear B-Math
34
+ combination I-Math
35
+ of O
36
+ elements O
37
+ of O
38
+
39
+ thus O
40
+ the O
41
+ solution B-Math
42
+ set I-Math
43
+ may O
44
+ be O
45
+ a O
46
+ plane O
47
+ a O
48
+ line O
49
+ a O
50
+ single O
51
+ point O
52
+ or O
53
+ the O
54
+ empty O
55
+ se O
56
+ may O
57
+ be O
58
+ a O
59
+ plane B-Math
60
+ a O
61
+ line O
62
+ a O
63
+ single O
64
+ point O
65
+ or O
66
+ the O
67
+ empty O
68
+ se O
69
+ a O
70
+ line B-Math
71
+ a O
72
+ single O
73
+ point O
74
+ or O
75
+ the O
76
+ empty O
77
+ se O
78
+ a O
79
+ single B-Math
80
+ point I-Math
81
+ or O
82
+ the O
83
+ empty O
84
+ se O
85
+ or O
86
+ the O
87
+ empty B-Math
88
+ set I-Math
89
+
90
+ the O
91
+ mathematical O
92
+ representation O
93
+ of O
94
+ a O
95
+ physical O
96
+ vector O
97
+ depends O
98
+ on O
99
+ the O
100
+ coordinate B-Math
101
+ system I-Math
102
+ used O
103
+ to O
104
+ describe O
105
+ i O
106
+ vector B-Math
107
+ depends O
108
+ on O
109
+ the O
110
+ coordinate O
111
+ system O
112
+ used O
113
+ to O
114
+ describe O
115
+ i O
116
+
117
+ in O
118
+ general O
119
+ a O
120
+ system O
121
+ with O
122
+ more O
123
+ equations B-Math
124
+ than O
125
+ unknowns O
126
+ has O
127
+ no O
128
+ solutio O
129
+ than O
130
+ unknowns O
131
+ has O
132
+ no O
133
+ solution B-Math
134
+
135
+ it O
136
+ was O
137
+ initially O
138
+ a O
139
+ subbranch O
140
+ of O
141
+ linear B-Math
142
+ algebra I-Math
143
+ but O
144
+ soon O
145
+ grew O
146
+ to O
147
+ include O
148
+ subjects O
149
+ related O
150
+ to O
151
+ graph O
152
+ theory O
153
+ algebra O
154
+ combinatorics O
155
+ and O
156
+ statistic O
157
+ but O
158
+ soon O
159
+ grew O
160
+ to O
161
+ include O
162
+ subjects O
163
+ related O
164
+ to O
165
+ graph B-Math
166
+ theory I-Math
167
+ algebra O
168
+ combinatorics O
169
+ and O
170
+ statistic O
171
+ algebra O
172
+ combinatorics O
173
+ and O
174
+ statistics B-Math
175
+ algebra B-Math
176
+ combinatorics O
177
+ and O
178
+ statistic O
179
+ combinatorics B-Math
180
+ and O
181
+ statistic O
182
+
183
+ for O
184
+ three O
185
+ variables O
186
+ each O
187
+ linear B-Math
188
+ equation I-Math
189
+ determines O
190
+ a O
191
+ plane O
192
+ in O
193
+ threedimensional O
194
+ space O
195
+ and O
196
+ the O
197
+ solution O
198
+ set O
199
+ is O
200
+ the O
201
+ intersection O
202
+ of O
203
+ these O
204
+ plane O
205
+ determines O
206
+ a O
207
+ plane B-Math
208
+ in O
209
+ threedimensional O
210
+ space O
211
+ and O
212
+ the O
213
+ solution O
214
+ set O
215
+ is O
216
+ the O
217
+ intersection O
218
+ of O
219
+ these O
220
+ plane O
221
+ in O
222
+ threedimensional O
223
+ space O
224
+ and O
225
+ the O
226
+ solution B-Math
227
+ set O
228
+ is O
229
+ the O
230
+ intersection O
231
+ of O
232
+ these O
233
+ plane O
234
+
235
+ matrices B-Math
236
+ are O
237
+ used O
238
+ in O
239
+ most O
240
+ areas O
241
+ of O
242
+ mathematics O
243
+ and O
244
+ most O
245
+ scientific O
246
+ fields O
247
+ either O
248
+ directly O
249
+ or O
250
+ through O
251
+ their O
252
+ use O
253
+ in O
254
+ geometry O
255
+ and O
256
+ numerical O
257
+ analysi O
258
+ are O
259
+ used O
260
+ in O
261
+ most O
262
+ areas O
263
+ of O
264
+ mathematics B-Math
265
+ and O
266
+ most O
267
+ scientific O
268
+ fields O
269
+ either O
270
+ directly O
271
+ or O
272
+ through O
273
+ their O
274
+ use O
275
+ in O
276
+ geometry O
277
+ and O
278
+ numerical O
279
+ analysi O
280
+ and O
281
+ most O
282
+ scientific O
283
+ fields O
284
+ either O
285
+ directly O
286
+ or O
287
+ through O
288
+ their O
289
+ use O
290
+ in O
291
+ geometry O
292
+ and O
293
+ numerical B-Math
294
+ analysis I-Math
295
+
296
+ these O
297
+ are O
298
+ vector B-Math
299
+ spaces I-Math
300
+ with O
301
+ additional O
302
+ structure O
303
+ such O
304
+ as O
305
+ hilbert O
306
+ space O
307
+ with O
308
+ additional O
309
+ structure O
310
+ such O
311
+ as O
312
+ hilbert B-Math
313
+ spaces I-Math
314
+
315
+ these O
316
+ are O
317
+ called O
318
+ the O
319
+ trivial B-Math
320
+ subspaces I-Math
321
+ f O
322
+ the O
323
+ vector O
324
+ spac O
325
+ f O
326
+ the O
327
+ vector B-Math
328
+ space I-Math
329
+
330
+ many O
331
+ vector B-Math
332
+ spaces I-Math
333
+ that O
334
+ are O
335
+ considered O
336
+ in O
337
+ mathematics O
338
+ are O
339
+ also O
340
+ endowed O
341
+ with O
342
+ other O
343
+ structure O
344
+ that O
345
+ are O
346
+ considered O
347
+ in O
348
+ mathematics B-Math
349
+ are O
350
+ also O
351
+ endowed O
352
+ with O
353
+ other O
354
+ structure O
355
+
356
+ other O
357
+ vectorlike O
358
+ objects O
359
+ that O
360
+ describe O
361
+ physical O
362
+ quantities O
363
+ and O
364
+ transform O
365
+ in O
366
+ a O
367
+ similar O
368
+ way O
369
+ under O
370
+ changes O
371
+ of O
372
+ the O
373
+ coordinate O
374
+ system O
375
+ include O
376
+ pseudovectors O
377
+ and O
378
+ tensors B-Math
379
+
380
+ analysis O
381
+ evolved O
382
+ from O
383
+ calculus B-Math
384
+ which O
385
+ involves O
386
+ the O
387
+ elementary O
388
+ concepts O
389
+ and O
390
+ techniques O
391
+ of O
392
+ analysi O
393
+ analysis B-Math
394
+ evolved O
395
+ from O
396
+ calculus O
397
+ which O
398
+ involves O
399
+ the O
400
+ elementary O
401
+ concepts O
402
+ and O
403
+ techniques O
404
+ of O
405
+ analysi O
406
+
407
+ this O
408
+ line O
409
+ of O
410
+ inquiry O
411
+ naturally O
412
+ leads O
413
+ to O
414
+ the O
415
+ idea O
416
+ of O
417
+ the O
418
+ dual B-Math
419
+ space I-Math
420
+ the O
421
+ vector O
422
+ space O
423
+ v O
424
+ consisting O
425
+ of O
426
+ linear O
427
+ maps O
428
+ f O
429
+ v O
430
+ f O
431
+ where O
432
+ f O
433
+ is O
434
+ the O
435
+ field O
436
+ of O
437
+ scalar O
438
+ the O
439
+ vector O
440
+ space O
441
+ v O
442
+ consisting O
443
+ of O
444
+ linear B-Math
445
+ maps I-Math
446
+ f O
447
+ v O
448
+ f O
449
+ where O
450
+ f O
451
+ is O
452
+ the O
453
+ field O
454
+ of O
455
+ scalar O
456
+ vector B-Math
457
+ space I-Math
458
+ v O
459
+ consisting O
460
+ of O
461
+ linear O
462
+ maps O
463
+ f O
464
+ v O
465
+ f O
466
+ where O
467
+ f O
468
+ is O
469
+ the O
470
+ field O
471
+ of O
472
+ scalar O
473
+
474
+ most O
475
+ of O
476
+ this O
477
+ article O
478
+ deals O
479
+ with O
480
+ linear B-Math
481
+ combinations I-Math
482
+ in O
483
+ the O
484
+ context O
485
+ of O
486
+ a O
487
+ vector O
488
+ space O
489
+ over O
490
+ a O
491
+ field O
492
+ with O
493
+ some O
494
+ generalizations O
495
+ given O
496
+ at O
497
+ the O
498
+ end O
499
+ of O
500
+ the O
501
+ articl O
502
+ in O
503
+ the O
504
+ context O
505
+ of O
506
+ a O
507
+ vector B-Math
508
+ space I-Math
509
+ over O
510
+ a O
511
+ field O
512
+ with O
513
+ some O
514
+ generalizations O
515
+ given O
516
+ at O
517
+ the O
518
+ end O
519
+ of O
520
+ the O
521
+ articl O
522
+
523
+ in O
524
+ classical B-Math
525
+ geometry I-Math
526
+ the O
527
+ involved O
528
+ vector O
529
+ spaces O
530
+ are O
531
+ vector O
532
+ spaces O
533
+ over O
534
+ the O
535
+ reals O
536
+ but O
537
+ the O
538
+ constructions O
539
+ may O
540
+ be O
541
+ extended O
542
+ to O
543
+ vector O
544
+ spaces O
545
+ over O
546
+ any O
547
+ field O
548
+ allowing O
549
+ considering O
550
+ geometry O
551
+ over O
552
+ arbitrary O
553
+ fields O
554
+ including O
555
+ finite O
556
+ field O
557
+ the O
558
+ involved O
559
+ vector B-Math
560
+ spaces I-Math
561
+ are O
562
+ vector O
563
+ spaces O
564
+ over O
565
+ the O
566
+ reals O
567
+ but O
568
+ the O
569
+ constructions O
570
+ may O
571
+ be O
572
+ extended O
573
+ to O
574
+ vector O
575
+ spaces O
576
+ over O
577
+ any O
578
+ field O
579
+ allowing O
580
+ considering O
581
+ geometry O
582
+ over O
583
+ arbitrary O
584
+ fields O
585
+ including O
586
+ finite O
587
+ field O
588
+ are O
589
+ vector O
590
+ spaces O
591
+ over O
592
+ the O
593
+ reals O
594
+ but O
595
+ the O
596
+ constructions O
597
+ may O
598
+ be O
599
+ extended O
600
+ to O
601
+ vector O
602
+ spaces O
603
+ over O
604
+ any O
605
+ field B-Math
606
+ allowing O
607
+ considering O
608
+ geometry O
609
+ over O
610
+ arbitrary O
611
+ fields O
612
+ including O
613
+ finite O
614
+ field O
615
+
616
+ this O
617
+ is O
618
+ also O
619
+ the O
620
+ case O
621
+ of O
622
+ homographies O
623
+ and O
624
+ möbius O
625
+ transformations O
626
+ when O
627
+ considered O
628
+ as O
629
+ transformations O
630
+ of O
631
+ a O
632
+ projective B-Math
633
+ space I-Math
634
+
635
+ the O
636
+ third O
637
+ system O
638
+ has O
639
+ no O
640
+ solutions O
641
+ since O
642
+ the O
643
+ three O
644
+ lines O
645
+ share O
646
+ no O
647
+ common O
648
+ point B-Math
649
+
650
+ the O
651
+ basic O
652
+ objects O
653
+ of O
654
+ geometry B-Math
655
+ which O
656
+ are O
657
+ lines O
658
+ and O
659
+ planes O
660
+ are O
661
+ represented O
662
+ by O
663
+ linear O
664
+ equation O
665
+ which O
666
+ are O
667
+ lines B-Math
668
+ and O
669
+ planes O
670
+ are O
671
+ represented O
672
+ by O
673
+ linear O
674
+ equation O
675
+ and O
676
+ planes B-Math
677
+ are O
678
+ represented O
679
+ by O
680
+ linear O
681
+ equation O
682
+ are O
683
+ represented O
684
+ by O
685
+ linear B-Math
686
+ equations I-Math
687
+
688
+ this O
689
+ is O
690
+ also O
691
+ the O
692
+ case O
693
+ of O
694
+ topological B-Math
695
+ vector I-Math
696
+ spaces I-Math
697
+ which O
698
+ include O
699
+ function O
700
+ spaces O
701
+ inner O
702
+ product O
703
+ spaces O
704
+ normed O
705
+ spaces O
706
+ hilbert O
707
+ spaces O
708
+ and O
709
+ banach O
710
+ space O
711
+ which O
712
+ include O
713
+ function O
714
+ spaces O
715
+ inner O
716
+ product O
717
+ spaces O
718
+ normed O
719
+ spaces O
720
+ hilbert B-Math
721
+ spaces I-Math
722
+ and O
723
+ banach O
724
+ space O
725
+ and O
726
+ banach B-Math
727
+ spaces I-Math
728
+
729
+ the O
730
+ linear B-Math
731
+ span I-Math
732
+ can O
733
+ be O
734
+ characterized O
735
+ either O
736
+ as O
737
+ the O
738
+ intersection O
739
+ of O
740
+ all O
741
+ linear O
742
+ subspaces O
743
+ that O
744
+ contain O
745
+ s O
746
+ or O
747
+ as O
748
+ the O
749
+ smallest O
750
+ subspace O
751
+ containing O
752
+ s O
753
+ the O
754
+ linear O
755
+ span O
756
+ of O
757
+ a O
758
+ set O
759
+ of O
760
+ vectors O
761
+ is O
762
+ therefore O
763
+ a O
764
+ vector O
765
+ space O
766
+ itsel O
767
+ can O
768
+ be O
769
+ characterized O
770
+ either O
771
+ as O
772
+ the O
773
+ intersection O
774
+ of O
775
+ all O
776
+ linear B-Math
777
+ subspaces I-Math
778
+ that O
779
+ contain O
780
+ s O
781
+ or O
782
+ as O
783
+ the O
784
+ smallest O
785
+ subspace O
786
+ containing O
787
+ s O
788
+ the O
789
+ linear O
790
+ span O
791
+ of O
792
+ a O
793
+ set O
794
+ of O
795
+ vectors O
796
+ is O
797
+ therefore O
798
+ a O
799
+ vector O
800
+ space O
801
+ itsel O
802
+ that O
803
+ contain O
804
+ s O
805
+ or O
806
+ as O
807
+ the O
808
+ smallest O
809
+ subspace O
810
+ containing O
811
+ s O
812
+ the O
813
+ linear O
814
+ span O
815
+ of O
816
+ a O
817
+ set O
818
+ of O
819
+ vectors O
820
+ is O
821
+ therefore O
822
+ a O
823
+ vector B-Math
824
+ space I-Math
825
+ itsel O
826
+ vectors B-Math
827
+ s O
828
+ therefore O
829
+ a O
830
+ vector O
831
+ space O
832
+ itsel O
833
+
834
+ it O
835
+ is O
836
+ possible O
837
+ for O
838
+ a O
839
+ system O
840
+ of O
841
+ two O
842
+ equations O
843
+ and O
844
+ two O
845
+ unknowns O
846
+ to O
847
+ have O
848
+ no O
849
+ solution O
850
+ if O
851
+ the O
852
+ two O
853
+ lines O
854
+ are O
855
+ parallel B-Math
856
+ or O
857
+ for O
858
+ a O
859
+ system O
860
+ of O
861
+ three O
862
+ equations O
863
+ and O
864
+ two O
865
+ unknowns O
866
+ to O
867
+ be O
868
+ solvable O
869
+ if O
870
+ the O
871
+ three O
872
+ lines O
873
+ intersect O
874
+ at O
875
+ a O
876
+ single O
877
+ poin O
878
+ solution B-Math
879
+ if O
880
+ the O
881
+ two O
882
+ lines O
883
+ are O
884
+ parallel O
885
+ or O
886
+ for O
887
+ a O
888
+ system O
889
+ of O
890
+ three O
891
+ equations O
892
+ and O
893
+ two O
894
+ unknowns O
895
+ to O
896
+ be O
897
+ solvable O
898
+ if O
899
+ the O
900
+ three O
901
+ lines O
902
+ intersect O
903
+ at O
904
+ a O
905
+ single O
906
+ poin O
907
+ if O
908
+ the O
909
+ two O
910
+ lines O
911
+ are O
912
+ parallel O
913
+ or O
914
+ for O
915
+ a O
916
+ system O
917
+ of O
918
+ three O
919
+ equations O
920
+ and O
921
+ two O
922
+ unknowns O
923
+ to O
924
+ be O
925
+ solvable O
926
+ if O
927
+ the O
928
+ three O
929
+ lines O
930
+ intersect O
931
+ at O
932
+ a O
933
+ single O
934
+ point B-Math
935
+
936
+ in O
937
+ mathematics O
938
+ a O
939
+ linear B-Math
940
+ combination I-Math
941
+ is O
942
+ an O
943
+ expression O
944
+ constructed O
945
+ from O
946
+ a O
947
+ set O
948
+ of O
949
+ terms O
950
+ by O
951
+ multiplying O
952
+ each O
953
+ term O
954
+ by O
955
+ a O
956
+ constant O
957
+ and O
958
+ adding O
959
+ the O
960
+ results O
961
+ e O
962
+ is O
963
+ an O
964
+ expression B-Math
965
+ constructed O
966
+ from O
967
+ a O
968
+ set O
969
+ of O
970
+ terms O
971
+ by O
972
+ multiplying O
973
+ each O
974
+ term O
975
+ by O
976
+ a O
977
+ constant O
978
+ and O
979
+ adding O
980
+ the O
981
+ results O
982
+ e O
983
+
984
+ real O
985
+ vector O
986
+ space O
987
+ and O
988
+ complex O
989
+ vector O
990
+ space O
991
+ are O
992
+ kinds O
993
+ of O
994
+ vector B-Math
995
+ spaces I-Math
996
+ ased O
997
+ on O
998
+ different O
999
+ kinds O
1000
+ of O
1001
+ scalars O
1002
+ real O
1003
+ coordinate O
1004
+ space O
1005
+ or O
1006
+ complex O
1007
+ coordinate O
1008
+ spac O
1009
+ ased O
1010
+ on O
1011
+ different O
1012
+ kinds O
1013
+ of O
1014
+ scalars O
1015
+ real B-Math
1016
+ coordinate I-Math
1017
+ space I-Math
1018
+ r O
1019
+ complex O
1020
+ coordinate O
1021
+ spac O
1022
+ r O
1023
+ complex B-Math
1024
+ coordinate I-Math
1025
+ space I-Math
1026
+
1027
+ most O
1028
+ geometric B-Math
1029
+ transformation I-Math
1030
+ such O
1031
+ as O
1032
+ translations O
1033
+ rotations O
1034
+ reflections O
1035
+ rigid O
1036
+ motions O
1037
+ isometries O
1038
+ and O
1039
+ projections O
1040
+ transform O
1041
+ lines O
1042
+ into O
1043
+ line O
1044
+ such O
1045
+ as O
1046
+ translations B-Attributes
1047
+ rotations O
1048
+ reflections O
1049
+ rigid O
1050
+ motions O
1051
+ isometries O
1052
+ and O
1053
+ projections O
1054
+ transform O
1055
+ lines O
1056
+ into O
1057
+ line O
1058
+ rotations B-Attributes
1059
+ reflections O
1060
+ rigid O
1061
+ motions O
1062
+ isometries O
1063
+ and O
1064
+ projections O
1065
+ transform O
1066
+ lines O
1067
+ into O
1068
+ line O
1069
+ reflections B-Attributes
1070
+ rigid O
1071
+ motions O
1072
+ isometries O
1073
+ and O
1074
+ projections O
1075
+ transform O
1076
+ lines O
1077
+ into O
1078
+ line O
1079
+ rigid B-Attributes
1080
+ motions I-Attributes
1081
+ isometries O
1082
+ and O
1083
+ projections O
1084
+ transform O
1085
+ lines O
1086
+ into O
1087
+ line O
1088
+ isometries B-Attributes
1089
+ and O
1090
+ projections O
1091
+ transform O
1092
+ lines O
1093
+ into O
1094
+ line O
1095
+ and O
1096
+ projections B-Attributes
1097
+ transform I-Attributes
1098
+ lines O
1099
+ into O
1100
+ line O
1101
+
1102
+ moreover O
1103
+ it O
1104
+ maps O
1105
+ linear B-Math
1106
+ subspaces I-Math
1107
+ in O
1108
+ onto O
1109
+ linear O
1110
+ subspaces O
1111
+ in O
1112
+ possibly O
1113
+ of O
1114
+ a O
1115
+ lower O
1116
+ dimension O
1117
+ for O
1118
+ example O
1119
+ it O
1120
+ maps O
1121
+ a O
1122
+ plane O
1123
+ through O
1124
+ the O
1125
+ origin O
1126
+ in O
1127
+ to O
1128
+ either O
1129
+ a O
1130
+ plane O
1131
+ through O
1132
+ the O
1133
+ origin O
1134
+ in O
1135
+ a O
1136
+ line O
1137
+ through O
1138
+ the O
1139
+ origin O
1140
+ in O
1141
+ or O
1142
+ just O
1143
+ the O
1144
+ origin O
1145
+ i O
1146
+ in O
1147
+ onto O
1148
+ linear O
1149
+ subspaces O
1150
+ in O
1151
+ possibly O
1152
+ of O
1153
+ a O
1154
+ lower O
1155
+ dimension B-Math
1156
+ for O
1157
+ example O
1158
+ it O
1159
+ maps O
1160
+ a O
1161
+ plane O
1162
+ through O
1163
+ the O
1164
+ origin O
1165
+ in O
1166
+ to O
1167
+ either O
1168
+ a O
1169
+ plane O
1170
+ through O
1171
+ the O
1172
+ origin O
1173
+ in O
1174
+ a O
1175
+ line O
1176
+ through O
1177
+ the O
1178
+ origin O
1179
+ in O
1180
+ or O
1181
+ just O
1182
+ the O
1183
+ origin O
1184
+ i O
1185
+
1186
+ a O
1187
+ system O
1188
+ of O
1189
+ linear B-Math
1190
+ equations I-Math
1191
+ behave O
1192
+ differently O
1193
+ from O
1194
+ the O
1195
+ general O
1196
+ case O
1197
+ if O
1198
+ the O
1199
+ equations O
1200
+ are O
1201
+ linearly O
1202
+ dependent O
1203
+ or O
1204
+ if O
1205
+ it O
1206
+ is O
1207
+ inconsistent O
1208
+ and O
1209
+ has O
1210
+ no O
1211
+ more O
1212
+ equations O
1213
+ than O
1214
+ unknown O
1215
+ behave O
1216
+ differently O
1217
+ from O
1218
+ the O
1219
+ general O
1220
+ case O
1221
+ if O
1222
+ the O
1223
+ equations O
1224
+ are O
1225
+ linearly B-Math
1226
+ dependent I-Math
1227
+ or O
1228
+ if O
1229
+ it O
1230
+ is O
1231
+ inconsistent O
1232
+ and O
1233
+ has O
1234
+ no O
1235
+ more O
1236
+ equations O
1237
+ than O
1238
+ unknown O
1239
+
1240
+ the O
1241
+ binary O
1242
+ operation O
1243
+ called O
1244
+ vector O
1245
+ addition O
1246
+ or O
1247
+ simply O
1248
+ addition O
1249
+ assigns O
1250
+ to O
1251
+ any O
1252
+ two O
1253
+ vectors B-Math
1254
+ v O
1255
+ and O
1256
+ w O
1257
+ in O
1258
+ v O
1259
+ a O
1260
+ third O
1261
+ vector O
1262
+ in O
1263
+ v O
1264
+ which O
1265
+ is O
1266
+ commonly O
1267
+ written O
1268
+ as O
1269
+ v O
1270
+ w O
1271
+ and O
1272
+ called O
1273
+ the O
1274
+ sum O
1275
+ of O
1276
+ these O
1277
+ two O
1278
+ vector O
1279
+
1280
+ this O
1281
+ point O
1282
+ of O
1283
+ view O
1284
+ turned O
1285
+ out O
1286
+ to O
1287
+ be O
1288
+ particularly O
1289
+ useful O
1290
+ for O
1291
+ the O
1292
+ study O
1293
+ of O
1294
+ differential B-Math
1295
+ and I-Math
1296
+ integral I-Math
1297
+ equations I-Math
1298
+
1299
+ if O
1300
+ such O
1301
+ a O
1302
+ linear B-Math
1303
+ combination I-Math
1304
+ exists O
1305
+ then O
1306
+ the O
1307
+ vectors O
1308
+ are O
1309
+ said O
1310
+ to O
1311
+ be O
1312
+ linearly O
1313
+ dependen O
1314
+ exists O
1315
+ then O
1316
+ the O
1317
+ vectors O
1318
+ are O
1319
+ said O
1320
+ to O
1321
+ be O
1322
+ linearly B-Math
1323
+ dependent I-Math
1324
+
1325
+ this O
1326
+ is O
1327
+ the O
1328
+ case O
1329
+ with O
1330
+ mechanics O
1331
+ and O
1332
+ robotics O
1333
+ for O
1334
+ describing O
1335
+ rigid B-Attributes
1336
+ body I-Attributes
1337
+ dynamics O
1338
+ geodesy O
1339
+ for O
1340
+ describing O
1341
+ earth O
1342
+ shape O
1343
+ perspectivity O
1344
+ computer O
1345
+ vision O
1346
+ and O
1347
+ computer O
1348
+ graphics O
1349
+ for O
1350
+ describing O
1351
+ the O
1352
+ relationship O
1353
+ between O
1354
+ a O
1355
+ scene O
1356
+ and O
1357
+ its O
1358
+ plane O
1359
+ representation O
1360
+ and O
1361
+ many O
1362
+ other O
1363
+ scientific O
1364
+ domain O
1365
+
1366
+ many O
1367
+ other O
1368
+ physical O
1369
+ quantities O
1370
+ can O
1371
+ be O
1372
+ usefully O
1373
+ thought O
1374
+ of O
1375
+ as O
1376
+ vectors B-Math
1377
+
1378
+ all O
1379
+ these O
1380
+ questions O
1381
+ can O
1382
+ be O
1383
+ solved O
1384
+ by O
1385
+ using O
1386
+ gaussian B-Math
1387
+ elimination I-Math
1388
+ or O
1389
+ some O
1390
+ variant O
1391
+ of O
1392
+ this O
1393
+ algorith O
1394
+
1395
+ most O
1396
+ physical O
1397
+ phenomena O
1398
+ are O
1399
+ modeled O
1400
+ by O
1401
+ partial B-Math
1402
+ differential I-Math
1403
+ equations I-Math
1404
+
1405
+ the O
1406
+ binary O
1407
+ function O
1408
+ called O
1409
+ scalar O
1410
+ multiplicationassigns B-Math
1411
+ to O
1412
+ any O
1413
+ scalar O
1414
+ a O
1415
+ in O
1416
+ f O
1417
+ and O
1418
+ any O
1419
+ vector O
1420
+ v O
1421
+ in O
1422
+ v O
1423
+ another O
1424
+ vector O
1425
+ in O
1426
+ v O
1427
+ which O
1428
+ is O
1429
+ denoted O
1430
+ a O
1431
+ to O
1432
+ any O
1433
+ scalar B-Math
1434
+ a O
1435
+ in O
1436
+ f O
1437
+ and O
1438
+ any O
1439
+ vector O
1440
+ v O
1441
+ in O
1442
+ v O
1443
+ another O
1444
+ vector O
1445
+ in O
1446
+ v O
1447
+ which O
1448
+ is O
1449
+ denoted O
1450
+ a O
1451
+ a O
1452
+ in O
1453
+ f O
1454
+ and O
1455
+ any O
1456
+ vector B-Math
1457
+ v O
1458
+ in O
1459
+ v O
1460
+ another O
1461
+ vector O
1462
+ in O
1463
+ v O
1464
+ which O
1465
+ is O
1466
+ denoted O
1467
+ a O
1468
+
1469
+ finitedimensional O
1470
+ vector B-Math
1471
+ spaces I-Math
1472
+ occur O
1473
+ naturally O
1474
+ in O
1475
+ geometry O
1476
+ and O
1477
+ related O
1478
+ area O
1479
+ occur O
1480
+ naturally O
1481
+ in O
1482
+ geometry B-Math
1483
+ and O
1484
+ related O
1485
+ area O
1486
+ finitedimensional B-Attributes
1487
+ vector O
1488
+ spaces O
1489
+ occur O
1490
+ naturally O
1491
+ in O
1492
+ geometry O
1493
+ and O
1494
+ related O
1495
+ area O
1496
+
1497
+ these O
1498
+ equations O
1499
+ often O
1500
+ complex O
1501
+ and O
1502
+ nonlinear O
1503
+ can O
1504
+ be O
1505
+ linearized O
1506
+ using O
1507
+ linear B-Math
1508
+ algebra I-Math
1509
+ methods O
1510
+ allowing O
1511
+ for O
1512
+ simpler O
1513
+ solutions O
1514
+ and O
1515
+ analyse O
1516
+
1517
+ however O
1518
+ the O
1519
+ general O
1520
+ concept O
1521
+ of O
1522
+ a O
1523
+ functional B-Math
1524
+ had O
1525
+ previously O
1526
+ been O
1527
+ introduced O
1528
+ in O
1529
+ by O
1530
+ the O
1531
+ italian O
1532
+ mathematician O
1533
+ and O
1534
+ physicist O
1535
+ vito O
1536
+ volterr O
1537
+
1538
+ this O
1539
+ means O
1540
+ that O
1541
+ for O
1542
+ two O
1543
+ vector B-Math
1544
+ spaces I-Math
1545
+ over O
1546
+ a O
1547
+ given O
1548
+ field O
1549
+ and O
1550
+ with O
1551
+ the O
1552
+ same O
1553
+ dimension O
1554
+ the O
1555
+ properties O
1556
+ that O
1557
+ depend O
1558
+ only O
1559
+ on O
1560
+ the O
1561
+ vectorspace O
1562
+ structure O
1563
+ are O
1564
+ exactly O
1565
+ the O
1566
+ same O
1567
+ technically O
1568
+ the O
1569
+ vector O
1570
+ spaces O
1571
+ are O
1572
+ isomorphi O
1573
+ over O
1574
+ a O
1575
+ given O
1576
+ field O
1577
+ and O
1578
+ with O
1579
+ the O
1580
+ same O
1581
+ dimension O
1582
+ the O
1583
+ properties O
1584
+ that O
1585
+ depend O
1586
+ only O
1587
+ on O
1588
+ the O
1589
+ vectorspace O
1590
+ structure O
1591
+ are O
1592
+ exactly O
1593
+ the O
1594
+ same O
1595
+ technically O
1596
+ the O
1597
+ vector O
1598
+ spaces O
1599
+ are O
1600
+ isomorphic B-Attributes
1601
+ dimension B-Math
1602
+ he O
1603
+ properties O
1604
+ that O
1605
+ depend O
1606
+ only O
1607
+ on O
1608
+ the O
1609
+ vectorspace O
1610
+ structure O
1611
+ are O
1612
+ exactly O
1613
+ the O
1614
+ same O
1615
+ technically O
1616
+ the O
1617
+ vector O
1618
+ spaces O
1619
+ are O
1620
+ isomorphi O
1621
+
1622
+ vector B-Math
1623
+ spaces I-Math
1624
+ generalize O
1625
+ euclidean O
1626
+ vectors O
1627
+ which O
1628
+ allow O
1629
+ modeling O
1630
+ of O
1631
+ physical O
1632
+ quantities O
1633
+ such O
1634
+ as O
1635
+ forces O
1636
+ and O
1637
+ velocity O
1638
+ that O
1639
+ have O
1640
+ not O
1641
+ only O
1642
+ a O
1643
+ magnitude O
1644
+ but O
1645
+ also O
1646
+ a O
1647
+ directio O
1648
+ generalize O
1649
+ euclidean O
1650
+ vectors O
1651
+ which O
1652
+ allow O
1653
+ modeling O
1654
+ of O
1655
+ physical O
1656
+ quantities O
1657
+ such O
1658
+ as O
1659
+ forces O
1660
+ and O
1661
+ velocity O
1662
+ that O
1663
+ have O
1664
+ not O
1665
+ only O
1666
+ a O
1667
+ magnitude B-Attributes
1668
+ but O
1669
+ also O
1670
+ a O
1671
+ directio O
1672
+ but O
1673
+ also O
1674
+ a O
1675
+ direction B-Attributes
1676
+ vectors B-Math
1677
+ which O
1678
+ allow O
1679
+ modeling O
1680
+ of O
1681
+ physical O
1682
+ quantities O
1683
+ such O
1684
+ as O
1685
+ forces O
1686
+ and O
1687
+ velocity O
1688
+ that O
1689
+ have O
1690
+ not O
1691
+ only O
1692
+ a O
1693
+ magnitude O
1694
+ but O
1695
+ also O
1696
+ a O
1697
+ directio O
1698
+
1699
+ this O
1700
+ is O
1701
+ important O
1702
+ because O
1703
+ if O
1704
+ we O
1705
+ have O
1706
+ m O
1707
+ independent B-Math
1708
+ vectors I-Math
1709
+ a O
1710
+ solution O
1711
+ is O
1712
+ guaranteed O
1713
+ regardless O
1714
+ of O
1715
+ the O
1716
+ righthand O
1717
+ side O
1718
+ and O
1719
+ otherwise O
1720
+ not O
1721
+ guarantee O
1722
+
1723
+ many O
1724
+ algebraic B-Math
1725
+ operations I-Math
1726
+ on O
1727
+ real O
1728
+ numbers O
1729
+ such O
1730
+ as O
1731
+ addition O
1732
+ subtraction O
1733
+ multiplication O
1734
+ and O
1735
+ negation O
1736
+ have O
1737
+ close O
1738
+ analogues O
1739
+ for O
1740
+ vectors O
1741
+ operations O
1742
+ which O
1743
+ obey O
1744
+ the O
1745
+ familiar O
1746
+ algebraic O
1747
+ laws O
1748
+ of O
1749
+ commutativity O
1750
+ associativity O
1751
+ and O
1752
+ distributivit O
1753
+ on O
1754
+ real O
1755
+ numbers O
1756
+ such O
1757
+ as O
1758
+ addition O
1759
+ subtraction B-Attributes
1760
+ multiplication O
1761
+ and O
1762
+ negation O
1763
+ have O
1764
+ close O
1765
+ analogues O
1766
+ for O
1767
+ vectors O
1768
+ operations O
1769
+ which O
1770
+ obey O
1771
+ the O
1772
+ familiar O
1773
+ algebraic O
1774
+ laws O
1775
+ of O
1776
+ commutativity O
1777
+ associativity O
1778
+ and O
1779
+ distributivit O
1780
+ addition B-Attributes
1781
+ subtraction O
1782
+ multiplication O
1783
+ and O
1784
+ negation O
1785
+ have O
1786
+ close O
1787
+ analogues O
1788
+ for O
1789
+ vectors O
1790
+ operations O
1791
+ which O
1792
+ obey O
1793
+ the O
1794
+ familiar O
1795
+ algebraic O
1796
+ laws O
1797
+ of O
1798
+ commutativity O
1799
+ associativity O
1800
+ and O
1801
+ distributivit O
1802
+ subtraction O
1803
+ multiplication B-Attributes
1804
+ and O
1805
+ negation O
1806
+ have O
1807
+ close O
1808
+ analogues O
1809
+ for O
1810
+ vectors O
1811
+ operations O
1812
+ which O
1813
+ obey O
1814
+ the O
1815
+ familiar O
1816
+ algebraic O
1817
+ laws O
1818
+ of O
1819
+ commutativity O
1820
+ associativity O
1821
+ and O
1822
+ distributivit O
1823
+ and O
1824
+ negation B-Attributes
1825
+ have O
1826
+ close O
1827
+ analogues O
1828
+ for O
1829
+ vectors O
1830
+ operations O
1831
+ which O
1832
+ obey O
1833
+ the O
1834
+ familiar O
1835
+ algebraic O
1836
+ laws O
1837
+ of O
1838
+ commutativity O
1839
+ associativity O
1840
+ and O
1841
+ distributivit O
1842
+ have O
1843
+ close O
1844
+ analogues O
1845
+ for O
1846
+ vectors O
1847
+ operations O
1848
+ which O
1849
+ obey O
1850
+ the O
1851
+ familiar O
1852
+ algebraic O
1853
+ laws O
1854
+ of O
1855
+ commutativity B-Attributes
1856
+ associativity O
1857
+ and O
1858
+ distributivit O
1859
+ associativity B-Attributes
1860
+ and O
1861
+ distributivit O
1862
+ and O
1863
+ distributivity B-Attributes
1864
+
1865
+ the O
1866
+ magnitude O
1867
+ of O
1868
+ the O
1869
+ vector B-Math
1870
+ is O
1871
+ the O
1872
+ distance O
1873
+ between O
1874
+ the O
1875
+ two O
1876
+ points O
1877
+ and O
1878
+ the O
1879
+ direction O
1880
+ refers O
1881
+ to O
1882
+ the O
1883
+ direction O
1884
+ of O
1885
+ displacement O
1886
+ from O
1887
+ a O
1888
+ to O
1889
+ is O
1890
+ the O
1891
+ distance B-Attributes
1892
+ between O
1893
+ the O
1894
+ two O
1895
+ points O
1896
+ and O
1897
+ the O
1898
+ direction O
1899
+ refers O
1900
+ to O
1901
+ the O
1902
+ direction O
1903
+ of O
1904
+ displacement O
1905
+ from O
1906
+ a O
1907
+ to O
1908
+ between O
1909
+ the O
1910
+ two O
1911
+ points O
1912
+ and O
1913
+ the O
1914
+ direction B-Attributes
1915
+ refers O
1916
+ to O
1917
+ the O
1918
+ direction O
1919
+ of O
1920
+ displacement O
1921
+ from O
1922
+ a O
1923
+ to O
1924
+
1925
+ in O
1926
+ mathematics B-Math
1927
+ a O
1928
+ matrix O
1929
+ p O
1930
+ a O
1931
+ matrix B-Math
1932
+ p O
1933
+
1934
+ the O
1935
+ concept O
1936
+ of O
1937
+ vector B-Math
1938
+ spaces I-Math
1939
+ is O
1940
+ fundamental O
1941
+ for O
1942
+ linear O
1943
+ algebra O
1944
+ together O
1945
+ with O
1946
+ the O
1947
+ concept O
1948
+ of O
1949
+ matrices O
1950
+ which O
1951
+ allows O
1952
+ computing O
1953
+ in O
1954
+ vector O
1955
+ space O
1956
+ is O
1957
+ fundamental O
1958
+ for O
1959
+ linear B-Math
1960
+ algebra I-Math
1961
+ together O
1962
+ with O
1963
+ the O
1964
+ concept O
1965
+ of O
1966
+ matrices O
1967
+ which O
1968
+ allows O
1969
+ computing O
1970
+ in O
1971
+ vector O
1972
+ space O
1973
+ together O
1974
+ with O
1975
+ the O
1976
+ concept O
1977
+ of O
1978
+ matrices B-Math
1979
+ which O
1980
+ allows O
1981
+ computing O
1982
+ in O
1983
+ vector O
1984
+ space O
1985
+
1986
+ this O
1987
+ allows O
1988
+ all O
1989
+ the O
1990
+ language O
1991
+ and O
1992
+ theory O
1993
+ of O
1994
+ vector B-Math
1995
+ spaces I-Math
1996
+ or O
1997
+ more O
1998
+ generally O
1999
+ modules O
2000
+ to O
2001
+ be O
2002
+ brought O
2003
+ to O
2004
+ bea O
2005
+
2006
+ the O
2007
+ solutions O
2008
+ of O
2009
+ any O
2010
+ linear B-Math
2011
+ ordinary I-Math
2012
+ differential I-Math
2013
+ equation I-Math
2014
+ of O
2015
+ any O
2016
+ order O
2017
+ may O
2018
+ be O
2019
+ deduced O
2020
+ by O
2021
+ integration O
2022
+ from O
2023
+ the O
2024
+ solution O
2025
+ of O
2026
+ the O
2027
+ homogeneous O
2028
+ equation O
2029
+ obtained O
2030
+ by O
2031
+ removing O
2032
+ the O
2033
+ constant O
2034
+ ter O
2035
+ of O
2036
+ any O
2037
+ order O
2038
+ may O
2039
+ be O
2040
+ deduced O
2041
+ by O
2042
+ integration O
2043
+ from O
2044
+ the O
2045
+ solution O
2046
+ of O
2047
+ the O
2048
+ homogeneous O
2049
+ equation O
2050
+ obtained O
2051
+ by O
2052
+ removing O
2053
+ the O
2054
+ constant B-Math
2055
+ term I-Math
2056
+ homogeneous B-Math
2057
+ equation I-Math
2058
+ obtained O
2059
+ by O
2060
+ removing O
2061
+ the O
2062
+ constant O
2063
+ ter O
2064
+
2065
+ gröbner O
2066
+ basis O
2067
+ theory O
2068
+ provides O
2069
+ algorithms B-Math
2070
+ when O
2071
+ coefficients O
2072
+ and O
2073
+ unknowns O
2074
+ are O
2075
+ polynomial O
2076
+
2077
+ a O
2078
+ complete B-Math
2079
+ metric I-Math
2080
+ space I-Math
2081
+ along O
2082
+ with O
2083
+ the O
2084
+ additional O
2085
+ structure O
2086
+ of O
2087
+ an O
2088
+ inner O
2089
+ product O
2090
+ a O
2091
+ conjugate O
2092
+ symmetric O
2093
+ sesquilinear O
2094
+ form O
2095
+ is O
2096
+ known O
2097
+ as O
2098
+ a O
2099
+ hilbert O
2100
+ space O
2101
+ which O
2102
+ is O
2103
+ in O
2104
+ some O
2105
+ sense O
2106
+ a O
2107
+ particularly O
2108
+ wellbehaved O
2109
+ banach O
2110
+ spac O
2111
+ along O
2112
+ with O
2113
+ the O
2114
+ additional O
2115
+ structure O
2116
+ of O
2117
+ an O
2118
+ inner O
2119
+ product O
2120
+ a O
2121
+ conjugate O
2122
+ symmetric O
2123
+ sesquilinear O
2124
+ form O
2125
+ is O
2126
+ known O
2127
+ as O
2128
+ a O
2129
+ hilbert B-Math
2130
+ space I-Math
2131
+ which O
2132
+ is O
2133
+ in O
2134
+ some O
2135
+ sense O
2136
+ a O
2137
+ particularly O
2138
+ wellbehaved O
2139
+ banach O
2140
+ spac O
2141
+
2142
+ linear B-Math
2143
+ algebra I-Math
2144
+ is O
2145
+ central O
2146
+ to O
2147
+ almost O
2148
+ all O
2149
+ areas O
2150
+ of O
2151
+ mathematic O
2152
+ is O
2153
+ central O
2154
+ to O
2155
+ almost O
2156
+ all O
2157
+ areas O
2158
+ of O
2159
+ mathematics B-Math
2160
+
2161
+ the O
2162
+ definition O
2163
+ of O
2164
+ linear B-Math
2165
+ dependence I-Math
2166
+ and O
2167
+ the O
2168
+ ability O
2169
+ to O
2170
+ determine O
2171
+ whether O
2172
+ a O
2173
+ subset O
2174
+ of O
2175
+ vectors O
2176
+ in O
2177
+ a O
2178
+ vector O
2179
+ space O
2180
+ is O
2181
+ linearly O
2182
+ dependent O
2183
+ are O
2184
+ central O
2185
+ to O
2186
+ determining O
2187
+ the O
2188
+ dimension O
2189
+ of O
2190
+ a O
2191
+ vector O
2192
+ spac O
2193
+ and O
2194
+ the O
2195
+ ability O
2196
+ to O
2197
+ determine O
2198
+ whether O
2199
+ a O
2200
+ subset O
2201
+ of O
2202
+ vectors O
2203
+ in O
2204
+ a O
2205
+ vector B-Math
2206
+ space I-Math
2207
+ is O
2208
+ linearly O
2209
+ dependent O
2210
+ are O
2211
+ central O
2212
+ to O
2213
+ determining O
2214
+ the O
2215
+ dimension O
2216
+ of O
2217
+ a O
2218
+ vector O
2219
+ spac O
2220
+
2221
+ scalars B-Math
2222
+ are O
2223
+ often O
2224
+ real O
2225
+ numbers O
2226
+ but O
2227
+ can O
2228
+ be O
2229
+ complex O
2230
+ numbers O
2231
+ or O
2232
+ more O
2233
+ generally O
2234
+ elements O
2235
+ of O
2236
+ any O
2237
+ fiel O
2238
+ are O
2239
+ often O
2240
+ real O
2241
+ numbers O
2242
+ but O
2243
+ can O
2244
+ be O
2245
+ complex O
2246
+ numbers O
2247
+ or O
2248
+ more O
2249
+ generally O
2250
+ elements O
2251
+ of O
2252
+ any O
2253
+ field B-Math
2254
+
2255
+ a O
2256
+ differential B-Math
2257
+ equation I-Math
2258
+ can O
2259
+ be O
2260
+ homogeneous O
2261
+ in O
2262
+ either O
2263
+ of O
2264
+ two O
2265
+ respect O
2266
+ can O
2267
+ be O
2268
+ homogeneous B-Math
2269
+ in O
2270
+ either O
2271
+ of O
2272
+ two O
2273
+ respect O
2274
+
2275
+ linear B-Math
2276
+ maps I-Math
2277
+ can O
2278
+ often O
2279
+ be O
2280
+ represented O
2281
+ as O
2282
+ matrices O
2283
+ and O
2284
+ simple O
2285
+ examples O
2286
+ include O
2287
+ rotation O
2288
+ and O
2289
+ reflection O
2290
+ linear O
2291
+ transformation O
2292
+ can O
2293
+ often O
2294
+ be O
2295
+ represented O
2296
+ as O
2297
+ matrices B-Math
2298
+ and O
2299
+ simple O
2300
+ examples O
2301
+ include O
2302
+ rotation O
2303
+ and O
2304
+ reflection O
2305
+ linear O
2306
+ transformation O
2307
+ and O
2308
+ simple O
2309
+ examples O
2310
+ include O
2311
+ rotation B-Attributes
2312
+ and O
2313
+ reflection O
2314
+ linear O
2315
+ transformation O
2316
+ and O
2317
+ reflection O
2318
+ linear B-Math
2319
+ transformations I-Math
2320
+
2321
+ presently O
2322
+ most O
2323
+ textbooks O
2324
+ introduce O
2325
+ geometric O
2326
+ spaces O
2327
+ from O
2328
+ linear B-Math
2329
+ algebra I-Math
2330
+ and O
2331
+ geometry O
2332
+ is O
2333
+ often O
2334
+ presented O
2335
+ at O
2336
+ elementary O
2337
+ level O
2338
+ as O
2339
+ a O
2340
+ subfield O
2341
+ of O
2342
+ linear O
2343
+ algebr O
2344
+ geometric B-Math
2345
+ spaces I-Math
2346
+ from O
2347
+ linear O
2348
+ algebra O
2349
+ and O
2350
+ geometry O
2351
+ is O
2352
+ often O
2353
+ presented O
2354
+ at O
2355
+ elementary O
2356
+ level O
2357
+ as O
2358
+ a O
2359
+ subfield O
2360
+ of O
2361
+ linear O
2362
+ algebr O
2363
+ from O
2364
+ linear O
2365
+ algebra O
2366
+ and O
2367
+ geometry B-Math
2368
+ is O
2369
+ often O
2370
+ presented O
2371
+ at O
2372
+ elementary O
2373
+ level O
2374
+ as O
2375
+ a O
2376
+ subfield O
2377
+ of O
2378
+ linear O
2379
+ algebr O
2380
+ is O
2381
+ often O
2382
+ presented O
2383
+ at O
2384
+ elementary O
2385
+ level O
2386
+ as O
2387
+ a O
2388
+ subfield O
2389
+ of O
2390
+ linear B-Math
2391
+ algebra I-Math
2392
+
2393
+ in O
2394
+ general O
2395
+ a O
2396
+ system O
2397
+ with O
2398
+ the O
2399
+ same O
2400
+ number O
2401
+ of O
2402
+ equations B-Math
2403
+ and O
2404
+ unknowns O
2405
+ has O
2406
+ a O
2407
+ single O
2408
+ unique O
2409
+ solutio O
2410
+ and O
2411
+ unknowns O
2412
+ has O
2413
+ a O
2414
+ single O
2415
+ unique O
2416
+ solution B-Math
2417
+
2418
+ around O
2419
+ this O
2420
+ date O
2421
+ it O
2422
+ appeared O
2423
+ that O
2424
+ one O
2425
+ may O
2426
+ also O
2427
+ define O
2428
+ geometric B-Math
2429
+ spaces I-Math
2430
+ by O
2431
+ constructions O
2432
+ involving O
2433
+ vector O
2434
+ spaces O
2435
+ see O
2436
+ for O
2437
+ example O
2438
+ projective O
2439
+ space O
2440
+ and O
2441
+ affine O
2442
+ spac O
2443
+ by O
2444
+ constructions O
2445
+ involving O
2446
+ vector B-Math
2447
+ spaces I-Math
2448
+ see O
2449
+ for O
2450
+ example O
2451
+ projective O
2452
+ space O
2453
+ and O
2454
+ affine O
2455
+ spac O
2456
+ see O
2457
+ for O
2458
+ example O
2459
+ projective B-Math
2460
+ space I-Math
2461
+ and O
2462
+ affine O
2463
+ spac O
2464
+ and O
2465
+ affine B-Math
2466
+ space I-Math
2467
+
2468
+ the B-Math
2469
+ theory I-Math
2470
+ of I-Math
2471
+ nonlinear I-Math
2472
+ functionals I-Math
2473
+ as O
2474
+ continued O
2475
+ by O
2476
+ students O
2477
+ of O
2478
+ hadamard O
2479
+ in O
2480
+ particular O
2481
+ fréchet O
2482
+ and O
2483
+ lév O
2484
+
2485
+ this O
2486
+ article O
2487
+ focuses O
2488
+ on O
2489
+ matrices B-Math
2490
+ related O
2491
+ to O
2492
+ linear O
2493
+ algebra O
2494
+ and O
2495
+ unless O
2496
+ otherwise O
2497
+ specified O
2498
+ all O
2499
+ matrices O
2500
+ represent O
2501
+ linear O
2502
+ maps O
2503
+ or O
2504
+ may O
2505
+ be O
2506
+ viewed O
2507
+ as O
2508
+ suc O
2509
+ related O
2510
+ to O
2511
+ linear B-Math
2512
+ algebra I-Math
2513
+ and O
2514
+ unless O
2515
+ otherwise O
2516
+ specified O
2517
+ all O
2518
+ matrices O
2519
+ represent O
2520
+ linear O
2521
+ maps O
2522
+ or O
2523
+ may O
2524
+ be O
2525
+ viewed O
2526
+ as O
2527
+ suc O
2528
+ and O
2529
+ unless O
2530
+ otherwise O
2531
+ specified O
2532
+ all O
2533
+ matrices B-Math
2534
+ represent O
2535
+ linear O
2536
+ maps O
2537
+ or O
2538
+ may O
2539
+ be O
2540
+ viewed O
2541
+ as O
2542
+ suc O
2543
+ represent O
2544
+ linear B-Math
2545
+ maps I-Math
2546
+ or O
2547
+ may O
2548
+ be O
2549
+ viewed O
2550
+ as O
2551
+ suc O
2552
+
2553
+ the O
2554
+ existence O
2555
+ of O
2556
+ multiplicative O
2557
+ inverses O
2558
+ in O
2559
+ fields O
2560
+ is O
2561
+ not O
2562
+ involved O
2563
+ in O
2564
+ the O
2565
+ axioms O
2566
+ defining O
2567
+ a O
2568
+ vector B-Math
2569
+ space I-Math
2570
+
2571
+ matrices B-Math
2572
+ is O
2573
+ a O
2574
+ rectangular O
2575
+ array O
2576
+ or O
2577
+ table O
2578
+ of O
2579
+ numbers O
2580
+ symbols O
2581
+ or O
2582
+ expressions O
2583
+ arranged O
2584
+ in O
2585
+ rows O
2586
+ and O
2587
+ columns O
2588
+ which O
2589
+ is O
2590
+ used O
2591
+ to O
2592
+ represent O
2593
+ a O
2594
+ mathematical O
2595
+ object O
2596
+ or O
2597
+ a O
2598
+ property O
2599
+ of O
2600
+ such O
2601
+ an O
2602
+ objec O
2603
+
2604
+ in O
2605
+ all O
2606
+ these O
2607
+ applications O
2608
+ synthetic B-Math
2609
+ geometry I-Math
2610
+ is O
2611
+ often O
2612
+ used O
2613
+ for O
2614
+ general O
2615
+ descriptions O
2616
+ and O
2617
+ a O
2618
+ qualitative O
2619
+ approach O
2620
+ but O
2621
+ for O
2622
+ the O
2623
+ study O
2624
+ of O
2625
+ explicit O
2626
+ situations O
2627
+ one O
2628
+ must O
2629
+ compute O
2630
+ with O
2631
+ coordinate O
2632
+ is O
2633
+ often O
2634
+ used O
2635
+ for O
2636
+ general O
2637
+ descriptions O
2638
+ and O
2639
+ a O
2640
+ qualitative O
2641
+ approach O
2642
+ but O
2643
+ for O
2644
+ the O
2645
+ study O
2646
+ of O
2647
+ explicit O
2648
+ situations O
2649
+ one O
2650
+ must O
2651
+ compute O
2652
+ with O
2653
+ coordinates B-Math
2654
+
2655
+ a O
2656
+ bijective O
2657
+ linear O
2658
+ map O
2659
+ between O
2660
+ two O
2661
+ vector O
2662
+ spaces O
2663
+ that O
2664
+ is O
2665
+ every O
2666
+ vector O
2667
+ from O
2668
+ the O
2669
+ second O
2670
+ space O
2671
+ is O
2672
+ associated O
2673
+ with O
2674
+ exactly O
2675
+ one O
2676
+ in O
2677
+ the O
2678
+ first O
2679
+ is O
2680
+ an O
2681
+ isomorphism B-Math
2682
+
2683
+ in O
2684
+ mathematics B-Math
2685
+ and O
2686
+ more O
2687
+ specifically O
2688
+ in O
2689
+ linear O
2690
+ algebra O
2691
+ a O
2692
+ linear O
2693
+ subspace O
2694
+ or O
2695
+ vector O
2696
+ subspacenote O
2697
+ is O
2698
+ a O
2699
+ vector O
2700
+ space O
2701
+ that O
2702
+ is O
2703
+ a O
2704
+ subset O
2705
+ of O
2706
+ some O
2707
+ larger O
2708
+ vector O
2709
+ spac O
2710
+ and O
2711
+ more O
2712
+ specifically O
2713
+ in O
2714
+ linear B-Math
2715
+ algebra I-Math
2716
+ a O
2717
+ linear O
2718
+ subspace O
2719
+ or O
2720
+ vector O
2721
+ subspacenote O
2722
+ is O
2723
+ a O
2724
+ vector O
2725
+ space O
2726
+ that O
2727
+ is O
2728
+ a O
2729
+ subset O
2730
+ of O
2731
+ some O
2732
+ larger O
2733
+ vector O
2734
+ spac O
2735
+ a O
2736
+ linear B-Math
2737
+ subspace I-Math
2738
+ or O
2739
+ vector O
2740
+ subspacenote O
2741
+ is O
2742
+ a O
2743
+ vector O
2744
+ space O
2745
+ that O
2746
+ is O
2747
+ a O
2748
+ subset O
2749
+ of O
2750
+ some O
2751
+ larger O
2752
+ vector O
2753
+ spac O
2754
+ or O
2755
+ vector B-Math
2756
+ subspacenote I-Math
2757
+ is O
2758
+ a O
2759
+ vector O
2760
+ space O
2761
+ that O
2762
+ is O
2763
+ a O
2764
+ subset O
2765
+ of O
2766
+ some O
2767
+ larger O
2768
+ vector O
2769
+ spac O
2770
+ is O
2771
+ a O
2772
+ vector O
2773
+ space O
2774
+ that O
2775
+ is O
2776
+ a O
2777
+ subset O
2778
+ of O
2779
+ some O
2780
+ larger O
2781
+ vector B-Math
2782
+ space I-Math
2783
+
2784
+ this O
2785
+ requires O
2786
+ the O
2787
+ heavy O
2788
+ use O
2789
+ of O
2790
+ linear B-Math
2791
+ algebra I-Math
2792
+
2793
+ for O
2794
+ nonlinear O
2795
+ systems O
2796
+ which O
2797
+ can O
2798
+ not O
2799
+ be O
2800
+ modeled O
2801
+ with O
2802
+ linear O
2803
+ algebra O
2804
+ it O
2805
+ is O
2806
+ often O
2807
+ used O
2808
+ for O
2809
+ dealing O
2810
+ with O
2811
+ firstorder O
2812
+ approximations O
2813
+ using O
2814
+ the O
2815
+ fact O
2816
+ that O
2817
+ the O
2818
+ differential O
2819
+ of O
2820
+ a O
2821
+ multivariate O
2822
+ function O
2823
+ at O
2824
+ a O
2825
+ point O
2826
+ is O
2827
+ the O
2828
+ linear B-Math
2829
+ map I-Math
2830
+ that O
2831
+ best O
2832
+ approximates O
2833
+ the O
2834
+ function O
2835
+ near O
2836
+ that O
2837
+ poin O
2838
+ linear B-Math
2839
+ algebra I-Math
2840
+ it O
2841
+ is O
2842
+ often O
2843
+ used O
2844
+ for O
2845
+ dealing O
2846
+ with O
2847
+ firstorder O
2848
+ approximations O
2849
+ using O
2850
+ the O
2851
+ fact O
2852
+ that O
2853
+ the O
2854
+ differential O
2855
+ of O
2856
+ a O
2857
+ multivariate O
2858
+ function O
2859
+ at O
2860
+ a O
2861
+ point O
2862
+ is O
2863
+ the O
2864
+ linear O
2865
+ map O
2866
+ that O
2867
+ best O
2868
+ approximates O
2869
+ the O
2870
+ function O
2871
+ near O
2872
+ that O
2873
+ poin O
2874
+
2875
+ the O
2876
+ metric O
2877
+ also O
2878
+ allows O
2879
+ for O
2880
+ a O
2881
+ definition O
2882
+ of O
2883
+ limits O
2884
+ and O
2885
+ completeness O
2886
+ a O
2887
+ metric O
2888
+ space O
2889
+ that O
2890
+ is O
2891
+ complete O
2892
+ is O
2893
+ known O
2894
+ as O
2895
+ a O
2896
+ banach B-Math
2897
+ space I-Math
2898
+ metric B-Math
2899
+ space I-Math
2900
+ that O
2901
+ is O
2902
+ complete O
2903
+ is O
2904
+ known O
2905
+ as O
2906
+ a O
2907
+ banach O
2908
+ spac O
2909
+
2910
+ it O
2911
+ follows O
2912
+ that O
2913
+ they O
2914
+ can O
2915
+ be O
2916
+ defined O
2917
+ specified O
2918
+ and O
2919
+ studied O
2920
+ in O
2921
+ terms O
2922
+ of O
2923
+ linear B-Math
2924
+ maps I-Math
2925
+
2926
+ in O
2927
+ the O
2928
+ field O
2929
+ of O
2930
+ fluid O
2931
+ dynamics O
2932
+ linear B-Math
2933
+ algebra I-Math
2934
+ finds O
2935
+ its O
2936
+ application O
2937
+ in O
2938
+ computational O
2939
+ fluid O
2940
+ dynamics O
2941
+ cfd O
2942
+ a O
2943
+ branch O
2944
+ that O
2945
+ uses O
2946
+ numerical O
2947
+ analysis O
2948
+ and O
2949
+ data O
2950
+ structures O
2951
+ to O
2952
+ solve O
2953
+ and O
2954
+ analyze O
2955
+ problems O
2956
+ involving O
2957
+ fluid O
2958
+ flow O
2959
+
2960
+ the O
2961
+ first O
2962
+ system O
2963
+ has O
2964
+ infinitely O
2965
+ many O
2966
+ solutions O
2967
+ namely O
2968
+ all O
2969
+ of O
2970
+ the O
2971
+ points B-Math
2972
+ on O
2973
+ the O
2974
+ blue O
2975
+ lin O
2976
+ solutions B-Math
2977
+ namely O
2978
+ all O
2979
+ of O
2980
+ the O
2981
+ points O
2982
+ on O
2983
+ the O
2984
+ blue O
2985
+ lin O
2986
+
2987
+ weather O
2988
+ forecasting O
2989
+ or O
2990
+ more O
2991
+ specifically O
2992
+ parametrization O
2993
+ for O
2994
+ atmospheric O
2995
+ modeling B-Attributes
2996
+ is O
2997
+ a O
2998
+ typical O
2999
+ example O
3000
+ of O
3001
+ a O
3002
+ realworld O
3003
+ application O
3004
+ where O
3005
+ the O
3006
+ whole O
3007
+ earth O
3008
+ atmosphere O
3009
+ is O
3010
+ divided O
3011
+ into O
3012
+ cells O
3013
+ of O
3014
+ say O
3015
+ km O
3016
+ of O
3017
+ width O
3018
+ and O
3019
+ km O
3020
+ of O
3021
+ heigh O
3022
+
3023
+ a O
3024
+ vector B-Math
3025
+ space I-Math
3026
+ is O
3027
+ finitedimensional O
3028
+ if O
3029
+ its O
3030
+ dimension O
3031
+ is O
3032
+ a O
3033
+ natural O
3034
+ numbe O
3035
+ is O
3036
+ finitedimensional B-Attributes
3037
+ if O
3038
+ its O
3039
+ dimension O
3040
+ is O
3041
+ a O
3042
+ natural O
3043
+ numbe O
3044
+
3045
+ to O
3046
+ solve O
3047
+ them O
3048
+ one O
3049
+ usually O
3050
+ decomposes O
3051
+ the O
3052
+ space O
3053
+ in O
3054
+ which O
3055
+ the O
3056
+ solutions B-Math
3057
+ are O
3058
+ searched O
3059
+ into O
3060
+ small O
3061
+ mutually O
3062
+ interacting O
3063
+ cell O
3064
+
3065
+ for O
3066
+ example O
3067
+ as O
3068
+ three O
3069
+ parallel O
3070
+ planes O
3071
+ do O
3072
+ not O
3073
+ have O
3074
+ a O
3075
+ common O
3076
+ point O
3077
+ the O
3078
+ solution O
3079
+ set O
3080
+ of O
3081
+ their O
3082
+ equations O
3083
+ is O
3084
+ empty O
3085
+ the O
3086
+ solution O
3087
+ set O
3088
+ of O
3089
+ the O
3090
+ equations O
3091
+ of O
3092
+ three O
3093
+ planes O
3094
+ intersecting O
3095
+ at O
3096
+ a O
3097
+ point O
3098
+ is O
3099
+ single O
3100
+ point O
3101
+ if O
3102
+ three O
3103
+ planes O
3104
+ pass O
3105
+ through O
3106
+ two O
3107
+ points O
3108
+ their O
3109
+ equations O
3110
+ have O
3111
+ at O
3112
+ least O
3113
+ two O
3114
+ common O
3115
+ solutions O
3116
+ in O
3117
+ fact O
3118
+ the O
3119
+ solution B-Math
3120
+ set I-Math
3121
+ is O
3122
+ infinite O
3123
+ and O
3124
+ consists O
3125
+ in O
3126
+ all O
3127
+ the O
3128
+ line O
3129
+ passing O
3130
+ through O
3131
+ these O
3132
+ point O
3133
+
3134
+ in O
3135
+ mathematics O
3136
+ differential B-Math
3137
+ refers O
3138
+ to O
3139
+ several O
3140
+ related O
3141
+ notions O
3142
+ derived O
3143
+ from O
3144
+ the O
3145
+ early O
3146
+ days O
3147
+ of O
3148
+ calculus O
3149
+ put O
3150
+ on O
3151
+ a O
3152
+ rigorous O
3153
+ footing O
3154
+ such O
3155
+ as O
3156
+ infinitesimal O
3157
+ differences O
3158
+ and O
3159
+ the O
3160
+ derivatives O
3161
+ of O
3162
+ function O
3163
+ refers O
3164
+ to O
3165
+ several O
3166
+ related O
3167
+ notions O
3168
+ derived O
3169
+ from O
3170
+ the O
3171
+ early O
3172
+ days O
3173
+ of O
3174
+ calculus O
3175
+ put O
3176
+ on O
3177
+ a O
3178
+ rigorous O
3179
+ footing O
3180
+ such O
3181
+ as O
3182
+ infinitesimal B-Attributes
3183
+ differences I-Attributes
3184
+ and O
3185
+ the O
3186
+ derivatives O
3187
+ of O
3188
+ function O
3189
+ and O
3190
+ the O
3191
+ derivatives B-Math
3192
+ of O
3193
+ function O
3194
+
3195
+ in O
3196
+ contrast O
3197
+ linear B-Math
3198
+ algebra I-Math
3199
+ deals O
3200
+ mostly O
3201
+ with O
3202
+ finitedimensional O
3203
+ spaces O
3204
+ and O
3205
+ does O
3206
+ not O
3207
+ use O
3208
+ topolog O
3209
+ deals O
3210
+ mostly O
3211
+ with O
3212
+ finitedimensional B-Math
3213
+ spaces I-Math
3214
+ and O
3215
+ does O
3216
+ not O
3217
+ use O
3218
+ topolog O
3219
+ and O
3220
+ does O
3221
+ not O
3222
+ use O
3223
+ topology B-Math
3224
+
3225
+ this O
3226
+ is O
3227
+ in O
3228
+ particular O
3229
+ the O
3230
+ case O
3231
+ in O
3232
+ graph B-Math
3233
+ theory I-Math
3234
+ f O
3235
+ incidence O
3236
+ matrices O
3237
+ and O
3238
+ adjacency O
3239
+ matrice O
3240
+ f O
3241
+ incidence O
3242
+ matrices B-Math
3243
+ and O
3244
+ adjacency O
3245
+ matrice O
3246
+
3247
+ if O
3248
+ every O
3249
+ vector B-Math
3250
+ within O
3251
+ that O
3252
+ span O
3253
+ has O
3254
+ exactly O
3255
+ one O
3256
+ expression O
3257
+ as O
3258
+ a O
3259
+ linear O
3260
+ combination O
3261
+ of O
3262
+ the O
3263
+ given O
3264
+ lefthand O
3265
+ vectors O
3266
+ then O
3267
+ any O
3268
+ solution O
3269
+ is O
3270
+ uniqu O
3271
+ within O
3272
+ that O
3273
+ span O
3274
+ has O
3275
+ exactly O
3276
+ one O
3277
+ expression O
3278
+ as O
3279
+ a O
3280
+ linear B-Math
3281
+ combination I-Math
3282
+ of O
3283
+ the O
3284
+ given O
3285
+ lefthand O
3286
+ vectors O
3287
+ then O
3288
+ any O
3289
+ solution O
3290
+ is O
3291
+ uniqu O
3292
+
3293
+ these O
3294
+ concepts O
3295
+ are O
3296
+ central O
3297
+ to O
3298
+ the O
3299
+ definition O
3300
+ of O
3301
+ dimension B-Math
3302
+
3303
+ in O
3304
+ mathematics O
3305
+ a O
3306
+ set O
3307
+ b O
3308
+ of O
3309
+ vectors O
3310
+ in O
3311
+ a O
3312
+ vector O
3313
+ space O
3314
+ v O
3315
+ is O
3316
+ called O
3317
+ a O
3318
+ basis B-Attributes
3319
+ p O
3320
+ vector B-Math
3321
+ space I-Math
3322
+ v O
3323
+ is O
3324
+ called O
3325
+ a O
3326
+ basis O
3327
+ p O
3328
+ vectors B-Math
3329
+ in O
3330
+ a O
3331
+ vector O
3332
+ space O
3333
+ v O
3334
+ is O
3335
+ called O
3336
+ a O
3337
+ basis O
3338
+ p O
3339
+
3340
+ with O
3341
+ respect O
3342
+ to O
3343
+ general O
3344
+ linear B-Math
3345
+ maps I-Math
3346
+ linear O
3347
+ endomorphisms O
3348
+ and O
3349
+ square O
3350
+ matrices O
3351
+ have O
3352
+ some O
3353
+ specific O
3354
+ properties O
3355
+ that O
3356
+ make O
3357
+ their O
3358
+ study O
3359
+ an O
3360
+ important O
3361
+ part O
3362
+ of O
3363
+ linear O
3364
+ algebra O
3365
+ which O
3366
+ is O
3367
+ used O
3368
+ in O
3369
+ many O
3370
+ parts O
3371
+ of O
3372
+ mathematics O
3373
+ including O
3374
+ geometric O
3375
+ transformations O
3376
+ coordinate O
3377
+ changes O
3378
+ quadratic O
3379
+ forms O
3380
+ and O
3381
+ many O
3382
+ other O
3383
+ part O
3384
+ of O
3385
+ mathematic O
3386
+ linear B-Math
3387
+ endomorphisms I-Math
3388
+ and O
3389
+ square O
3390
+ matrices O
3391
+ have O
3392
+ some O
3393
+ specific O
3394
+ properties O
3395
+ that O
3396
+ make O
3397
+ their O
3398
+ study O
3399
+ an O
3400
+ important O
3401
+ part O
3402
+ of O
3403
+ linear O
3404
+ algebra O
3405
+ which O
3406
+ is O
3407
+ used O
3408
+ in O
3409
+ many O
3410
+ parts O
3411
+ of O
3412
+ mathematics O
3413
+ including O
3414
+ geometric O
3415
+ transformations O
3416
+ coordinate O
3417
+ changes O
3418
+ quadratic O
3419
+ forms O
3420
+ and O
3421
+ many O
3422
+ other O
3423
+ part O
3424
+ of O
3425
+ mathematic O
3426
+ and O
3427
+ square B-Math
3428
+ matrices I-Math
3429
+ have O
3430
+ some O
3431
+ specific O
3432
+ properties O
3433
+ that O
3434
+ make O
3435
+ their O
3436
+ study O
3437
+ an O
3438
+ important O
3439
+ part O
3440
+ of O
3441
+ linear O
3442
+ algebra O
3443
+ which O
3444
+ is O
3445
+ used O
3446
+ in O
3447
+ many O
3448
+ parts O
3449
+ of O
3450
+ mathematics O
3451
+ including O
3452
+ geometric O
3453
+ transformations O
3454
+ coordinate O
3455
+ changes O
3456
+ quadratic O
3457
+ forms O
3458
+ and O
3459
+ many O
3460
+ other O
3461
+ part O
3462
+ of O
3463
+ mathematic O
3464
+ have O
3465
+ some O
3466
+ specific O
3467
+ properties O
3468
+ that O
3469
+ make O
3470
+ their O
3471
+ study O
3472
+ an O
3473
+ important O
3474
+ part O
3475
+ of O
3476
+ linear O
3477
+ algebra O
3478
+ which O
3479
+ is O
3480
+ used O
3481
+ in O
3482
+ many O
3483
+ parts O
3484
+ of O
3485
+ mathematics O
3486
+ including O
3487
+ geometric O
3488
+ transformations O
3489
+ coordinate B-Math
3490
+ changes I-Math
3491
+ quadratic O
3492
+ forms O
3493
+ and O
3494
+ many O
3495
+ other O
3496
+ part O
3497
+ of O
3498
+ mathematic O
3499
+ quadratic B-Math
3500
+ forms I-Math
3501
+ and O
3502
+ many O
3503
+ other O
3504
+ part O
3505
+ of O
3506
+ mathematic O
3507
+ geometric B-Math
3508
+ transformations I-Math
3509
+ coordinate O
3510
+ changes O
3511
+ quadratic O
3512
+ forms O
3513
+ and O
3514
+ many O
3515
+ other O
3516
+ part O
3517
+ of O
3518
+ mathematic O
3519
+
3520
+ sciences O
3521
+ concerned O
3522
+ with O
3523
+ this O
3524
+ space O
3525
+ use O
3526
+ geometry B-Math
3527
+ widel O
3528
+ sciences B-Attributes
3529
+ concerned O
3530
+ with O
3531
+ this O
3532
+ space O
3533
+ use O
3534
+ geometry O
3535
+ widel O
3536
+
3537
+ in O
3538
+ both O
3539
+ cases O
3540
+ very O
3541
+ large O
3542
+ matrices B-Math
3543
+ are O
3544
+ generally O
3545
+ involve O
3546
+
3547
+ the O
3548
+ following O
3549
+ pictures O
3550
+ illustrate O
3551
+ this O
3552
+ trichotomy O
3553
+ in O
3554
+ the O
3555
+ case O
3556
+ of O
3557
+ two O
3558
+ variables B-Math
3559
+
3560
+ vectors B-Math
3561
+ play O
3562
+ an O
3563
+ important O
3564
+ role O
3565
+ in O
3566
+ physics O
3567
+ the O
3568
+ velocity O
3569
+ and O
3570
+ acceleration O
3571
+ of O
3572
+ a O
3573
+ moving O
3574
+ object O
3575
+ and O
3576
+ the O
3577
+ forces O
3578
+ acting O
3579
+ on O
3580
+ it O
3581
+ can O
3582
+ all O
3583
+ be O
3584
+ described O
3585
+ with O
3586
+ vector O
3587
+ play O
3588
+ an O
3589
+ important O
3590
+ role O
3591
+ in O
3592
+ physics O
3593
+ the O
3594
+ velocity O
3595
+ and O
3596
+ acceleration O
3597
+ of O
3598
+ a O
3599
+ moving B-Attributes
3600
+ object O
3601
+ and O
3602
+ the O
3603
+ forces O
3604
+ acting O
3605
+ on O
3606
+ it O
3607
+ can O
3608
+ all O
3609
+ be O
3610
+ described O
3611
+ with O
3612
+ vector O
3613
+ object O
3614
+ and O
3615
+ the O
3616
+ forces B-Attributes
3617
+ acting O
3618
+ on O
3619
+ it O
3620
+ can O
3621
+ all O
3622
+ be O
3623
+ described O
3624
+ with O
3625
+ vector O
3626
+
3627
+ it O
3628
+ assists O
3629
+ in O
3630
+ the O
3631
+ modeling O
3632
+ and O
3633
+ simulation O
3634
+ of O
3635
+ fluid O
3636
+ flow O
3637
+ providing O
3638
+ essential O
3639
+ tools O
3640
+ for O
3641
+ the O
3642
+ analysis O
3643
+ of O
3644
+ fluid B-Attributes
3645
+ dynamics I-Attributes
3646
+ problems I-Attributes
3647
+
3648
+ the O
3649
+ term O
3650
+ is O
3651
+ used O
3652
+ in O
3653
+ various O
3654
+ branches O
3655
+ of O
3656
+ mathematics O
3657
+ such O
3658
+ as O
3659
+ calculus B-Math
3660
+ differential I-Math
3661
+ geometry I-Math
3662
+ algebraic O
3663
+ geometry O
3664
+ and O
3665
+ algebraic O
3666
+ topolog O
3667
+ algebraic B-Math
3668
+ geometry I-Math
3669
+ and O
3670
+ algebraic O
3671
+ topolog O
3672
+ and O
3673
+ algebraic B-Math
3674
+ topology I-Math
3675
+
3676
+ a O
3677
+ linear B-Math
3678
+ combination I-Math
3679
+ of O
3680
+ x O
3681
+ and O
3682
+ y O
3683
+ would O
3684
+ be O
3685
+ any O
3686
+ expression O
3687
+ of O
3688
+ the O
3689
+ form O
3690
+ ax O
3691
+ by O
3692
+ where O
3693
+ a O
3694
+ and O
3695
+ b O
3696
+ are O
3697
+ constant O
3698
+ of O
3699
+ x O
3700
+ and O
3701
+ y O
3702
+ would O
3703
+ be O
3704
+ any O
3705
+ expression B-Math
3706
+ of O
3707
+ the O
3708
+ form O
3709
+ ax O
3710
+ by O
3711
+ where O
3712
+ a O
3713
+ and O
3714
+ b O
3715
+ are O
3716
+ constant O
3717
+
3718
+ to O
3719
+ express O
3720
+ that O
3721
+ a O
3722
+ vector O
3723
+ space O
3724
+ v O
3725
+ is O
3726
+ a O
3727
+ linear B-Math
3728
+ span I-Math
3729
+ of O
3730
+ a O
3731
+ subset O
3732
+ s O
3733
+ one O
3734
+ commonly O
3735
+ uses O
3736
+ the O
3737
+ following O
3738
+ phraseseither O
3739
+ s O
3740
+ spans O
3741
+ v O
3742
+ s O
3743
+ is O
3744
+ a O
3745
+ spanning O
3746
+ set O
3747
+ of O
3748
+ v O
3749
+ v O
3750
+ is O
3751
+ spannedgenerated O
3752
+ by O
3753
+ s O
3754
+ or O
3755
+ s O
3756
+ is O
3757
+ a O
3758
+ generator O
3759
+ or O
3760
+ generator O
3761
+ set O
3762
+ of O
3763
+ vector B-Math
3764
+ space I-Math
3765
+ v O
3766
+ is O
3767
+ a O
3768
+ linear O
3769
+ span O
3770
+ of O
3771
+ a O
3772
+ subset O
3773
+ s O
3774
+ one O
3775
+ commonly O
3776
+ uses O
3777
+ the O
3778
+ following O
3779
+ phraseseither O
3780
+ s O
3781
+ spans O
3782
+ v O
3783
+ s O
3784
+ is O
3785
+ a O
3786
+ spanning O
3787
+ set O
3788
+ of O
3789
+ v O
3790
+ v O
3791
+ is O
3792
+ spannedgenerated O
3793
+ by O
3794
+ s O
3795
+ or O
3796
+ s O
3797
+ is O
3798
+ a O
3799
+ generator O
3800
+ or O
3801
+ generator O
3802
+ set O
3803
+ of O
3804
+
3805
+ spans O
3806
+ can O
3807
+ be O
3808
+ generalized O
3809
+ to O
3810
+ matroids B-Attributes
3811
+ and O
3812
+ module O
3813
+ and O
3814
+ modules B-Attributes
3815
+ spans B-Math
3816
+ can O
3817
+ be O
3818
+ generalized O
3819
+ to O
3820
+ matroids O
3821
+ and O
3822
+ module O
3823
+
3824
+ the O
3825
+ elements O
3826
+ of O
3827
+ a O
3828
+ basis B-Attributes
3829
+ are O
3830
+ called O
3831
+ basis O
3832
+ vector O
3833
+ are O
3834
+ called O
3835
+ basis B-Math
3836
+ vectors I-Math
3837
+
3838
+ f O
3839
+ a O
3840
+ linear B-Math
3841
+ map I-Math
3842
+ is O
3843
+ a O
3844
+ bijection O
3845
+ then O
3846
+ it O
3847
+ is O
3848
+ called O
3849
+ a O
3850
+ linear O
3851
+ isomorphis O
3852
+ is O
3853
+ a O
3854
+ bijection O
3855
+ then O
3856
+ it O
3857
+ is O
3858
+ called O
3859
+ a O
3860
+ linear B-Math
3861
+ isomorphism I-Math
3862
+ bijection B-Attributes
3863
+ then O
3864
+ it O
3865
+ is O
3866
+ called O
3867
+ a O
3868
+ linear O
3869
+ isomorphis O
3870
+
3871
+ in O
3872
+ mathematics B-Math
3873
+ and O
3874
+ physics O
3875
+ a O
3876
+ vector O
3877
+ space O
3878
+ also O
3879
+ called O
3880
+ a O
3881
+ linear O
3882
+ space O
3883
+ is O
3884
+ a O
3885
+ set O
3886
+ whose O
3887
+ elements O
3888
+ often O
3889
+ called O
3890
+ vectors O
3891
+ may O
3892
+ be O
3893
+ added O
3894
+ together O
3895
+ and O
3896
+ multiplied O
3897
+ scaled O
3898
+ by O
3899
+ numbers O
3900
+ called O
3901
+ scalar O
3902
+ and O
3903
+ physics O
3904
+ a O
3905
+ vector B-Math
3906
+ space I-Math
3907
+ also O
3908
+ called O
3909
+ a O
3910
+ linear O
3911
+ space O
3912
+ is O
3913
+ a O
3914
+ set O
3915
+ whose O
3916
+ elements O
3917
+ often O
3918
+ called O
3919
+ vectors O
3920
+ may O
3921
+ be O
3922
+ added O
3923
+ together O
3924
+ and O
3925
+ multiplied O
3926
+ scaled O
3927
+ by O
3928
+ numbers O
3929
+ called O
3930
+ scalar O
3931
+ also O
3932
+ called O
3933
+ a O
3934
+ linear B-Math
3935
+ space I-Math
3936
+ is O
3937
+ a O
3938
+ set O
3939
+ whose O
3940
+ elements O
3941
+ often O
3942
+ called O
3943
+ vectors O
3944
+ may O
3945
+ be O
3946
+ added O
3947
+ together O
3948
+ and O
3949
+ multiplied O
3950
+ scaled O
3951
+ by O
3952
+ numbers O
3953
+ called O
3954
+ scalar O
3955
+ is O
3956
+ a O
3957
+ set O
3958
+ whose O
3959
+ elements O
3960
+ often O
3961
+ called O
3962
+ vectors B-Math
3963
+ may O
3964
+ be O
3965
+ added O
3966
+ together O
3967
+ and O
3968
+ multiplied O
3969
+ scaled O
3970
+ by O
3971
+ numbers O
3972
+ called O
3973
+ scalar O
3974
+
3975
+ the O
3976
+ same O
3977
+ names O
3978
+ and O
3979
+ the O
3980
+ same O
3981
+ definition O
3982
+ are O
3983
+ also O
3984
+ used O
3985
+ for O
3986
+ the O
3987
+ more O
3988
+ general O
3989
+ case O
3990
+ of O
3991
+ modules O
3992
+ over O
3993
+ a O
3994
+ ring O
3995
+ see O
3996
+ module B-Math
3997
+ homomorphism I-Math
3998
+
3999
+ because O
4000
+ a O
4001
+ solution O
4002
+ to O
4003
+ a O
4004
+ linear B-Math
4005
+ system I-Math
4006
+ must O
4007
+ satisfy O
4008
+ all O
4009
+ of O
4010
+ the O
4011
+ equations O
4012
+ the O
4013
+ solution O
4014
+ set O
4015
+ is O
4016
+ the O
4017
+ intersection O
4018
+ of O
4019
+ these O
4020
+ lines O
4021
+ and O
4022
+ is O
4023
+ hence O
4024
+ either O
4025
+ a O
4026
+ line O
4027
+ a O
4028
+ single O
4029
+ point O
4030
+ or O
4031
+ the O
4032
+ empty O
4033
+ se O
4034
+
4035
+ for O
4036
+ improving O
4037
+ efficiency O
4038
+ some O
4039
+ of O
4040
+ them O
4041
+ configure O
4042
+ the O
4043
+ algorithms B-Attributes
4044
+ automatically O
4045
+ at O
4046
+ run O
4047
+ time O
4048
+ for O
4049
+ adapting O
4050
+ them O
4051
+ to O
4052
+ the O
4053
+ specificities O
4054
+ of O
4055
+ the O
4056
+ computer O
4057
+ cache O
4058
+ size O
4059
+ number O
4060
+ of O
4061
+ available O
4062
+ core O
4063
+
4064
+ an O
4065
+ important O
4066
+ part O
4067
+ of O
4068
+ functional O
4069
+ analysis O
4070
+ is O
4071
+ the O
4072
+ extension O
4073
+ of O
4074
+ the O
4075
+ theories O
4076
+ of O
4077
+ measure B-Math
4078
+ integration I-Math
4079
+ and O
4080
+ probability O
4081
+ to O
4082
+ infinite O
4083
+ dimensional O
4084
+ spaces O
4085
+ also O
4086
+ known O
4087
+ as O
4088
+ infinite O
4089
+ dimensional O
4090
+ analysi O
4091
+ and O
4092
+ probability B-Math
4093
+ to O
4094
+ infinite O
4095
+ dimensional O
4096
+ spaces O
4097
+ also O
4098
+ known O
4099
+ as O
4100
+ infinite O
4101
+ dimensional O
4102
+ analysi O
4103
+ functional B-Math
4104
+ analysis I-Math
4105
+ is O
4106
+ the O
4107
+ extension O
4108
+ of O
4109
+ the O
4110
+ theories O
4111
+ of O
4112
+ measure O
4113
+ integration O
4114
+ and O
4115
+ probability O
4116
+ to O
4117
+ infinite O
4118
+ dimensional O
4119
+ spaces O
4120
+ also O
4121
+ known O
4122
+ as O
4123
+ infinite O
4124
+ dimensional O
4125
+ analysi O
4126
+
4127
+ functional B-Math
4128
+ analysis I-Math
4129
+ is O
4130
+ of O
4131
+ particular O
4132
+ importance O
4133
+ to O
4134
+ quantum O
4135
+ mechanics O
4136
+ the O
4137
+ theory O
4138
+ of O
4139
+ partial O
4140
+ differential O
4141
+ equations O
4142
+ digital O
4143
+ signal O
4144
+ processing O
4145
+ and O
4146
+ electrical O
4147
+ engineerin O
4148
+ is O
4149
+ of O
4150
+ particular O
4151
+ importance O
4152
+ to O
4153
+ quantum O
4154
+ mechanics O
4155
+ the O
4156
+ theory O
4157
+ of O
4158
+ partial B-Math
4159
+ differential I-Math
4160
+ equations I-Math
4161
+ digital O
4162
+ signal O
4163
+ processing O
4164
+ and O
4165
+ electrical O
4166
+ engineerin O
4167
+
4168
+ for O
4169
+ example O
4170
+ the O
4171
+ navierstokes O
4172
+ equations O
4173
+ fundamental O
4174
+ in O
4175
+ fluid O
4176
+ dynamics O
4177
+ are O
4178
+ often O
4179
+ solved O
4180
+ using O
4181
+ techniques O
4182
+ derived O
4183
+ from O
4184
+ linear B-Math
4185
+ algebra I-Math
4186
+
4187
+ analysis B-Math
4188
+ may O
4189
+ be O
4190
+ distinguished O
4191
+ from O
4192
+ geometry O
4193
+ however O
4194
+ it O
4195
+ can O
4196
+ be O
4197
+ applied O
4198
+ to O
4199
+ any O
4200
+ space O
4201
+ of O
4202
+ mathematical O
4203
+ objects O
4204
+ that O
4205
+ has O
4206
+ a O
4207
+ definition O
4208
+ of O
4209
+ nearness O
4210
+ a O
4211
+ topological O
4212
+ space O
4213
+ or O
4214
+ specific O
4215
+ distances O
4216
+ between O
4217
+ objects O
4218
+ a O
4219
+ metric O
4220
+ spac O
4221
+ may O
4222
+ be O
4223
+ distinguished O
4224
+ from O
4225
+ geometry B-Math
4226
+ however O
4227
+ it O
4228
+ can O
4229
+ be O
4230
+ applied O
4231
+ to O
4232
+ any O
4233
+ space O
4234
+ of O
4235
+ mathematical O
4236
+ objects O
4237
+ that O
4238
+ has O
4239
+ a O
4240
+ definition O
4241
+ of O
4242
+ nearness O
4243
+ a O
4244
+ topological O
4245
+ space O
4246
+ or O
4247
+ specific O
4248
+ distances O
4249
+ between O
4250
+ objects O
4251
+ a O
4252
+ metric O
4253
+ spac O
4254
+ however O
4255
+ it O
4256
+ can O
4257
+ be O
4258
+ applied O
4259
+ to O
4260
+ any O
4261
+ space O
4262
+ of O
4263
+ mathematical O
4264
+ objects O
4265
+ that O
4266
+ has O
4267
+ a O
4268
+ definition O
4269
+ of O
4270
+ nearness O
4271
+ a O
4272
+ topological B-Math
4273
+ space I-Math
4274
+ or O
4275
+ specific O
4276
+ distances O
4277
+ between O
4278
+ objects O
4279
+ a O
4280
+ metric O
4281
+ spac O
4282
+
4283
+ the O
4284
+ concept O
4285
+ of O
4286
+ linear B-Math
4287
+ combinations I-Math
4288
+ is O
4289
+ central O
4290
+ to O
4291
+ linear O
4292
+ algebra O
4293
+ and O
4294
+ related O
4295
+ fields O
4296
+ of O
4297
+ mathematic O
4298
+ is O
4299
+ central O
4300
+ to O
4301
+ linear B-Math
4302
+ algebra I-Math
4303
+ and O
4304
+ related O
4305
+ fields O
4306
+ of O
4307
+ mathematic O
4308
+ and O
4309
+ related O
4310
+ fields O
4311
+ of O
4312
+ mathematics B-Math
4313
+
4314
+ an O
4315
+ essential O
4316
+ question O
4317
+ in O
4318
+ linear B-Math
4319
+ algebra I-Math
4320
+ is O
4321
+ testing O
4322
+ whether O
4323
+ a O
4324
+ linear O
4325
+ map O
4326
+ is O
4327
+ an O
4328
+ isomorphism O
4329
+ or O
4330
+ not O
4331
+ and O
4332
+ if O
4333
+ it O
4334
+ is O
4335
+ not O
4336
+ an O
4337
+ isomorphism O
4338
+ finding O
4339
+ its O
4340
+ range O
4341
+ or O
4342
+ image O
4343
+ and O
4344
+ the O
4345
+ set O
4346
+ of O
4347
+ elements O
4348
+ that O
4349
+ are O
4350
+ mapped O
4351
+ to O
4352
+ the O
4353
+ zero O
4354
+ vector O
4355
+ called O
4356
+ the O
4357
+ kernel O
4358
+ of O
4359
+ the O
4360
+ ma O
4361
+ is O
4362
+ testing O
4363
+ whether O
4364
+ a O
4365
+ linear B-Math
4366
+ map I-Math
4367
+ is O
4368
+ an O
4369
+ isomorphism O
4370
+ or O
4371
+ not O
4372
+ and O
4373
+ if O
4374
+ it O
4375
+ is O
4376
+ not O
4377
+ an O
4378
+ isomorphism O
4379
+ finding O
4380
+ its O
4381
+ range O
4382
+ or O
4383
+ image O
4384
+ and O
4385
+ the O
4386
+ set O
4387
+ of O
4388
+ elements O
4389
+ that O
4390
+ are O
4391
+ mapped O
4392
+ to O
4393
+ the O
4394
+ zero O
4395
+ vector O
4396
+ called O
4397
+ the O
4398
+ kernel O
4399
+ of O
4400
+ the O
4401
+ ma O
4402
+ is O
4403
+ an O
4404
+ isomorphism B-Attributes
4405
+ or O
4406
+ not O
4407
+ and O
4408
+ if O
4409
+ it O
4410
+ is O
4411
+ not O
4412
+ an O
4413
+ isomorphism O
4414
+ finding O
4415
+ its O
4416
+ range O
4417
+ or O
4418
+ image O
4419
+ and O
4420
+ the O
4421
+ set O
4422
+ of O
4423
+ elements O
4424
+ that O
4425
+ are O
4426
+ mapped O
4427
+ to O
4428
+ the O
4429
+ zero O
4430
+ vector O
4431
+ called O
4432
+ the O
4433
+ kernel O
4434
+ of O
4435
+ the O
4436
+ ma O
4437
+ or O
4438
+ not O
4439
+ and O
4440
+ if O
4441
+ it O
4442
+ is O
4443
+ not O
4444
+ an O
4445
+ isomorphism O
4446
+ finding O
4447
+ its O
4448
+ range O
4449
+ or O
4450
+ image O
4451
+ and O
4452
+ the O
4453
+ set O
4454
+ of O
4455
+ elements O
4456
+ that O
4457
+ are O
4458
+ mapped O
4459
+ to O
4460
+ the O
4461
+ zero O
4462
+ vector O
4463
+ called O
4464
+ the O
4465
+ kernel B-Math
4466
+ of O
4467
+ the O
4468
+ ma O
4469
+
4470
+ in O
4471
+ mathematics O
4472
+ and O
4473
+ more O
4474
+ specifically O
4475
+ in O
4476
+ linear B-Math
4477
+ algebra I-Math
4478
+ a O
4479
+ linear O
4480
+ map O
4481
+ also O
4482
+ called O
4483
+ a O
4484
+ linear O
4485
+ mapping O
4486
+ linear O
4487
+ transformation O
4488
+ vector O
4489
+ space O
4490
+ homomorphism O
4491
+ or O
4492
+ in O
4493
+ some O
4494
+ contexts O
4495
+ linear O
4496
+ function O
4497
+ is O
4498
+ a O
4499
+ mapping O
4500
+ between O
4501
+ two O
4502
+ vector O
4503
+ spaces O
4504
+ that O
4505
+ preserves O
4506
+ the O
4507
+ operations O
4508
+ of O
4509
+ vector O
4510
+ addition O
4511
+ and O
4512
+ scalar O
4513
+ multiplicatio O
4514
+ a O
4515
+ linear B-Math
4516
+ map I-Math
4517
+ also O
4518
+ called O
4519
+ a O
4520
+ linear O
4521
+ mapping O
4522
+ linear O
4523
+ transformation O
4524
+ vector O
4525
+ space O
4526
+ homomorphism O
4527
+ or O
4528
+ in O
4529
+ some O
4530
+ contexts O
4531
+ linear O
4532
+ function O
4533
+ is O
4534
+ a O
4535
+ mapping O
4536
+ between O
4537
+ two O
4538
+ vector O
4539
+ spaces O
4540
+ that O
4541
+ preserves O
4542
+ the O
4543
+ operations O
4544
+ of O
4545
+ vector O
4546
+ addition O
4547
+ and O
4548
+ scalar O
4549
+ multiplicatio O
4550
+ also O
4551
+ called O
4552
+ a O
4553
+ linear B-Math
4554
+ mapping I-Math
4555
+ inear O
4556
+ transformation O
4557
+ vector O
4558
+ space O
4559
+ homomorphism O
4560
+ or O
4561
+ in O
4562
+ some O
4563
+ contexts O
4564
+ linear O
4565
+ function O
4566
+ is O
4567
+ a O
4568
+ mapping O
4569
+ between O
4570
+ two O
4571
+ vector O
4572
+ spaces O
4573
+ that O
4574
+ preserves O
4575
+ the O
4576
+ operations O
4577
+ of O
4578
+ vector O
4579
+ addition O
4580
+ and O
4581
+ scalar O
4582
+ multiplicatio O
4583
+ linear B-Math
4584
+ transformation I-Math
4585
+ vector O
4586
+ space O
4587
+ homomorphism O
4588
+ or O
4589
+ in O
4590
+ some O
4591
+ contexts O
4592
+ linear O
4593
+ function O
4594
+ is O
4595
+ a O
4596
+ mapping O
4597
+ between O
4598
+ two O
4599
+ vector O
4600
+ spaces O
4601
+ that O
4602
+ preserves O
4603
+ the O
4604
+ operations O
4605
+ of O
4606
+ vector O
4607
+ addition O
4608
+ and O
4609
+ scalar O
4610
+ multiplicatio O
4611
+ vector B-Math
4612
+ space I-Math
4613
+ homomorphism I-Math
4614
+ or O
4615
+ in O
4616
+ some O
4617
+ contexts O
4618
+ linear O
4619
+ function O
4620
+ is O
4621
+ a O
4622
+ mapping O
4623
+ between O
4624
+ two O
4625
+ vector O
4626
+ spaces O
4627
+ that O
4628
+ preserves O
4629
+ the O
4630
+ operations O
4631
+ of O
4632
+ vector O
4633
+ addition O
4634
+ and O
4635
+ scalar O
4636
+ multiplicatio O
4637
+
4638
+ overall O
4639
+ the O
4640
+ application O
4641
+ of O
4642
+ linear B-Math
4643
+ algebra I-Math
4644
+ in O
4645
+ fluid O
4646
+ mechanics O
4647
+ fluid O
4648
+ dynamics O
4649
+ and O
4650
+ thermal O
4651
+ energy O
4652
+ systems O
4653
+ is O
4654
+ an O
4655
+ example O
4656
+ of O
4657
+ the O
4658
+ profound O
4659
+ interconnection O
4660
+ between O
4661
+ mathematics O
4662
+ and O
4663
+ engineerin O
4664
+ in O
4665
+ fluid B-Attributes
4666
+ mechanics I-Attributes
4667
+ fluid O
4668
+ dynamics O
4669
+ and O
4670
+ thermal O
4671
+ energy O
4672
+ systems O
4673
+ is O
4674
+ an O
4675
+ example O
4676
+ of O
4677
+ the O
4678
+ profound O
4679
+ interconnection O
4680
+ between O
4681
+ mathematics O
4682
+ and O
4683
+ engineerin O
4684
+ fluid B-Attributes
4685
+ dynamics I-Attributes
4686
+ and O
4687
+ thermal O
4688
+ energy O
4689
+ systems O
4690
+ is O
4691
+ an O
4692
+ example O
4693
+ of O
4694
+ the O
4695
+ profound O
4696
+ interconnection O
4697
+ between O
4698
+ mathematics O
4699
+ and O
4700
+ engineerin O
4701
+
4702
+ therefore O
4703
+ the O
4704
+ study O
4705
+ of O
4706
+ matrices B-Math
4707
+ is O
4708
+ a O
4709
+ large O
4710
+ part O
4711
+ of O
4712
+ linear O
4713
+ algebra O
4714
+ and O
4715
+ most O
4716
+ properties O
4717
+ and O
4718
+ operations O
4719
+ of O
4720
+ abstract O
4721
+ linear O
4722
+ algebra O
4723
+ can O
4724
+ be O
4725
+ expressed O
4726
+ in O
4727
+ terms O
4728
+ of O
4729
+ matrice O
4730
+ is O
4731
+ a O
4732
+ large O
4733
+ part O
4734
+ of O
4735
+ linear B-Math
4736
+ algebra I-Math
4737
+ and O
4738
+ most O
4739
+ properties O
4740
+ and O
4741
+ operations O
4742
+ of O
4743
+ abstract O
4744
+ linear O
4745
+ algebra O
4746
+ can O
4747
+ be O
4748
+ expressed O
4749
+ in O
4750
+ terms O
4751
+ of O
4752
+ matrice O
4753
+ and O
4754
+ most O
4755
+ properties O
4756
+ and O
4757
+ operations O
4758
+ of O
4759
+ abstract O
4760
+ linear B-Math
4761
+ algebra I-Math
4762
+ can O
4763
+ be O
4764
+ expressed O
4765
+ in O
4766
+ terms O
4767
+ of O
4768
+ matrice O
4769
+ can O
4770
+ be O
4771
+ expressed O
4772
+ in O
4773
+ terms O
4774
+ of O
4775
+ matrices B-Math
4776
+
4777
+ until O
4778
+ the O
4779
+ end O
4780
+ of O
4781
+ the O
4782
+ th O
4783
+ century O
4784
+ geometric B-Math
4785
+ spaces I-Math
4786
+ were O
4787
+ defined O
4788
+ by O
4789
+ axioms O
4790
+ relating O
4791
+ points O
4792
+ lines O
4793
+ and O
4794
+ planes O
4795
+ synthetic O
4796
+ geometr O
4797
+ were O
4798
+ defined O
4799
+ by O
4800
+ axioms O
4801
+ relating O
4802
+ points O
4803
+ lines O
4804
+ and O
4805
+ planes O
4806
+ synthetic B-Math
4807
+ geometry I-Math
4808
+
4809
+ for O
4810
+ n O
4811
+ variables O
4812
+ each O
4813
+ linear O
4814
+ equation O
4815
+ determines O
4816
+ a O
4817
+ hyperplane O
4818
+ in O
4819
+ ndimensional B-Math
4820
+ space I-Math
4821
+ determines B-Math
4822
+ a O
4823
+ hyperplane O
4824
+ in O
4825
+ ndimensional O
4826
+ spac O
4827
+ variables B-Math
4828
+ each O
4829
+ linear O
4830
+ equation O
4831
+ determines O
4832
+ a O
4833
+ hyperplane O
4834
+ in O
4835
+ ndimensional O
4836
+ spac O
4837
+
4838
+ these O
4839
+ theories O
4840
+ are O
4841
+ usually O
4842
+ studied O
4843
+ in O
4844
+ the O
4845
+ context O
4846
+ of O
4847
+ real O
4848
+ and O
4849
+ complex O
4850
+ numbers O
4851
+ and O
4852
+ functions B-Math
4853
+
4854
+ functional B-Math
4855
+ analysis I-Math
4856
+ studies O
4857
+ function O
4858
+ space O
4859
+ studies O
4860
+ function B-Math
4861
+ spaces I-Math
4862
+
4863
+ as O
4864
+ a O
4865
+ corollary O
4866
+ all O
4867
+ vector O
4868
+ spaces O
4869
+ are O
4870
+ equipped O
4871
+ with O
4872
+ at O
4873
+ least O
4874
+ two O
4875
+ possibly O
4876
+ different O
4877
+ linear O
4878
+ subspaces O
4879
+ the O
4880
+ zero O
4881
+ vector O
4882
+ space O
4883
+ consisting O
4884
+ of O
4885
+ the O
4886
+ zero O
4887
+ vector O
4888
+ alone O
4889
+ and O
4890
+ the O
4891
+ entire O
4892
+ vector B-Math
4893
+ space I-Math
4894
+ itsel O
4895
+ linear B-Math
4896
+ subspaces I-Math
4897
+ the O
4898
+ zero O
4899
+ vector O
4900
+ space O
4901
+ consisting O
4902
+ of O
4903
+ the O
4904
+ zero O
4905
+ vector O
4906
+ alone O
4907
+ and O
4908
+ the O
4909
+ entire O
4910
+ vector O
4911
+ space O
4912
+ itsel O
4913
+ the O
4914
+ zero B-Math
4915
+ vector I-Math
4916
+ space I-Math
4917
+ consisting O
4918
+ of O
4919
+ the O
4920
+ zero O
4921
+ vector O
4922
+ alone O
4923
+ and O
4924
+ the O
4925
+ entire O
4926
+ vector O
4927
+ space O
4928
+ itsel O
4929
+
4930
+ the O
4931
+ second O
4932
+ system O
4933
+ has O
4934
+ a O
4935
+ single O
4936
+ unique O
4937
+ solution O
4938
+ namely O
4939
+ the O
4940
+ intersection B-Math
4941
+ of O
4942
+ the O
4943
+ two O
4944
+ line O
4945
+ single B-Math
4946
+ unique I-Math
4947
+ solution I-Math
4948
+ namely O
4949
+ the O
4950
+ intersection O
4951
+ of O
4952
+ the O
4953
+ two O
4954
+ line O
4955
+
4956
+ linear B-Math
4957
+ algebra I-Math
4958
+ is O
4959
+ thus O
4960
+ a O
4961
+ fundamental O
4962
+ part O
4963
+ of O
4964
+ functional O
4965
+ analysis O
4966
+ and O
4967
+ its O
4968
+ applications O
4969
+ which O
4970
+ include O
4971
+ in O
4972
+ particular O
4973
+ quantum O
4974
+ mechanics O
4975
+ wave O
4976
+ functions O
4977
+ and O
4978
+ fourier O
4979
+ analysis O
4980
+ orthogonal O
4981
+ basi O
4982
+ is O
4983
+ thus O
4984
+ a O
4985
+ fundamental O
4986
+ part O
4987
+ of O
4988
+ functional B-Math
4989
+ analysis I-Math
4990
+ and O
4991
+ its O
4992
+ applications O
4993
+ which O
4994
+ include O
4995
+ in O
4996
+ particular O
4997
+ quantum O
4998
+ mechanics O
4999
+ wave O
5000
+ functions O
5001
+ and O
5002
+ fourier O
5003
+ analysis O
5004
+ orthogonal O
5005
+ basi O
5006
+ and O
5007
+ its O
5008
+ applications O
5009
+ which O
5010
+ include O
5011
+ in O
5012
+ particular O
5013
+ quantum O
5014
+ mechanics O
5015
+ wave O
5016
+ functions O
5017
+ and O
5018
+ fourier B-Math
5019
+ analysis I-Math
5020
+ orthogonal I-Math
5021
+ basis I-Math
5022
+
5023
+ this O
5024
+ provides O
5025
+ a O
5026
+ concise O
5027
+ and O
5028
+ synthetic O
5029
+ way O
5030
+ for O
5031
+ manipulating O
5032
+ and O
5033
+ studying O
5034
+ systems O
5035
+ of O
5036
+ linear B-Math
5037
+ equations I-Math
5038
+
5039
+ for O
5040
+ example O
5041
+ matrix B-Math
5042
+ multiplication O
5043
+ represents O
5044
+ the O
5045
+ composition O
5046
+ of O
5047
+ linear O
5048
+ map O
5049
+ multiplication O
5050
+ represents O
5051
+ the O
5052
+ composition O
5053
+ of O
5054
+ linear B-Math
5055
+ maps I-Math
5056
+
5057
+ linear O
5058
+ systems O
5059
+ are O
5060
+ the O
5061
+ basis O
5062
+ and O
5063
+ a O
5064
+ fundamental O
5065
+ part O
5066
+ of O
5067
+ linear B-Math
5068
+ algebra I-Math
5069
+ a O
5070
+ subject O
5071
+ used O
5072
+ in O
5073
+ most O
5074
+ modern O
5075
+ mathematic O
5076
+ a O
5077
+ subject O
5078
+ used O
5079
+ in O
5080
+ most O
5081
+ modern O
5082
+ mathematics B-Math
5083
+ linear B-Math
5084
+ systems I-Math
5085
+ are O
5086
+ the O
5087
+ basis O
5088
+ and O
5089
+ a O
5090
+ fundamental O
5091
+ part O
5092
+ of O
5093
+ linear O
5094
+ algebra O
5095
+ a O
5096
+ subject O
5097
+ used O
5098
+ in O
5099
+ most O
5100
+ modern O
5101
+ mathematic O
5102
+
5103
+ for O
5104
+ linear B-Math
5105
+ systems I-Math
5106
+ this O
5107
+ interaction O
5108
+ involves O
5109
+ linear O
5110
+ function O
5111
+ this O
5112
+ interaction O
5113
+ involves O
5114
+ linear B-Math
5115
+ functions I-Math
5116
+
5117
+ in O
5118
+ the O
5119
+ case O
5120
+ where O
5121
+ a O
5122
+ linear B-Math
5123
+ map I-Math
5124
+ is O
5125
+ called O
5126
+ a O
5127
+ linear O
5128
+ endomorphis O
5129
+ is O
5130
+ called O
5131
+ a O
5132
+ linear B-Math
5133
+ endomorphism I-Math
5134
+
5135
+ some O
5136
+ processors O
5137
+ typically O
5138
+ graphics O
5139
+ processing O
5140
+ units O
5141
+ gpu O
5142
+ are O
5143
+ designed O
5144
+ with O
5145
+ a O
5146
+ matrix B-Attributes
5147
+ structure I-Attributes
5148
+ for O
5149
+ optimizing O
5150
+ the O
5151
+ operations O
5152
+ of O
5153
+ linear O
5154
+ algebr O
5155
+ for O
5156
+ optimizing O
5157
+ the O
5158
+ operations O
5159
+ of O
5160
+ linear B-Math
5161
+ algebra I-Math
5162
+
5163
+ square B-Math
5164
+ matrices I-Math
5165
+ matrices O
5166
+ with O
5167
+ the O
5168
+ same O
5169
+ number O
5170
+ of O
5171
+ rows O
5172
+ and O
5173
+ columns O
5174
+ play O
5175
+ a O
5176
+ major O
5177
+ role O
5178
+ in O
5179
+ matrix O
5180
+ theor O
5181
+ matrices O
5182
+ with O
5183
+ the O
5184
+ same O
5185
+ number O
5186
+ of O
5187
+ rows O
5188
+ and O
5189
+ columns O
5190
+ play O
5191
+ a O
5192
+ major O
5193
+ role O
5194
+ in O
5195
+ matrix B-Math
5196
+ theory I-Math
5197
+
5198
+ cfd O
5199
+ relies O
5200
+ heavily O
5201
+ on O
5202
+ linear B-Math
5203
+ algebra I-Math
5204
+ for O
5205
+ the O
5206
+ computation O
5207
+ of O
5208
+ fluid O
5209
+ flow O
5210
+ and O
5211
+ heat O
5212
+ transfer O
5213
+ in O
5214
+ various O
5215
+ application O
5216
+
5217
+ linear O
5218
+ algebraic O
5219
+ concepts O
5220
+ such O
5221
+ as O
5222
+ matrix B-Math
5223
+ operations O
5224
+ and O
5225
+ eigenvalue O
5226
+ problems O
5227
+ are O
5228
+ employed O
5229
+ to O
5230
+ enhance O
5231
+ the O
5232
+ efficiency O
5233
+ reliability O
5234
+ and O
5235
+ economic O
5236
+ performance O
5237
+ of O
5238
+ power O
5239
+ system O
5240
+ operations O
5241
+ and O
5242
+ eigenvalue B-Math
5243
+ problems O
5244
+ are O
5245
+ employed O
5246
+ to O
5247
+ enhance O
5248
+ the O
5249
+ efficiency O
5250
+ reliability O
5251
+ and O
5252
+ economic O
5253
+ performance O
5254
+ of O
5255
+ power O
5256
+ system O
5257
+ linear B-Math
5258
+ algebraic I-Math
5259
+ concepts O
5260
+ such O
5261
+ as O
5262
+ matrix O
5263
+ operations O
5264
+ and O
5265
+ eigenvalue O
5266
+ problems O
5267
+ are O
5268
+ employed O
5269
+ to O
5270
+ enhance O
5271
+ the O
5272
+ efficiency O
5273
+ reliability O
5274
+ and O
5275
+ economic O
5276
+ performance O
5277
+ of O
5278
+ power O
5279
+ system O
5280
+
5281
+ vector B-Math
5282
+ spaces I-Math
5283
+ are O
5284
+ characterized O
5285
+ by O
5286
+ their O
5287
+ dimension O
5288
+ which O
5289
+ roughly O
5290
+ speaking O
5291
+ specifies O
5292
+ the O
5293
+ number O
5294
+ of O
5295
+ independent O
5296
+ directions O
5297
+ in O
5298
+ the O
5299
+ spac O
5300
+ are O
5301
+ characterized O
5302
+ by O
5303
+ their O
5304
+ dimension B-Attributes
5305
+ which O
5306
+ roughly O
5307
+ speaking O
5308
+ specifies O
5309
+ the O
5310
+ number O
5311
+ of O
5312
+ independent O
5313
+ directions O
5314
+ in O
5315
+ the O
5316
+ spac O
5317
+
5318
+ in O
5319
+ geometry O
5320
+ matrices B-Math
5321
+ are O
5322
+ widely O
5323
+ used O
5324
+ for O
5325
+ specifying O
5326
+ and O
5327
+ representing O
5328
+ geometric O
5329
+ transformations O
5330
+ for O
5331
+ example O
5332
+ rotations O
5333
+ and O
5334
+ coordinate O
5335
+ change O
5336
+ are O
5337
+ widely O
5338
+ used O
5339
+ for O
5340
+ specifying O
5341
+ and O
5342
+ representing O
5343
+ geometric O
5344
+ transformations O
5345
+ for O
5346
+ example O
5347
+ rotations B-Attributes
5348
+ and O
5349
+ coordinate O
5350
+ change O
5351
+ and O
5352
+ coordinate B-Attributes
5353
+ changes I-Attributes
5354
+
5355
+ there O
5356
+ are O
5357
+ many O
5358
+ rings O
5359
+ for O
5360
+ which O
5361
+ there O
5362
+ are O
5363
+ algorithms O
5364
+ for O
5365
+ solving O
5366
+ linear B-Math
5367
+ equations I-Math
5368
+ and O
5369
+ systems O
5370
+ of O
5371
+ linear O
5372
+ equation O
5373
+ rings B-Math
5374
+ for O
5375
+ which O
5376
+ there O
5377
+ are O
5378
+ algorithms O
5379
+ for O
5380
+ solving O
5381
+ linear O
5382
+ equations O
5383
+ and O
5384
+ systems O
5385
+ of O
5386
+ linear O
5387
+ equation O
5388
+
5389
+ the O
5390
+ norm B-Math
5391
+ induces O
5392
+ a O
5393
+ metric O
5394
+ which O
5395
+ measures O
5396
+ the O
5397
+ distance O
5398
+ between O
5399
+ elements O
5400
+ and O
5401
+ induces O
5402
+ a O
5403
+ topology O
5404
+ which O
5405
+ allows O
5406
+ for O
5407
+ a O
5408
+ definition O
5409
+ of O
5410
+ continuous O
5411
+ map O
5412
+ induces O
5413
+ a O
5414
+ metric O
5415
+ which O
5416
+ measures O
5417
+ the O
5418
+ distance B-Attributes
5419
+ between O
5420
+ elements O
5421
+ and O
5422
+ induces O
5423
+ a O
5424
+ topology O
5425
+ which O
5426
+ allows O
5427
+ for O
5428
+ a O
5429
+ definition O
5430
+ of O
5431
+ continuous O
5432
+ map O
5433
+
5434
+ for O
5435
+ instance O
5436
+ linear B-Math
5437
+ algebra I-Math
5438
+ is O
5439
+ fundamental O
5440
+ in O
5441
+ modern O
5442
+ presentations O
5443
+ of O
5444
+ geometry O
5445
+ including O
5446
+ for O
5447
+ defining O
5448
+ basic O
5449
+ objects O
5450
+ such O
5451
+ as O
5452
+ lines O
5453
+ planes O
5454
+ and O
5455
+ rotation O
5456
+ is O
5457
+ fundamental O
5458
+ in O
5459
+ modern O
5460
+ presentations O
5461
+ of O
5462
+ geometry B-Math
5463
+ including O
5464
+ for O
5465
+ defining O
5466
+ basic O
5467
+ objects O
5468
+ such O
5469
+ as O
5470
+ lines O
5471
+ planes O
5472
+ and O
5473
+ rotation O
5474
+ including O
5475
+ for O
5476
+ defining O
5477
+ basic O
5478
+ objects O
5479
+ such O
5480
+ as O
5481
+ lines B-Math
5482
+ planes I-Math
5483
+ and O
5484
+ rotation O
5485
+ and O
5486
+ rotations B-Math
5487
+
5488
+ linear B-Math
5489
+ algebra I-Math
5490
+ is O
5491
+ also O
5492
+ used O
5493
+ in O
5494
+ most O
5495
+ sciences O
5496
+ and O
5497
+ fields O
5498
+ of O
5499
+ engineering O
5500
+ because O
5501
+ it O
5502
+ allows O
5503
+ modeling O
5504
+ many O
5505
+ natural O
5506
+ phenomena O
5507
+ and O
5508
+ computing O
5509
+ efficiently O
5510
+ with O
5511
+ such O
5512
+ model O
5513
+
5514
+ a O
5515
+ euclidean O
5516
+ vector B-Math
5517
+ is O
5518
+ frequently O
5519
+ represented O
5520
+ by O
5521
+ a O
5522
+ directed O
5523
+ line O
5524
+ segment O
5525
+ or O
5526
+ graphically O
5527
+ as O
5528
+ an O
5529
+ arrow O
5530
+ connecting O
5531
+ an O
5532
+ initial O
5533
+ point O
5534
+ a O
5535
+ with O
5536
+ a O
5537
+ terminal O
5538
+ point O
5539
+ b O
5540
+ and O
5541
+ denoted O
5542
+ b O
5543
+
5544
+ where O
5545
+ f O
5546
+ and O
5547
+ g O
5548
+ are O
5549
+ homogeneous B-Math
5550
+ functions I-Math
5551
+ of O
5552
+ the O
5553
+ same O
5554
+ degree O
5555
+ of O
5556
+ x O
5557
+ and O
5558
+
5559
+ in O
5560
+ other O
5561
+ words O
5562
+ a O
5563
+ basis B-Attributes
5564
+ is O
5565
+ a O
5566
+ linearly O
5567
+ independent O
5568
+ spanning O
5569
+ se O
5570
+ is O
5571
+ a O
5572
+ linearly B-Math
5573
+ independent I-Math
5574
+ spanning I-Math
5575
+ set I-Math
5576
+
5577
+ in O
5578
+ the O
5579
+ language O
5580
+ of O
5581
+ category B-Math
5582
+ theory I-Math
5583
+ linear O
5584
+ maps O
5585
+ are O
5586
+ the O
5587
+ morphisms O
5588
+ of O
5589
+ vector O
5590
+ space O
5591
+ linear B-Math
5592
+ maps I-Math
5593
+ are O
5594
+ the O
5595
+ morphisms O
5596
+ of O
5597
+ vector O
5598
+ space O
5599
+ are O
5600
+ the O
5601
+ morphisms O
5602
+ of O
5603
+ vector B-Math
5604
+ spaces I-Math
5605
+
5606
+ a O
5607
+ system O
5608
+ of O
5609
+ nonlinear B-Math
5610
+ equations I-Math
5611
+ can O
5612
+ often O
5613
+ be O
5614
+ approximated O
5615
+ by O
5616
+ a O
5617
+ linear O
5618
+ system O
5619
+ see O
5620
+ linearization O
5621
+ a O
5622
+ helpful O
5623
+ technique O
5624
+ when O
5625
+ making O
5626
+ a O
5627
+ mathematical O
5628
+ model O
5629
+ or O
5630
+ computer O
5631
+ simulation O
5632
+ of O
5633
+ a O
5634
+ relatively O
5635
+ complex O
5636
+ syste O
5637
+ can O
5638
+ often O
5639
+ be O
5640
+ approximated O
5641
+ by O
5642
+ a O
5643
+ linear B-Math
5644
+ system I-Math
5645
+ see O
5646
+ linearization O
5647
+ a O
5648
+ helpful O
5649
+ technique O
5650
+ when O
5651
+ making O
5652
+ a O
5653
+ mathematical O
5654
+ model O
5655
+ or O
5656
+ computer O
5657
+ simulation O
5658
+ of O
5659
+ a O
5660
+ relatively O
5661
+ complex O
5662
+ syste O
5663
+
5664
+ a O
5665
+ linear B-Math
5666
+ subspace I-Math
5667
+ is O
5668
+ usually O
5669
+ simply O
5670
+ called O
5671
+ a O
5672
+ subspace O
5673
+ when O
5674
+ the O
5675
+ context O
5676
+ serves O
5677
+ to O
5678
+ distinguish O
5679
+ it O
5680
+ from O
5681
+ other O
5682
+ types O
5683
+ of O
5684
+ subspace O
5685
+ is O
5686
+ usually O
5687
+ simply O
5688
+ called O
5689
+ a O
5690
+ subspace B-Math
5691
+ when O
5692
+ the O
5693
+ context O
5694
+ serves O
5695
+ to O
5696
+ distinguish O
5697
+ it O
5698
+ from O
5699
+ other O
5700
+ types O
5701
+ of O
5702
+ subspace O
5703
+
5704
+ the O
5705
+ solution B-Math
5706
+ set I-Math
5707
+ is O
5708
+ the O
5709
+ intersection O
5710
+ of O
5711
+ these O
5712
+ hyperplanes O
5713
+ and O
5714
+ is O
5715
+ a O
5716
+ flat O
5717
+ which O
5718
+ may O
5719
+ have O
5720
+ any O
5721
+ dimension O
5722
+ lower O
5723
+ than O
5724
+ is O
5725
+ the O
5726
+ intersection O
5727
+ of O
5728
+ these O
5729
+ hyperplanes O
5730
+ and O
5731
+ is O
5732
+ a O
5733
+ flat O
5734
+ which O
5735
+ may O
5736
+ have O
5737
+ any O
5738
+ dimension B-Math
5739
+ lower O
5740
+ than O
5741
+ hyperplanes B-Math
5742
+ nd O
5743
+ is O
5744
+ a O
5745
+ flat O
5746
+ which O
5747
+ may O
5748
+ have O
5749
+ any O
5750
+ dimension O
5751
+ lower O
5752
+ than O
5753
+
5754
+ this O
5755
+ was O
5756
+ one O
5757
+ of O
5758
+ the O
5759
+ main O
5760
+ motivations O
5761
+ for O
5762
+ developing O
5763
+ linear B-Math
5764
+ algebra I-Math
5765
+
5766
+ this O
5767
+ includes O
5768
+ the O
5769
+ use O
5770
+ of O
5771
+ matrices B-Math
5772
+ and O
5773
+ vectors O
5774
+ to O
5775
+ represent O
5776
+ and O
5777
+ manipulate O
5778
+ fluid O
5779
+ flow O
5780
+ field O
5781
+ and O
5782
+ vectors B-Math
5783
+ to O
5784
+ represent O
5785
+ and O
5786
+ manipulate O
5787
+ fluid O
5788
+ flow O
5789
+ field O
5790
+ to O
5791
+ represent O
5792
+ and O
5793
+ manipulate O
5794
+ fluid B-Attributes
5795
+ flow I-Attributes
5796
+ fields I-Attributes
5797
+
5798
+ this O
5799
+ is O
5800
+ the O
5801
+ case O
5802
+ of O
5803
+ algebras O
5804
+ which O
5805
+ include O
5806
+ field O
5807
+ extensions B-Math
5808
+ polynomial I-Math
5809
+ rings I-Math
5810
+ associative O
5811
+ algebras O
5812
+ and O
5813
+ lie O
5814
+ algebra O
5815
+
5816
+ vector B-Math
5817
+ spaces I-Math
5818
+ are O
5819
+ completely O
5820
+ characterized O
5821
+ by O
5822
+ their O
5823
+ dimension O
5824
+ up O
5825
+ to O
5826
+ an O
5827
+ isomorphis O
5828
+ are O
5829
+ completely O
5830
+ characterized O
5831
+ by O
5832
+ their O
5833
+ dimension B-Math
5834
+ up O
5835
+ to O
5836
+ an O
5837
+ isomorphis O
5838
+ up O
5839
+ to O
5840
+ an O
5841
+ isomorphism B-Math
5842
+
5843
+ a O
5844
+ vector B-Math
5845
+ space I-Math
5846
+ can O
5847
+ have O
5848
+ several O
5849
+ bases O
5850
+ however O
5851
+ all O
5852
+ the O
5853
+ bases O
5854
+ have O
5855
+ the O
5856
+ same O
5857
+ number O
5858
+ of O
5859
+ elements O
5860
+ called O
5861
+ the O
5862
+ dimension O
5863
+ of O
5864
+ the O
5865
+ vector O
5866
+ spac O
5867
+ can O
5868
+ have O
5869
+ several O
5870
+ bases B-Attributes
5871
+ however O
5872
+ all O
5873
+ the O
5874
+ bases O
5875
+ have O
5876
+ the O
5877
+ same O
5878
+ number O
5879
+ of O
5880
+ elements O
5881
+ called O
5882
+ the O
5883
+ dimension O
5884
+ of O
5885
+ the O
5886
+ vector O
5887
+ spac O
5888
+ however O
5889
+ all O
5890
+ the O
5891
+ bases O
5892
+ have O
5893
+ the O
5894
+ same O
5895
+ number O
5896
+ of O
5897
+ elements O
5898
+ called O
5899
+ the O
5900
+ dimension B-Math
5901
+ of O
5902
+ the O
5903
+ vector O
5904
+ spac O
5905
+
5906
+ for O
5907
+ a O
5908
+ system O
5909
+ involving O
5910
+ two O
5911
+ variables O
5912
+ x O
5913
+ and O
5914
+ y O
5915
+ each O
5916
+ linear B-Math
5917
+ equation I-Math
5918
+ determines O
5919
+ a O
5920
+ line O
5921
+ on O
5922
+ the O
5923
+ xyplan O
5924
+
5925
+ tropical B-Math
5926
+ geometry I-Math
5927
+ is O
5928
+ another O
5929
+ example O
5930
+ of O
5931
+ linear O
5932
+ algebra O
5933
+ in O
5934
+ a O
5935
+ more O
5936
+ exotic O
5937
+ structur O
5938
+ is O
5939
+ another O
5940
+ example O
5941
+ of O
5942
+ linear B-Math
5943
+ algebra I-Math
5944
+ in O
5945
+ a O
5946
+ more O
5947
+ exotic O
5948
+ structur O
5949
+
5950
+ in O
5951
+ numerical B-Math
5952
+ analysis I-Math
5953
+ many O
5954
+ computational O
5955
+ problems O
5956
+ are O
5957
+ solved O
5958
+ by O
5959
+ reducing O
5960
+ them O
5961
+ to O
5962
+ a O
5963
+ matrix O
5964
+ computation O
5965
+ and O
5966
+ this O
5967
+ often O
5968
+ involves O
5969
+ computing O
5970
+ with O
5971
+ matrices O
5972
+ of O
5973
+ huge O
5974
+ dimensio O
5975
+ many O
5976
+ computational O
5977
+ problems O
5978
+ are O
5979
+ solved O
5980
+ by O
5981
+ reducing O
5982
+ them O
5983
+ to O
5984
+ a O
5985
+ matrix B-Math
5986
+ omputation O
5987
+ and O
5988
+ this O
5989
+ often O
5990
+ involves O
5991
+ computing O
5992
+ with O
5993
+ matrices O
5994
+ of O
5995
+ huge O
5996
+ dimensio O
5997
+
5998
+ in O
5999
+ general O
6000
+ the O
6001
+ behavior O
6002
+ of O
6003
+ a O
6004
+ linear B-Math
6005
+ system I-Math
6006
+ is O
6007
+ determined O
6008
+ by O
6009
+ the O
6010
+ relationship O
6011
+ between O
6012
+ the O
6013
+ number O
6014
+ of O
6015
+ equations O
6016
+ and O
6017
+ the O
6018
+ number O
6019
+ of O
6020
+ unknown O
6021
+
6022
+ geometric B-Math
6023
+ interpretatio O
6024
+
6025
+ a B-Math
6026
+ first I-Math
6027
+ order I-Math
6028
+ differential I-Math
6029
+ equation I-Math
6030
+ is O
6031
+ said O
6032
+ to O
6033
+ be O
6034
+ homogeneous O
6035
+ if O
6036
+ it O
6037
+ may O
6038
+ be O
6039
+ writte O
6040
+ is O
6041
+ said O
6042
+ to O
6043
+ be O
6044
+ homogeneous B-Math
6045
+ if O
6046
+ it O
6047
+ may O
6048
+ be O
6049
+ writte O
6050
+
6051
+ in O
6052
+ mathematics B-Math
6053
+ a O
6054
+ system O
6055
+ of O
6056
+ linear O
6057
+ equations O
6058
+ or O
6059
+ linear O
6060
+ system O
6061
+ is O
6062
+ a O
6063
+ collection O
6064
+ of O
6065
+ one O
6066
+ or O
6067
+ more O
6068
+ linear O
6069
+ equations O
6070
+ involving O
6071
+ the O
6072
+ same O
6073
+ variable O
6074
+ a O
6075
+ system O
6076
+ of O
6077
+ linear B-Math
6078
+ equations I-Math
6079
+ or O
6080
+ linear O
6081
+ system O
6082
+ is O
6083
+ a O
6084
+ collection O
6085
+ of O
6086
+ one O
6087
+ or O
6088
+ more O
6089
+ linear O
6090
+ equations O
6091
+ involving O
6092
+ the O
6093
+ same O
6094
+ variable O
6095
+ or O
6096
+ linear B-Math
6097
+ system I-Math
6098
+ is O
6099
+ a O
6100
+ collection O
6101
+ of O
6102
+ one O
6103
+ or O
6104
+ more O
6105
+ linear O
6106
+ equations O
6107
+ involving O
6108
+ the O
6109
+ same O
6110
+ variable O
6111
+
6112
+ for O
6113
+ solutions O
6114
+ in O
6115
+ an O
6116
+ integral O
6117
+ domain O
6118
+ like O
6119
+ the O
6120
+ ring O
6121
+ of O
6122
+ the O
6123
+ integers O
6124
+ or O
6125
+ in O
6126
+ other O
6127
+ algebraic O
6128
+ structures O
6129
+ other O
6130
+ theories O
6131
+ have O
6132
+ been O
6133
+ developed O
6134
+ see O
6135
+ linear B-Math
6136
+ equation I-Math
6137
+ over O
6138
+ a O
6139
+ rin O
6140
+
6141
+ modules B-Math
6142
+ over O
6143
+ the O
6144
+ integers O
6145
+ can O
6146
+ be O
6147
+ identified O
6148
+ with O
6149
+ abelian O
6150
+ groups O
6151
+ since O
6152
+ the O
6153
+ multiplication O
6154
+ by O
6155
+ an O
6156
+ integer O
6157
+ may O
6158
+ be O
6159
+ identified O
6160
+ to O
6161
+ a O
6162
+ repeated O
6163
+ additio O
6164
+ over O
6165
+ the O
6166
+ integers O
6167
+ can O
6168
+ be O
6169
+ identified O
6170
+ with O
6171
+ abelian B-Math
6172
+ groups I-Math
6173
+ since O
6174
+ the O
6175
+ multiplication O
6176
+ by O
6177
+ an O
6178
+ integer O
6179
+ may O
6180
+ be O
6181
+ identified O
6182
+ to O
6183
+ a O
6184
+ repeated O
6185
+ additio O
6186
+ since O
6187
+ the O
6188
+ multiplication B-Attributes
6189
+ by O
6190
+ an O
6191
+ integer O
6192
+ may O
6193
+ be O
6194
+ identified O
6195
+ to O
6196
+ a O
6197
+ repeated O
6198
+ additio O
6199
+ by O
6200
+ an O
6201
+ integer O
6202
+ may O
6203
+ be O
6204
+ identified O
6205
+ to O
6206
+ a O
6207
+ repeated O
6208
+ addition B-Attributes
6209
+ integers B-Math
6210
+ can O
6211
+ be O
6212
+ identified O
6213
+ with O
6214
+ abelian O
6215
+ groups O
6216
+ since O
6217
+ the O
6218
+ multiplication O
6219
+ by O
6220
+ an O
6221
+ integer O
6222
+ may O
6223
+ be O
6224
+ identified O
6225
+ to O
6226
+ a O
6227
+ repeated O
6228
+ additio O
6229
+
6230
+ thus O
6231
+ computing O
6232
+ intersections O
6233
+ of O
6234
+ lines O
6235
+ and O
6236
+ planes O
6237
+ amounts O
6238
+ to O
6239
+ solving O
6240
+ systems O
6241
+ of O
6242
+ linear B-Math
6243
+ equations I-Math
6244
+ lines B-Math
6245
+ and O
6246
+ planes O
6247
+ amounts O
6248
+ to O
6249
+ solving O
6250
+ systems O
6251
+ of O
6252
+ linear O
6253
+ equation O
6254
+ and O
6255
+ planes B-Math
6256
+ amounts O
6257
+ to O
6258
+ solving O
6259
+ systems O
6260
+ of O
6261
+ linear O
6262
+ equation O
6263
+
6264
+ the O
6265
+ concepts O
6266
+ of O
6267
+ linear B-Math
6268
+ independence I-Math
6269
+ span I-Math
6270
+ basis I-Math
6271
+ and O
6272
+ linear O
6273
+ maps O
6274
+ also O
6275
+ called O
6276
+ module O
6277
+ homomorphisms O
6278
+ are O
6279
+ defined O
6280
+ for O
6281
+ modules O
6282
+ exactly O
6283
+ as O
6284
+ for O
6285
+ vector O
6286
+ spaces O
6287
+ with O
6288
+ the O
6289
+ essential O
6290
+ difference O
6291
+ that O
6292
+ if O
6293
+ r O
6294
+ is O
6295
+ not O
6296
+ a O
6297
+ field O
6298
+ there O
6299
+ are O
6300
+ modules O
6301
+ that O
6302
+ do O
6303
+ not O
6304
+ have O
6305
+ any O
6306
+ basi O
6307
+ and O
6308
+ linear B-Math
6309
+ maps I-Math
6310
+ also O
6311
+ called O
6312
+ module O
6313
+ homomorphisms O
6314
+ are O
6315
+ defined O
6316
+ for O
6317
+ modules O
6318
+ exactly O
6319
+ as O
6320
+ for O
6321
+ vector O
6322
+ spaces O
6323
+ with O
6324
+ the O
6325
+ essential O
6326
+ difference O
6327
+ that O
6328
+ if O
6329
+ r O
6330
+ is O
6331
+ not O
6332
+ a O
6333
+ field O
6334
+ there O
6335
+ are O
6336
+ modules O
6337
+ that O
6338
+ do O
6339
+ not O
6340
+ have O
6341
+ any O
6342
+ basi O
6343
+ also O
6344
+ called O
6345
+ module B-Math
6346
+ homomorphisms I-Math
6347
+ are O
6348
+ defined O
6349
+ for O
6350
+ modules O
6351
+ exactly O
6352
+ as O
6353
+ for O
6354
+ vector O
6355
+ spaces O
6356
+ with O
6357
+ the O
6358
+ essential O
6359
+ difference O
6360
+ that O
6361
+ if O
6362
+ r O
6363
+ is O
6364
+ not O
6365
+ a O
6366
+ field O
6367
+ there O
6368
+ are O
6369
+ modules O
6370
+ that O
6371
+ do O
6372
+ not O
6373
+ have O
6374
+ any O
6375
+ basi O
6376
+
6377
+ in O
6378
+ any O
6379
+ event O
6380
+ the O
6381
+ span O
6382
+ has O
6383
+ a O
6384
+ basis O
6385
+ of O
6386
+ linearly O
6387
+ independent O
6388
+ vectors O
6389
+ that O
6390
+ do O
6391
+ guarantee O
6392
+ exactly O
6393
+ one O
6394
+ expression O
6395
+ and O
6396
+ the O
6397
+ number O
6398
+ of O
6399
+ vectors B-Math
6400
+ in O
6401
+ that O
6402
+ basis O
6403
+ its O
6404
+ dimension O
6405
+ can O
6406
+ not O
6407
+ be O
6408
+ larger O
6409
+ than O
6410
+ m O
6411
+ or O
6412
+ n O
6413
+ but O
6414
+ it O
6415
+ can O
6416
+ be O
6417
+ smalle O
6418
+
6419
+ consequently O
6420
+ linear B-Math
6421
+ algebra I-Math
6422
+ algorithms O
6423
+ have O
6424
+ been O
6425
+ highly O
6426
+ optimize O
6427
+
6428
+ these O
6429
+ operations O
6430
+ and O
6431
+ associated O
6432
+ laws O
6433
+ qualify O
6434
+ euclidean O
6435
+ vectors O
6436
+ as O
6437
+ an O
6438
+ example O
6439
+ of O
6440
+ the O
6441
+ more O
6442
+ generalized O
6443
+ concept O
6444
+ of O
6445
+ vectors O
6446
+ defined O
6447
+ simply O
6448
+ as O
6449
+ elements O
6450
+ of O
6451
+ a O
6452
+ vector B-Math
6453
+ space I-Math
6454
+
6455
+ a O
6456
+ linear B-Math
6457
+ map I-Math
6458
+ from O
6459
+ to O
6460
+ always O
6461
+ maps O
6462
+ the O
6463
+ origin O
6464
+ of O
6465
+ to O
6466
+ the O
6467
+ origin O
6468
+ o O
6469
+
6470
+ in O
6471
+ modern O
6472
+ introductory O
6473
+ texts O
6474
+ on O
6475
+ functional B-Math
6476
+ analysis I-Math
6477
+ the O
6478
+ subject O
6479
+ is O
6480
+ seen O
6481
+ as O
6482
+ the O
6483
+ study O
6484
+ of O
6485
+ vector O
6486
+ spaces O
6487
+ endowed O
6488
+ with O
6489
+ a O
6490
+ topology O
6491
+ in O
6492
+ particular O
6493
+ infinitedimensional O
6494
+ space O
6495
+ the O
6496
+ subject O
6497
+ is O
6498
+ seen O
6499
+ as O
6500
+ the O
6501
+ study O
6502
+ of O
6503
+ vector B-Math
6504
+ spaces I-Math
6505
+ endowed O
6506
+ with O
6507
+ a O
6508
+ topology O
6509
+ in O
6510
+ particular O
6511
+ infinitedimensional O
6512
+ space O
6513
+ endowed O
6514
+ with O
6515
+ a O
6516
+ topology B-Math
6517
+ in O
6518
+ particular O
6519
+ infinitedimensional O
6520
+ space O
6521
+
6522
+ this O
6523
+ article O
6524
+ deals O
6525
+ mainly O
6526
+ with O
6527
+ finitedimensional O
6528
+ vector B-Math
6529
+ spaces I-Math
6530
+
6531
+ matrix B-Math
6532
+ theory I-Math
6533
+ is O
6534
+ the O
6535
+ branch O
6536
+ of O
6537
+ mathematics O
6538
+ that O
6539
+ focuses O
6540
+ on O
6541
+ the O
6542
+ study O
6543
+ of O
6544
+ matrice O
6545
+ is O
6546
+ the O
6547
+ branch O
6548
+ of O
6549
+ mathematics B-Math
6550
+ that O
6551
+ focuses O
6552
+ on O
6553
+ the O
6554
+ study O
6555
+ of O
6556
+ matrice O
6557
+ that O
6558
+ focuses O
6559
+ on O
6560
+ the O
6561
+ study O
6562
+ of O
6563
+ matrices B-Math
6564
+
6565
+ a O
6566
+ solution B-Math
6567
+ to O
6568
+ a O
6569
+ linear O
6570
+ system O
6571
+ is O
6572
+ an O
6573
+ assignment O
6574
+ of O
6575
+ values O
6576
+ to O
6577
+ the O
6578
+ variables O
6579
+ such O
6580
+ that O
6581
+ all O
6582
+ the O
6583
+ equations O
6584
+ are O
6585
+ simultaneously O
6586
+ satisfie O
6587
+ to O
6588
+ a O
6589
+ linear O
6590
+ system O
6591
+ is O
6592
+ an O
6593
+ assignment O
6594
+ of O
6595
+ values O
6596
+ to O
6597
+ the O
6598
+ variables B-Math
6599
+ uch O
6600
+ that O
6601
+ all O
6602
+ the O
6603
+ equations O
6604
+ are O
6605
+ simultaneously O
6606
+ satisfie O
6607
+ uch O
6608
+ that O
6609
+ all O
6610
+ the O
6611
+ equations O
6612
+ are O
6613
+ simultaneously B-Math
6614
+ satisfie O
6615
+
6616
+ in O
6617
+ multilinear B-Math
6618
+ algebra I-Math
6619
+ one O
6620
+ considers O
6621
+ multivariable O
6622
+ linear O
6623
+ transformations O
6624
+ that O
6625
+ is O
6626
+ mappings O
6627
+ that O
6628
+ are O
6629
+ linear O
6630
+ in O
6631
+ each O
6632
+ of O
6633
+ a O
6634
+ number O
6635
+ of O
6636
+ different O
6637
+ variable O
6638
+ one O
6639
+ considers O
6640
+ multivariable O
6641
+ linear B-Math
6642
+ transformations I-Math
6643
+ that O
6644
+ is O
6645
+ mappings O
6646
+ that O
6647
+ are O
6648
+ linear O
6649
+ in O
6650
+ each O
6651
+ of O
6652
+ a O
6653
+ number O
6654
+ of O
6655
+ different O
6656
+ variable O
6657
+
6658
+ otherwise O
6659
+ it O
6660
+ is O
6661
+ infinitedimensional B-Attributes
6662
+ and O
6663
+ its O
6664
+ dimension O
6665
+ is O
6666
+ an O
6667
+ infinite O
6668
+ cardina O
6669
+
6670
+ a O
6671
+ normed B-Math
6672
+ vector I-Math
6673
+ space I-Math
6674
+ is O
6675
+ a O
6676
+ vector O
6677
+ space O
6678
+ along O
6679
+ with O
6680
+ a O
6681
+ function O
6682
+ called O
6683
+ a O
6684
+ norm O
6685
+ which O
6686
+ measures O
6687
+ the O
6688
+ size O
6689
+ of O
6690
+ element O
6691
+ is O
6692
+ a O
6693
+ vector B-Math
6694
+ space I-Math
6695
+ along O
6696
+ with O
6697
+ a O
6698
+ function O
6699
+ called O
6700
+ a O
6701
+ norm O
6702
+ which O
6703
+ measures O
6704
+ the O
6705
+ size O
6706
+ of O
6707
+ element O
6708
+
6709
+ such O
6710
+ a O
6711
+ system O
6712
+ is O
6713
+ known O
6714
+ as O
6715
+ an O
6716
+ underdetermined B-Math
6717
+ system I-Math
6718
+
6719
+ if O
6720
+ in O
6721
+ addition O
6722
+ to O
6723
+ vector B-Math
6724
+ addition I-Math
6725
+ and O
6726
+ scalar O
6727
+ multiplication O
6728
+ there O
6729
+ is O
6730
+ a O
6731
+ bilinear O
6732
+ vector O
6733
+ product O
6734
+ v O
6735
+ v O
6736
+ v O
6737
+ the O
6738
+ vector O
6739
+ space O
6740
+ is O
6741
+ called O
6742
+ an O
6743
+ algebra O
6744
+ for O
6745
+ instance O
6746
+ associative O
6747
+ algebras O
6748
+ are O
6749
+ algebras O
6750
+ with O
6751
+ an O
6752
+ associate O
6753
+ vector O
6754
+ product O
6755
+ like O
6756
+ the O
6757
+ algebra O
6758
+ of O
6759
+ square O
6760
+ matrices O
6761
+ or O
6762
+ the O
6763
+ algebra O
6764
+ of O
6765
+ polynomial O
6766
+ and O
6767
+ scalar B-Math
6768
+ multiplication I-Math
6769
+ there O
6770
+ is O
6771
+ a O
6772
+ bilinear O
6773
+ vector O
6774
+ product O
6775
+ v O
6776
+ v O
6777
+ v O
6778
+ the O
6779
+ vector O
6780
+ space O
6781
+ is O
6782
+ called O
6783
+ an O
6784
+ algebra O
6785
+ for O
6786
+ instance O
6787
+ associative O
6788
+ algebras O
6789
+ are O
6790
+ algebras O
6791
+ with O
6792
+ an O
6793
+ associate O
6794
+ vector O
6795
+ product O
6796
+ like O
6797
+ the O
6798
+ algebra O
6799
+ of O
6800
+ square O
6801
+ matrices O
6802
+ or O
6803
+ the O
6804
+ algebra O
6805
+ of O
6806
+ polynomial O
6807
+ there O
6808
+ is O
6809
+ a O
6810
+ bilinear B-Math
6811
+ vector I-Math
6812
+ product I-Math
6813
+ v O
6814
+ v O
6815
+ v O
6816
+ the O
6817
+ vector O
6818
+ space O
6819
+ is O
6820
+ called O
6821
+ an O
6822
+ algebra O
6823
+ for O
6824
+ instance O
6825
+ associative O
6826
+ algebras O
6827
+ are O
6828
+ algebras O
6829
+ with O
6830
+ an O
6831
+ associate O
6832
+ vector O
6833
+ product O
6834
+ like O
6835
+ the O
6836
+ algebra O
6837
+ of O
6838
+ square O
6839
+ matrices O
6840
+ or O
6841
+ the O
6842
+ algebra O
6843
+ of O
6844
+ polynomial O
6845
+ v O
6846
+ v O
6847
+ v O
6848
+ the O
6849
+ vector B-Math
6850
+ space I-Math
6851
+ is O
6852
+ called O
6853
+ an O
6854
+ algebra O
6855
+ for O
6856
+ instance O
6857
+ associative O
6858
+ algebras O
6859
+ are O
6860
+ algebras O
6861
+ with O
6862
+ an O
6863
+ associate O
6864
+ vector O
6865
+ product O
6866
+ like O
6867
+ the O
6868
+ algebra O
6869
+ of O
6870
+ square O
6871
+ matrices O
6872
+ or O
6873
+ the O
6874
+ algebra O
6875
+ of O
6876
+ polynomial O
6877
+
6878
+ analysis B-Math
6879
+ is O
6880
+ the O
6881
+ branch O
6882
+ of O
6883
+ mathematics O
6884
+ dealing O
6885
+ with O
6886
+ continuous O
6887
+ functions O
6888
+ limits O
6889
+ and O
6890
+ related O
6891
+ theories O
6892
+ such O
6893
+ as O
6894
+ differentiation O
6895
+ integration O
6896
+ measure O
6897
+ infinite O
6898
+ sequences O
6899
+ series O
6900
+ and O
6901
+ analytic O
6902
+ function O
6903
+ is O
6904
+ the O
6905
+ branch O
6906
+ of O
6907
+ mathematics O
6908
+ dealing O
6909
+ with O
6910
+ continuous B-Math
6911
+ functions I-Math
6912
+ limits I-Math
6913
+ and O
6914
+ related O
6915
+ theories O
6916
+ such O
6917
+ as O
6918
+ differentiation O
6919
+ integration O
6920
+ measure O
6921
+ infinite O
6922
+ sequences O
6923
+ series O
6924
+ and O
6925
+ analytic O
6926
+ function O
6927
+ and O
6928
+ related O
6929
+ theories O
6930
+ such O
6931
+ as O
6932
+ differentiation O
6933
+ integration O
6934
+ measure O
6935
+ infinite O
6936
+ sequences O
6937
+ series O
6938
+ and O
6939
+ analytic B-Math
6940
+ functions I-Math
6941
+
6942
+ vectors O
6943
+ can O
6944
+ be O
6945
+ added O
6946
+ to O
6947
+ other O
6948
+ vectors O
6949
+ according O
6950
+ to O
6951
+ vector B-Math
6952
+ algebra I-Math
6953
+ vectors B-Math
6954
+ can O
6955
+ be O
6956
+ added O
6957
+ to O
6958
+ other O
6959
+ vectors O
6960
+ according O
6961
+ to O
6962
+ vector O
6963
+ algebr O
txt_data/valid.txt ADDED
@@ -0,0 +1,1544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ bthis O
2
+ is O
3
+ called O
4
+ a O
5
+ linear B-Math
6
+ model I-Math
7
+ or O
8
+ firstorder O
9
+ approximatio O
10
+ or O
11
+ firstorder B-Math
12
+ approximation I-Math
13
+
14
+ it O
15
+ also O
16
+ provides O
17
+ the O
18
+ foundation O
19
+ and O
20
+ theoretical O
21
+ framework O
22
+ that O
23
+ underlies O
24
+ the O
25
+ fourier B-Math
26
+ transform I-Math
27
+ and O
28
+ related O
29
+ method O
30
+
31
+ for O
32
+ example O
33
+ the O
34
+ collection O
35
+ of O
36
+ all O
37
+ possible O
38
+ linear B-Math
39
+ combinations I-Math
40
+ of O
41
+ the O
42
+ vectors O
43
+ on O
44
+ the O
45
+ lefthand O
46
+ side O
47
+ is O
48
+ called O
49
+ their O
50
+ span O
51
+ and O
52
+ the O
53
+ equations O
54
+ have O
55
+ a O
56
+ solution O
57
+ just O
58
+ when O
59
+ the O
60
+ righthand O
61
+ vector O
62
+ is O
63
+ within O
64
+ that O
65
+ spa O
66
+ of O
67
+ the O
68
+ vectors B-Math
69
+ on O
70
+ the O
71
+ lefthand O
72
+ side O
73
+ is O
74
+ called O
75
+ their O
76
+ span O
77
+ and O
78
+ the O
79
+ equations O
80
+ have O
81
+ a O
82
+ solution O
83
+ just O
84
+ when O
85
+ the O
86
+ righthand O
87
+ vector O
88
+ is O
89
+ within O
90
+ that O
91
+ spa O
92
+
93
+ the O
94
+ coefficients O
95
+ of O
96
+ this O
97
+ linear O
98
+ combination O
99
+ are O
100
+ referred O
101
+ to O
102
+ as O
103
+ components B-Math
104
+ or O
105
+ coordinates O
106
+ of O
107
+ the O
108
+ vector O
109
+ with O
110
+ respect O
111
+ to O
112
+ or O
113
+ coordinates B-Math
114
+ of O
115
+ the O
116
+ vector O
117
+ with O
118
+ respect O
119
+ to O
120
+ linear B-Math
121
+ combination I-Math
122
+ are O
123
+ referred O
124
+ to O
125
+ as O
126
+ components O
127
+ or O
128
+ coordinates O
129
+ of O
130
+ the O
131
+ vector O
132
+ with O
133
+ respect O
134
+ to O
135
+
136
+ for O
137
+ nonlinear B-Math
138
+ systems I-Math
139
+ this O
140
+ interaction O
141
+ is O
142
+ often O
143
+ approximated O
144
+ by O
145
+ linear O
146
+ function O
147
+ this O
148
+ interaction O
149
+ is O
150
+ often O
151
+ approximated O
152
+ by O
153
+ linear B-Math
154
+ functions I-Math
155
+
156
+ in O
157
+ the O
158
+ theory O
159
+ of O
160
+ vector B-Math
161
+ spaces I-Math
162
+ a O
163
+ set O
164
+ of O
165
+ vectors O
166
+ is O
167
+ said O
168
+ to O
169
+ be O
170
+ linearly O
171
+ independent O
172
+ if O
173
+ there O
174
+ exists O
175
+ no O
176
+ nontrivial O
177
+ linear O
178
+ combination O
179
+ of O
180
+ the O
181
+ vectors O
182
+ that O
183
+ equals O
184
+ the O
185
+ zero O
186
+ vecto O
187
+ a O
188
+ set O
189
+ of O
190
+ vectors B-Math
191
+ is O
192
+ said O
193
+ to O
194
+ be O
195
+ linearly O
196
+ independent O
197
+ if O
198
+ there O
199
+ exists O
200
+ no O
201
+ nontrivial O
202
+ linear O
203
+ combination O
204
+ of O
205
+ the O
206
+ vectors O
207
+ that O
208
+ equals O
209
+ the O
210
+ zero O
211
+ vecto O
212
+ is O
213
+ said O
214
+ to O
215
+ be O
216
+ linearly B-Math
217
+ independent I-Math
218
+ if O
219
+ there O
220
+ exists O
221
+ no O
222
+ nontrivial O
223
+ linear O
224
+ combination O
225
+ of O
226
+ the O
227
+ vectors O
228
+ that O
229
+ equals O
230
+ the O
231
+ zero O
232
+ vecto O
233
+ if O
234
+ there O
235
+ exists O
236
+ no O
237
+ nontrivial O
238
+ linear B-Math
239
+ combination I-Math
240
+ of O
241
+ the O
242
+ vectors O
243
+ that O
244
+ equals O
245
+ the O
246
+ zero O
247
+ vecto O
248
+
249
+ in O
250
+ mathematics B-Math
251
+ he O
252
+ linear O
253
+ span O
254
+ also O
255
+ called O
256
+ the O
257
+ linear O
258
+ hull O
259
+ or O
260
+ just O
261
+ span O
262
+ of O
263
+ a O
264
+ set O
265
+ s O
266
+ of O
267
+ vectors O
268
+ from O
269
+ a O
270
+ vector O
271
+ space O
272
+ denoted O
273
+ spans O
274
+ is O
275
+ defined O
276
+ as O
277
+ the O
278
+ set O
279
+ of O
280
+ all O
281
+ linear O
282
+ combinations O
283
+ of O
284
+ the O
285
+ vectors O
286
+ in O
287
+ s O
288
+ for O
289
+ example O
290
+ two O
291
+ linearly O
292
+ independent O
293
+ vectors O
294
+ span O
295
+ a O
296
+ plan O
297
+ he O
298
+ linear B-Math
299
+ span I-Math
300
+ also O
301
+ called O
302
+ the O
303
+ linear O
304
+ hull O
305
+ or O
306
+ just O
307
+ span O
308
+ of O
309
+ a O
310
+ set O
311
+ s O
312
+ of O
313
+ vectors O
314
+ from O
315
+ a O
316
+ vector O
317
+ space O
318
+ denoted O
319
+ spans O
320
+ is O
321
+ defined O
322
+ as O
323
+ the O
324
+ set O
325
+ of O
326
+ all O
327
+ linear O
328
+ combinations O
329
+ of O
330
+ the O
331
+ vectors O
332
+ in O
333
+ s O
334
+ for O
335
+ example O
336
+ two O
337
+ linearly O
338
+ independent O
339
+ vectors O
340
+ span O
341
+ a O
342
+ plan O
343
+ also O
344
+ called O
345
+ the O
346
+ linear B-Math
347
+ hull I-Math
348
+ or O
349
+ just O
350
+ span O
351
+ of O
352
+ a O
353
+ set O
354
+ s O
355
+ of O
356
+ vectors O
357
+ from O
358
+ a O
359
+ vector O
360
+ space O
361
+ denoted O
362
+ spans O
363
+ is O
364
+ defined O
365
+ as O
366
+ the O
367
+ set O
368
+ of O
369
+ all O
370
+ linear O
371
+ combinations O
372
+ of O
373
+ the O
374
+ vectors O
375
+ in O
376
+ s O
377
+ for O
378
+ example O
379
+ two O
380
+ linearly O
381
+ independent O
382
+ vectors O
383
+ span O
384
+ a O
385
+ plan O
386
+
387
+ however O
388
+ many O
389
+ of O
390
+ the O
391
+ principles O
392
+ are O
393
+ also O
394
+ valid O
395
+ for O
396
+ infinitedimensional O
397
+ vector B-Math
398
+ spaces I-Math
399
+
400
+ also O
401
+ functional B-Math
402
+ analysis I-Math
403
+ a O
404
+ branch O
405
+ of O
406
+ mathematical O
407
+ analysis O
408
+ may O
409
+ be O
410
+ viewed O
411
+ as O
412
+ the O
413
+ application O
414
+ of O
415
+ linear O
416
+ algebra O
417
+ to O
418
+ function O
419
+ space O
420
+ a O
421
+ branch O
422
+ of O
423
+ mathematical O
424
+ analysis O
425
+ may O
426
+ be O
427
+ viewed O
428
+ as O
429
+ the O
430
+ application O
431
+ of O
432
+ linear B-Math
433
+ algebra I-Math
434
+ to O
435
+ function O
436
+ space O
437
+
438
+ in O
439
+ mathematics O
440
+ physics O
441
+ and O
442
+ engineering O
443
+ a O
444
+ euclidean O
445
+ vector O
446
+ or O
447
+ simply O
448
+ a O
449
+ vector O
450
+ sometimes O
451
+ called O
452
+ a O
453
+ geometric B-Math
454
+ vector I-Math
455
+ or O
456
+ spatial O
457
+ vector O
458
+ is O
459
+ a O
460
+ geometric O
461
+ object O
462
+ that O
463
+ has O
464
+ magnitude O
465
+ or O
466
+ length O
467
+ and O
468
+ directio O
469
+ or O
470
+ spatial O
471
+ vector O
472
+ is O
473
+ a O
474
+ geometric O
475
+ object O
476
+ that O
477
+ has O
478
+ magnitude B-Attributes
479
+ or O
480
+ length O
481
+ and O
482
+ directio O
483
+ or O
484
+ length B-Attributes
485
+ and O
486
+ directio O
487
+ and O
488
+ direction B-Attributes
489
+
490
+ here O
491
+ in O
492
+ general O
493
+ means O
494
+ that O
495
+ a O
496
+ different O
497
+ behavior O
498
+ may O
499
+ occur O
500
+ for O
501
+ specific B-Math
502
+ values I-Math
503
+ of O
504
+ the O
505
+ coefficients O
506
+ of O
507
+ the O
508
+ equation O
509
+
510
+ multilinear B-Math
511
+ maps I-Math
512
+ t O
513
+ vn O
514
+ f O
515
+ can O
516
+ be O
517
+ described O
518
+ via O
519
+ tensor O
520
+ products O
521
+ of O
522
+ elements O
523
+ of O
524
+ t O
525
+ vn O
526
+ f O
527
+ can O
528
+ be O
529
+ described O
530
+ via O
531
+ tensor B-Math
532
+ products O
533
+ of O
534
+ elements O
535
+ of O
536
+
537
+ a O
538
+ vector B-Math
539
+ is O
540
+ what O
541
+ is O
542
+ needed O
543
+ to O
544
+ carry O
545
+ the O
546
+ point O
547
+ a O
548
+ to O
549
+ the O
550
+ point O
551
+ b O
552
+ the O
553
+ latin O
554
+ word O
555
+ vector O
556
+ means O
557
+ carrie O
558
+
559
+ the O
560
+ application O
561
+ of O
562
+ linear B-Math
563
+ algebra I-Math
564
+ in O
565
+ this O
566
+ context O
567
+ is O
568
+ vital O
569
+ for O
570
+ the O
571
+ design O
572
+ and O
573
+ operation O
574
+ of O
575
+ modern O
576
+ power O
577
+ systems O
578
+ including O
579
+ renewable O
580
+ energy O
581
+ sources O
582
+ and O
583
+ smart O
584
+ grid O
585
+
586
+ one O
587
+ may O
588
+ thus O
589
+ replace O
590
+ the O
591
+ field O
592
+ of O
593
+ scalars O
594
+ by O
595
+ a O
596
+ ring B-Math
597
+ r O
598
+ and O
599
+ this O
600
+ gives O
601
+ the O
602
+ structure O
603
+ called O
604
+ a O
605
+ module O
606
+ over O
607
+ r O
608
+ or O
609
+ rmodul O
610
+
611
+ when O
612
+ the O
613
+ scalar O
614
+ field O
615
+ is O
616
+ the O
617
+ real O
618
+ numbers O
619
+ the O
620
+ vector B-Math
621
+ space I-Math
622
+ is O
623
+ called O
624
+ a O
625
+ real O
626
+ vector O
627
+ space O
628
+ and O
629
+ when O
630
+ the O
631
+ scalar O
632
+ field O
633
+ is O
634
+ the O
635
+ complex O
636
+ numbers O
637
+ the O
638
+ vector O
639
+ space O
640
+ is O
641
+ called O
642
+ a O
643
+ complex O
644
+ vector O
645
+ spac O
646
+ is O
647
+ called O
648
+ a O
649
+ real O
650
+ vector O
651
+ space O
652
+ and O
653
+ when O
654
+ the O
655
+ scalar O
656
+ field O
657
+ is O
658
+ the O
659
+ complex O
660
+ numbers O
661
+ the O
662
+ vector O
663
+ space O
664
+ is O
665
+ called O
666
+ a O
667
+ complex B-Math
668
+ vector I-Math
669
+ space I-Math
670
+ real B-Math
671
+ vector I-Math
672
+ space I-Math
673
+ and O
674
+ when O
675
+ the O
676
+ scalar O
677
+ field O
678
+ is O
679
+ the O
680
+ complex O
681
+ numbers O
682
+ the O
683
+ vector O
684
+ space O
685
+ is O
686
+ called O
687
+ a O
688
+ complex O
689
+ vector O
690
+ spac O
691
+
692
+ computational O
693
+ algorithms O
694
+ for O
695
+ finding O
696
+ the O
697
+ solutions O
698
+ are O
699
+ an O
700
+ important O
701
+ part O
702
+ of O
703
+ numerical O
704
+ linear B-Math
705
+ algebra I-Math
706
+ and O
707
+ play O
708
+ a O
709
+ prominent O
710
+ role O
711
+ in O
712
+ engineering O
713
+ physics O
714
+ chemistry O
715
+ computer O
716
+ science O
717
+ and O
718
+ economic O
719
+ solutions B-Math
720
+ are O
721
+ an O
722
+ important O
723
+ part O
724
+ of O
725
+ numerical O
726
+ linear O
727
+ algebra O
728
+ and O
729
+ play O
730
+ a O
731
+ prominent O
732
+ role O
733
+ in O
734
+ engineering O
735
+ physics O
736
+ chemistry O
737
+ computer O
738
+ science O
739
+ and O
740
+ economic O
741
+
742
+ in O
743
+ the O
744
+ first O
745
+ case O
746
+ the O
747
+ dimension B-Math
748
+ of O
749
+ the O
750
+ solution O
751
+ set O
752
+ is O
753
+ in O
754
+ general O
755
+ equal O
756
+ to O
757
+ n O
758
+ m O
759
+ where O
760
+ n O
761
+ is O
762
+ the O
763
+ number O
764
+ of O
765
+ variables O
766
+ and O
767
+ m O
768
+ is O
769
+ the O
770
+ number O
771
+ of O
772
+ equation O
773
+ of O
774
+ the O
775
+ solution B-Math
776
+ set I-Math
777
+ is O
778
+ in O
779
+ general O
780
+ equal O
781
+ to O
782
+ n O
783
+ m O
784
+ where O
785
+ n O
786
+ is O
787
+ the O
788
+ number O
789
+ of O
790
+ variables O
791
+ and O
792
+ m O
793
+ is O
794
+ the O
795
+ number O
796
+ of O
797
+ equation O
798
+ is O
799
+ in O
800
+ general O
801
+ equal O
802
+ to O
803
+ n O
804
+ m O
805
+ where O
806
+ n O
807
+ is O
808
+ the O
809
+ number O
810
+ of O
811
+ variables O
812
+ and O
813
+ m O
814
+ is O
815
+ the O
816
+ number O
817
+ of O
818
+ equations B-Math
819
+ variables B-Math
820
+ and O
821
+ m O
822
+ is O
823
+ the O
824
+ number O
825
+ of O
826
+ equation O
827
+
828
+ in O
829
+ the O
830
+ case O
831
+ of O
832
+ linear B-Math
833
+ differential I-Math
834
+ equations I-Math
835
+ this O
836
+ means O
837
+ that O
838
+ there O
839
+ are O
840
+ no O
841
+ constant O
842
+ term O
843
+
844
+ furthermore O
845
+ linear B-Math
846
+ algebra I-Math
847
+ plays O
848
+ a O
849
+ crucial O
850
+ role O
851
+ in O
852
+ thermal O
853
+ energy O
854
+ systems O
855
+ particularly O
856
+ in O
857
+ power O
858
+ systems O
859
+ analysi O
860
+ plays O
861
+ a O
862
+ crucial O
863
+ role O
864
+ in O
865
+ thermal B-Attributes
866
+ energy I-Attributes
867
+ systems I-Attributes
868
+ particularly O
869
+ in O
870
+ power O
871
+ systems O
872
+ analysi O
873
+
874
+ vector B-Math
875
+ spaces I-Math
876
+ that O
877
+ are O
878
+ not O
879
+ finite O
880
+ dimensional O
881
+ often O
882
+ require O
883
+ additional O
884
+ structure O
885
+ to O
886
+ be O
887
+ tractabl O
888
+
889
+ the O
890
+ historical O
891
+ roots O
892
+ of O
893
+ functional B-Math
894
+ analysis I-Math
895
+ lie O
896
+ in O
897
+ the O
898
+ study O
899
+ of O
900
+ spaces O
901
+ of O
902
+ functions O
903
+ and O
904
+ the O
905
+ formulation O
906
+ of O
907
+ properties O
908
+ of O
909
+ transformations O
910
+ of O
911
+ functions O
912
+ such O
913
+ as O
914
+ the O
915
+ fourier O
916
+ transform O
917
+ as O
918
+ transformations O
919
+ defining O
920
+ for O
921
+ example O
922
+ continuous O
923
+ or O
924
+ unitary O
925
+ operators O
926
+ between O
927
+ function O
928
+ space O
929
+ lie O
930
+ in O
931
+ the O
932
+ study O
933
+ of O
934
+ spaces O
935
+ of O
936
+ functions O
937
+ and O
938
+ the O
939
+ formulation O
940
+ of O
941
+ properties O
942
+ of O
943
+ transformations O
944
+ of O
945
+ functions O
946
+ such O
947
+ as O
948
+ the O
949
+ fourier B-Math
950
+ transform I-Math
951
+ as O
952
+ transformations O
953
+ defining O
954
+ for O
955
+ example O
956
+ continuous O
957
+ or O
958
+ unitary O
959
+ operators O
960
+ between O
961
+ function O
962
+ space O
963
+ as O
964
+ transformations O
965
+ defining O
966
+ for O
967
+ example O
968
+ continuous O
969
+ or O
970
+ unitary B-Math
971
+ operators I-Math
972
+ between O
973
+ function O
974
+ space O
975
+
976
+ in O
977
+ general O
978
+ there O
979
+ is O
980
+ not O
981
+ such O
982
+ a O
983
+ complete O
984
+ classification O
985
+ for O
986
+ modules B-Math
987
+ even O
988
+ if O
989
+ one O
990
+ restricts O
991
+ oneself O
992
+ to O
993
+ finitely O
994
+ generated O
995
+ module O
996
+
997
+ there O
998
+ is O
999
+ a O
1000
+ strong O
1001
+ relationship O
1002
+ between O
1003
+ linear B-Math
1004
+ algebra I-Math
1005
+ and O
1006
+ geometry O
1007
+ which O
1008
+ started O
1009
+ with O
1010
+ the O
1011
+ introduction O
1012
+ by O
1013
+ rené O
1014
+ descartes O
1015
+ in O
1016
+ of O
1017
+ cartesian O
1018
+ coordinate O
1019
+ and O
1020
+ geometry B-Math
1021
+ which O
1022
+ started O
1023
+ with O
1024
+ the O
1025
+ introduction O
1026
+ by O
1027
+ rené O
1028
+ descartes O
1029
+ in O
1030
+ of O
1031
+ cartesian O
1032
+ coordinate O
1033
+
1034
+ a O
1035
+ linear B-Math
1036
+ endomorphism I-Math
1037
+ is O
1038
+ a O
1039
+ linear O
1040
+ map O
1041
+ that O
1042
+ maps O
1043
+ a O
1044
+ vector O
1045
+ space O
1046
+ v O
1047
+ to O
1048
+ itsel O
1049
+ is O
1050
+ a O
1051
+ linear B-Math
1052
+ map I-Math
1053
+ that O
1054
+ maps O
1055
+ a O
1056
+ vector O
1057
+ space O
1058
+ v O
1059
+ to O
1060
+ itsel O
1061
+ that O
1062
+ maps O
1063
+ a O
1064
+ vector B-Math
1065
+ space I-Math
1066
+ v O
1067
+ to O
1068
+ itsel O
1069
+
1070
+ the O
1071
+ determinant B-Math
1072
+ of O
1073
+ a O
1074
+ square O
1075
+ matrix O
1076
+ is O
1077
+ a O
1078
+ number O
1079
+ associated O
1080
+ to O
1081
+ the O
1082
+ matrix O
1083
+ which O
1084
+ is O
1085
+ fundamental O
1086
+ for O
1087
+ the O
1088
+ study O
1089
+ of O
1090
+ a O
1091
+ square O
1092
+ matrix O
1093
+ for O
1094
+ example O
1095
+ a O
1096
+ square O
1097
+ matrix O
1098
+ is O
1099
+ invertible O
1100
+ if O
1101
+ and O
1102
+ only O
1103
+ if O
1104
+ it O
1105
+ has O
1106
+ a O
1107
+ nonzero O
1108
+ determinant O
1109
+ and O
1110
+ the O
1111
+ eigenvalues O
1112
+ of O
1113
+ a O
1114
+ square O
1115
+ matrix O
1116
+ are O
1117
+ the O
1118
+ roots O
1119
+ of O
1120
+ a O
1121
+ polynomial O
1122
+ determinan O
1123
+ of O
1124
+ a O
1125
+ square B-Math
1126
+ matrix I-Math
1127
+ is O
1128
+ a O
1129
+ number O
1130
+ associated O
1131
+ to O
1132
+ the O
1133
+ matrix O
1134
+ which O
1135
+ is O
1136
+ fundamental O
1137
+ for O
1138
+ the O
1139
+ study O
1140
+ of O
1141
+ a O
1142
+ square O
1143
+ matrix O
1144
+ for O
1145
+ example O
1146
+ a O
1147
+ square O
1148
+ matrix O
1149
+ is O
1150
+ invertible O
1151
+ if O
1152
+ and O
1153
+ only O
1154
+ if O
1155
+ it O
1156
+ has O
1157
+ a O
1158
+ nonzero O
1159
+ determinant O
1160
+ and O
1161
+ the O
1162
+ eigenvalues O
1163
+ of O
1164
+ a O
1165
+ square O
1166
+ matrix O
1167
+ are O
1168
+ the O
1169
+ roots O
1170
+ of O
1171
+ a O
1172
+ polynomial O
1173
+ determinan O
1174
+ is O
1175
+ a O
1176
+ number O
1177
+ associated O
1178
+ to O
1179
+ the O
1180
+ matrix O
1181
+ which O
1182
+ is O
1183
+ fundamental O
1184
+ for O
1185
+ the O
1186
+ study O
1187
+ of O
1188
+ a O
1189
+ square O
1190
+ matrix O
1191
+ for O
1192
+ example O
1193
+ a O
1194
+ square O
1195
+ matrix O
1196
+ is O
1197
+ invertible O
1198
+ if O
1199
+ and O
1200
+ only O
1201
+ if O
1202
+ it O
1203
+ has O
1204
+ a O
1205
+ nonzero O
1206
+ determinant O
1207
+ and O
1208
+ the O
1209
+ eigenvalues B-Math
1210
+ of O
1211
+ a O
1212
+ square O
1213
+ matrix O
1214
+ are O
1215
+ the O
1216
+ roots O
1217
+ of O
1218
+ a O
1219
+ polynomial O
1220
+ determinan O
1221
+ of O
1222
+ a O
1223
+ square B-Math
1224
+ matrix I-Math
1225
+ are O
1226
+ the O
1227
+ roots O
1228
+ of O
1229
+ a O
1230
+ polynomial O
1231
+ determinan O
1232
+ are O
1233
+ the O
1234
+ roots O
1235
+ of O
1236
+ a O
1237
+ polynomial B-Math
1238
+ determinant I-Math
1239
+
1240
+ in O
1241
+ this O
1242
+ context O
1243
+ the O
1244
+ elements O
1245
+ of O
1246
+ v O
1247
+ are O
1248
+ commonly O
1249
+ called O
1250
+ vectors B-Math
1251
+ and O
1252
+ the O
1253
+ elements O
1254
+ of O
1255
+ f O
1256
+ are O
1257
+ called O
1258
+ scalar O
1259
+ and O
1260
+ the O
1261
+ elements O
1262
+ of O
1263
+ f O
1264
+ are O
1265
+ called O
1266
+ scalars B-Math
1267
+
1268
+ matrices B-Math
1269
+ are O
1270
+ used O
1271
+ to O
1272
+ represent O
1273
+ linear O
1274
+ maps O
1275
+ and O
1276
+ allow O
1277
+ explicit O
1278
+ computations O
1279
+ in O
1280
+ linear O
1281
+ algebr O
1282
+ are O
1283
+ used O
1284
+ to O
1285
+ represent O
1286
+ linear B-Math
1287
+ maps I-Math
1288
+ and O
1289
+ allow O
1290
+ explicit O
1291
+ computations O
1292
+ in O
1293
+ linear O
1294
+ algebr O
1295
+ and O
1296
+ allow O
1297
+ explicit O
1298
+ computations O
1299
+ in O
1300
+ linear B-Math
1301
+ algebra I-Math
1302
+
1303
+ such O
1304
+ a O
1305
+ system O
1306
+ is O
1307
+ also O
1308
+ known O
1309
+ as O
1310
+ an O
1311
+ overdetermined B-Math
1312
+ system I-Math
1313
+
1314
+ because O
1315
+ an O
1316
+ isomorphism B-Math
1317
+ preserves O
1318
+ linear O
1319
+ structure O
1320
+ two O
1321
+ isomorphic O
1322
+ vector O
1323
+ spaces O
1324
+ are O
1325
+ essentially O
1326
+ the O
1327
+ same O
1328
+ from O
1329
+ the O
1330
+ linear O
1331
+ algebra O
1332
+ point O
1333
+ of O
1334
+ view O
1335
+ in O
1336
+ the O
1337
+ sense O
1338
+ that O
1339
+ they O
1340
+ can O
1341
+ not O
1342
+ be O
1343
+ distinguished O
1344
+ by O
1345
+ using O
1346
+ vector O
1347
+ space O
1348
+ propertie O
1349
+ preserves O
1350
+ linear O
1351
+ structure O
1352
+ two O
1353
+ isomorphic O
1354
+ vector O
1355
+ spaces O
1356
+ are O
1357
+ essentially O
1358
+ the O
1359
+ same O
1360
+ from O
1361
+ the O
1362
+ linear B-Math
1363
+ algebra I-Math
1364
+ point O
1365
+ of O
1366
+ view O
1367
+ in O
1368
+ the O
1369
+ sense O
1370
+ that O
1371
+ they O
1372
+ can O
1373
+ not O
1374
+ be O
1375
+ distinguished O
1376
+ by O
1377
+ using O
1378
+ vector O
1379
+ space O
1380
+ propertie O
1381
+ isomorphic B-Math
1382
+ vector I-Math
1383
+ spaces I-Math
1384
+ are O
1385
+ essentially O
1386
+ the O
1387
+ same O
1388
+ from O
1389
+ the O
1390
+ linear O
1391
+ algebra O
1392
+ point O
1393
+ of O
1394
+ view O
1395
+ in O
1396
+ the O
1397
+ sense O
1398
+ that O
1399
+ they O
1400
+ can O
1401
+ not O
1402
+ be O
1403
+ distinguished O
1404
+ by O
1405
+ using O
1406
+ vector O
1407
+ space O
1408
+ propertie O
1409
+
1410
+ sometimes O
1411
+ the O
1412
+ term O
1413
+ linear O
1414
+ function O
1415
+ has O
1416
+ the O
1417
+ same O
1418
+ meaning O
1419
+ as O
1420
+ linear B-Math
1421
+ map I-Math
1422
+ while O
1423
+ in O
1424
+ analysis O
1425
+ it O
1426
+ does O
1427
+ no O
1428
+ linear B-Math
1429
+ function I-Math
1430
+ has O
1431
+ the O
1432
+ same O
1433
+ meaning O
1434
+ as O
1435
+ linear O
1436
+ map O
1437
+ while O
1438
+ in O
1439
+ analysis O
1440
+ it O
1441
+ does O
1442
+ no O
1443
+
1444
+ infinitedimensional O
1445
+ vector B-Math
1446
+ spaces I-Math
1447
+ occur O
1448
+ in O
1449
+ many O
1450
+ areas O
1451
+ of O
1452
+ mathematic O
1453
+ occur O
1454
+ in O
1455
+ many O
1456
+ areas O
1457
+ of O
1458
+ mathematics B-Math
1459
+ infinitedimensional B-Attributes
1460
+ vector O
1461
+ spaces O
1462
+ occur O
1463
+ in O
1464
+ many O
1465
+ areas O
1466
+ of O
1467
+ mathematic O
1468
+
1469
+ in O
1470
+ particular O
1471
+ over O
1472
+ a O
1473
+ principal O
1474
+ ideal O
1475
+ domain O
1476
+ every O
1477
+ submodule B-Math
1478
+ of O
1479
+ a O
1480
+ free O
1481
+ module O
1482
+ is O
1483
+ free O
1484
+ and O
1485
+ the O
1486
+ fundamental O
1487
+ theorem O
1488
+ of O
1489
+ finitely O
1490
+ generated O
1491
+ abelian O
1492
+ groups O
1493
+ may O
1494
+ be O
1495
+ extended O
1496
+ straightforwardly O
1497
+ to O
1498
+ finitely O
1499
+ generated O
1500
+ modules O
1501
+ over O
1502
+ a O
1503
+ principal O
1504
+ rin O
1505
+ of O
1506
+ a O
1507
+ free O
1508
+ module B-Math
1509
+ is O
1510
+ free O
1511
+ and O
1512
+ the O
1513
+ fundamental O
1514
+ theorem O
1515
+ of O
1516
+ finitely O
1517
+ generated O
1518
+ abelian O
1519
+ groups O
1520
+ may O
1521
+ be O
1522
+ extended O
1523
+ straightforwardly O
1524
+ to O
1525
+ finitely O
1526
+ generated O
1527
+ modules O
1528
+ over O
1529
+ a O
1530
+ principal O
1531
+ rin O
1532
+
1533
+ module O
1534
+ homomorphisms O
1535
+ between O
1536
+ finitely O
1537
+ generated O
1538
+ free O
1539
+ modules O
1540
+ may O
1541
+ be O
1542
+ represented O
1543
+ by O
1544
+ matrices B-Math