DFC2020 / DFC2020.py
yuxuanw8's picture
Upload DFC2020.py with huggingface_hub
a901fa0 verified
import os
import json
import shutil
import tifffile
import datasets
import pandas as pd
import numpy as np
S2_MEAN = [1370.19151926, 1184.3824625, 1120.77120066, 1136.26026392, 1263.73947144, 1645.40315151, 1846.87040806, 1762.59530783, 1972.62420416, 582.72633433, 14.77112979, 1732.16362238, 1247.91870117]
S2_STD = [633.15169573, 650.2842772, 712.12507725, 965.23119807, 948.9819932, 1108.06650639, 1258.36394548, 1233.1492281, 1364.38688993, 472.37967789, 14.3114637, 1310.36996126, 1087.6020813]
S1_MEAN = [-12.54847273, -20.19237134]
S1_STD = [5.25697717, 5.91150917]
class DFC2020Dataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
DATA_URL = "https://huggingface.co/datasets/GFM-Bench/DFC2020/resolve/main/data/DFC2020.zip"
metadata = {
"s2c": {
"bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12"],
"channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4],
"mean": S2_MEAN,
"std": S2_STD,
},
"s1": {
"bands": ["VV", "VH"],
"channel_wv": [5500, 5700],
"mean": S1_MEAN,
"std": S1_STD
}
}
SIZE = HEIGHT = WIDTH = 96
spatial_resolution = 10
DFC2020_CLASSES = [
255, # class 0 unused in both schemes
0, 0, 0, 0, 0,
1, 1,
255, # --> will be masked if no_savanna == True
255, # --> will be masked if no_savanna == True
2,
3,
4, # 12 --> 6
5, # 13 --> 7
4, # 14 --> 6
255,
6,
7
]
NUM_CLASSES = 8
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _info(self):
metadata = self.metadata
metadata['size'] = self.SIZE
metadata['num_classes'] = self.NUM_CLASSES
metadata['spatial_resolution'] = self.spatial_resolution
return datasets.DatasetInfo(
description=json.dumps(metadata),
features=datasets.Features({
"optical": datasets.Array3D(shape=(13, self.HEIGHT, self.WIDTH), dtype="float32"),
"radar": datasets.Array3D(shape=(2, self.HEIGHT, self.WIDTH), dtype="float32"),
"label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"),
"optical_channel_wv": datasets.Sequence(datasets.Value("float32")),
"radar_channel_wv": datasets.Sequence(datasets.Value("float32")),
"spatial_resolution": datasets.Value("int32"),
}),
)
def _split_generators(self, dl_manager):
if isinstance(self.DATA_URL, list):
downloaded_files = dl_manager.download(self.DATA_URL)
combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz")
with open(combined_file, 'wb') as outfile:
for part_file in downloaded_files:
with open(part_file, 'rb') as infile:
shutil.copyfileobj(infile, outfile)
data_dir = dl_manager.extract(combined_file)
os.remove(combined_file)
else:
data_dir = dl_manager.download_and_extract(self.DATA_URL)
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"split": 'train',
"data_dir": data_dir,
},
),
datasets.SplitGenerator(
name="val",
gen_kwargs={
"split": 'val',
"data_dir": data_dir,
},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"split": 'test',
"data_dir": data_dir,
},
)
]
def _generate_examples(self, split, data_dir):
optical_channel_wv = self.metadata["s2c"]["channel_wv"]
radar_channel_wv = self.metadata["s1"]["channel_wv"]
spatial_resolution = self.spatial_resolution
data_dir = os.path.join(data_dir, "DFC2020")
metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv"))
metadata = metadata[metadata["split"] == split].reset_index(drop=True)
for index, row in metadata.iterrows():
optical_path = os.path.join(data_dir, row.optical_path)
optical = self._read_image(optical_path).astype(np.float32) # CxHxW
radar_path = os.path.join(data_dir, row.radar_path)
radar = self._read_image(radar_path).astype(np.float32)
label_path = os.path.join(data_dir, row.label_path)
label = self._read_image(label_path)[0, :, :]
label = np.take(self.DFC2020_CLASSES, label.astype(np.int64))
label = label.astype(np.int32)
sample = {
"optical": optical,
"radar": radar,
"optical_channel_wv": optical_channel_wv,
"radar_channel_wv": radar_channel_wv,
"label": label,
"spatial_resolution": spatial_resolution,
}
yield f"{index}", sample
def _read_image(self, image_path):
"""Read tiff image from image_path
Args:
image_path:
Image path to read from
Return:
image:
C, H, W numpy array image
"""
image = tifffile.imread(image_path)
image = np.transpose(image, (2, 0, 1))
return image