Datasets:
Tasks:
Image Segmentation
ArXiv:
import os | |
import json | |
import shutil | |
import tifffile | |
import datasets | |
import pandas as pd | |
import numpy as np | |
S2_MEAN = [1370.19151926, 1184.3824625, 1120.77120066, 1136.26026392, 1263.73947144, 1645.40315151, 1846.87040806, 1762.59530783, 1972.62420416, 582.72633433, 14.77112979, 1732.16362238, 1247.91870117] | |
S2_STD = [633.15169573, 650.2842772, 712.12507725, 965.23119807, 948.9819932, 1108.06650639, 1258.36394548, 1233.1492281, 1364.38688993, 472.37967789, 14.3114637, 1310.36996126, 1087.6020813] | |
S1_MEAN = [-12.54847273, -20.19237134] | |
S1_STD = [5.25697717, 5.91150917] | |
class DFC2020Dataset(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
DATA_URL = "https://huggingface.co/datasets/GFM-Bench/DFC2020/resolve/main/data/DFC2020.zip" | |
metadata = { | |
"s2c": { | |
"bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12"], | |
"channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4], | |
"mean": S2_MEAN, | |
"std": S2_STD, | |
}, | |
"s1": { | |
"bands": ["VV", "VH"], | |
"channel_wv": [5500, 5700], | |
"mean": S1_MEAN, | |
"std": S1_STD | |
} | |
} | |
SIZE = HEIGHT = WIDTH = 96 | |
spatial_resolution = 10 | |
DFC2020_CLASSES = [ | |
255, # class 0 unused in both schemes | |
0, 0, 0, 0, 0, | |
1, 1, | |
255, # --> will be masked if no_savanna == True | |
255, # --> will be masked if no_savanna == True | |
2, | |
3, | |
4, # 12 --> 6 | |
5, # 13 --> 7 | |
4, # 14 --> 6 | |
255, | |
6, | |
7 | |
] | |
NUM_CLASSES = 8 | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def _info(self): | |
metadata = self.metadata | |
metadata['size'] = self.SIZE | |
metadata['num_classes'] = self.NUM_CLASSES | |
metadata['spatial_resolution'] = self.spatial_resolution | |
return datasets.DatasetInfo( | |
description=json.dumps(metadata), | |
features=datasets.Features({ | |
"optical": datasets.Array3D(shape=(13, self.HEIGHT, self.WIDTH), dtype="float32"), | |
"radar": datasets.Array3D(shape=(2, self.HEIGHT, self.WIDTH), dtype="float32"), | |
"label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"), | |
"optical_channel_wv": datasets.Sequence(datasets.Value("float32")), | |
"radar_channel_wv": datasets.Sequence(datasets.Value("float32")), | |
"spatial_resolution": datasets.Value("int32"), | |
}), | |
) | |
def _split_generators(self, dl_manager): | |
if isinstance(self.DATA_URL, list): | |
downloaded_files = dl_manager.download(self.DATA_URL) | |
combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") | |
with open(combined_file, 'wb') as outfile: | |
for part_file in downloaded_files: | |
with open(part_file, 'rb') as infile: | |
shutil.copyfileobj(infile, outfile) | |
data_dir = dl_manager.extract(combined_file) | |
os.remove(combined_file) | |
else: | |
data_dir = dl_manager.download_and_extract(self.DATA_URL) | |
return [ | |
datasets.SplitGenerator( | |
name="train", | |
gen_kwargs={ | |
"split": 'train', | |
"data_dir": data_dir, | |
}, | |
), | |
datasets.SplitGenerator( | |
name="val", | |
gen_kwargs={ | |
"split": 'val', | |
"data_dir": data_dir, | |
}, | |
), | |
datasets.SplitGenerator( | |
name="test", | |
gen_kwargs={ | |
"split": 'test', | |
"data_dir": data_dir, | |
}, | |
) | |
] | |
def _generate_examples(self, split, data_dir): | |
optical_channel_wv = self.metadata["s2c"]["channel_wv"] | |
radar_channel_wv = self.metadata["s1"]["channel_wv"] | |
spatial_resolution = self.spatial_resolution | |
data_dir = os.path.join(data_dir, "DFC2020") | |
metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) | |
metadata = metadata[metadata["split"] == split].reset_index(drop=True) | |
for index, row in metadata.iterrows(): | |
optical_path = os.path.join(data_dir, row.optical_path) | |
optical = self._read_image(optical_path).astype(np.float32) # CxHxW | |
radar_path = os.path.join(data_dir, row.radar_path) | |
radar = self._read_image(radar_path).astype(np.float32) | |
label_path = os.path.join(data_dir, row.label_path) | |
label = self._read_image(label_path)[0, :, :] | |
label = np.take(self.DFC2020_CLASSES, label.astype(np.int64)) | |
label = label.astype(np.int32) | |
sample = { | |
"optical": optical, | |
"radar": radar, | |
"optical_channel_wv": optical_channel_wv, | |
"radar_channel_wv": radar_channel_wv, | |
"label": label, | |
"spatial_resolution": spatial_resolution, | |
} | |
yield f"{index}", sample | |
def _read_image(self, image_path): | |
"""Read tiff image from image_path | |
Args: | |
image_path: | |
Image path to read from | |
Return: | |
image: | |
C, H, W numpy array image | |
""" | |
image = tifffile.imread(image_path) | |
image = np.transpose(image, (2, 0, 1)) | |
return image |