import os import json import shutil import tifffile import datasets import pandas as pd import numpy as np S2_MEAN = [1370.19151926, 1184.3824625, 1120.77120066, 1136.26026392, 1263.73947144, 1645.40315151, 1846.87040806, 1762.59530783, 1972.62420416, 582.72633433, 14.77112979, 1732.16362238, 1247.91870117] S2_STD = [633.15169573, 650.2842772, 712.12507725, 965.23119807, 948.9819932, 1108.06650639, 1258.36394548, 1233.1492281, 1364.38688993, 472.37967789, 14.3114637, 1310.36996126, 1087.6020813] S1_MEAN = [-12.54847273, -20.19237134] S1_STD = [5.25697717, 5.91150917] class DFC2020Dataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DATA_URL = "https://huggingface.co/datasets/GFM-Bench/DFC2020/resolve/main/data/DFC2020.zip" metadata = { "s2c": { "bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12"], "channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4], "mean": S2_MEAN, "std": S2_STD, }, "s1": { "bands": ["VV", "VH"], "channel_wv": [5500, 5700], "mean": S1_MEAN, "std": S1_STD } } SIZE = HEIGHT = WIDTH = 96 spatial_resolution = 10 DFC2020_CLASSES = [ 255, # class 0 unused in both schemes 0, 0, 0, 0, 0, 1, 1, 255, # --> will be masked if no_savanna == True 255, # --> will be masked if no_savanna == True 2, 3, 4, # 12 --> 6 5, # 13 --> 7 4, # 14 --> 6 255, 6, 7 ] NUM_CLASSES = 8 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _info(self): metadata = self.metadata metadata['size'] = self.SIZE metadata['num_classes'] = self.NUM_CLASSES metadata['spatial_resolution'] = self.spatial_resolution return datasets.DatasetInfo( description=json.dumps(metadata), features=datasets.Features({ "optical": datasets.Array3D(shape=(13, self.HEIGHT, self.WIDTH), dtype="float32"), "radar": datasets.Array3D(shape=(2, self.HEIGHT, self.WIDTH), dtype="float32"), "label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"), "optical_channel_wv": datasets.Sequence(datasets.Value("float32")), "radar_channel_wv": datasets.Sequence(datasets.Value("float32")), "spatial_resolution": datasets.Value("int32"), }), ) def _split_generators(self, dl_manager): if isinstance(self.DATA_URL, list): downloaded_files = dl_manager.download(self.DATA_URL) combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") with open(combined_file, 'wb') as outfile: for part_file in downloaded_files: with open(part_file, 'rb') as infile: shutil.copyfileobj(infile, outfile) data_dir = dl_manager.extract(combined_file) os.remove(combined_file) else: data_dir = dl_manager.download_and_extract(self.DATA_URL) return [ datasets.SplitGenerator( name="train", gen_kwargs={ "split": 'train', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="val", gen_kwargs={ "split": 'val', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="test", gen_kwargs={ "split": 'test', "data_dir": data_dir, }, ) ] def _generate_examples(self, split, data_dir): optical_channel_wv = self.metadata["s2c"]["channel_wv"] radar_channel_wv = self.metadata["s1"]["channel_wv"] spatial_resolution = self.spatial_resolution data_dir = os.path.join(data_dir, "DFC2020") metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) metadata = metadata[metadata["split"] == split].reset_index(drop=True) for index, row in metadata.iterrows(): optical_path = os.path.join(data_dir, row.optical_path) optical = self._read_image(optical_path).astype(np.float32) # CxHxW radar_path = os.path.join(data_dir, row.radar_path) radar = self._read_image(radar_path).astype(np.float32) label_path = os.path.join(data_dir, row.label_path) label = self._read_image(label_path)[0, :, :] label = np.take(self.DFC2020_CLASSES, label.astype(np.int64)) label = label.astype(np.int32) sample = { "optical": optical, "radar": radar, "optical_channel_wv": optical_channel_wv, "radar_channel_wv": radar_channel_wv, "label": label, "spatial_resolution": spatial_resolution, } yield f"{index}", sample def _read_image(self, image_path): """Read tiff image from image_path Args: image_path: Image path to read from Return: image: C, H, W numpy array image """ image = tifffile.imread(image_path) image = np.transpose(image, (2, 0, 1)) return image