Datasets:
Sebastian Gehrmann
commited on
Commit
•
a76c6c3
1
Parent(s):
5648408
- dataset_infos.json +1 -1
- wiki_cat_sum.json +10 -6
- wiki_cat_sum.py +13 -10
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"animal": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "animal", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1309821016, "num_examples": 48234, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 75455588, "num_examples": 2757, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 72082026, "num_examples": 2652, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 1219459, "num_examples": 45, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 2058194, "num_examples": 64, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 6824353, "num_examples": 178, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 14134494, "num_examples": 365, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 18754726, "num_examples": 531, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 7733867, "num_examples": 406, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 4077169, "num_examples": 317, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 2427463, "num_examples": 225, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 429553, "num_examples": 28, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 1219639, "num_examples": 45, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 2058450, "num_examples": 64, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 6825065, "num_examples": 178, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 14135954, "num_examples": 365, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 18756850, "num_examples": 531, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 7735491, "num_examples": 406, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 4078437, "num_examples": 317, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 2428363, "num_examples": 225, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 429665, "num_examples": 28, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-animal.jsonl": {"num_bytes": 1344705154, "checksum": "c4b3bfada5b5955d7254bc011c9e14f12782d3bebab9c21647e2eae9114f9524"}, "main_splits/valid-animal.jsonl": {"num_bytes": 77868655, "checksum": "8bba418f910dc63b2b7752299514886d9acd3e141a28e89ddb89071e11e14604"}, "main_splits/test-animal.jsonl": {"num_bytes": 73390040, "checksum": "a4f2974ef1274454a4ac73a2a1e5c6eb9086a216a26e7e14e3be856e5f5f1b2f"}, "cs_abs/test-animal_nv_0.jsonl": {"num_bytes": 1235774, "checksum": "582547af2aedd21bba34f3e80b38f78687be414ade0bc6741d4e6b23bc601e0c"}, "cs_abs/test-animal_nv_1.jsonl": {"num_bytes": 2097865, "checksum": "006782800d9ea966c2d67cf8750e2602af402beb414cced8e1ecac2d3bfa1123"}, "cs_abs/test-animal_nv_2.jsonl": {"num_bytes": 7095792, "checksum": "909859c2ad78547ea40065b925ecbbf2effa40a2a775a99a43410a1917173f82"}, "cs_abs/test-animal_nv_3.jsonl": {"num_bytes": 14554902, "checksum": "7ff73f4de9b6b5323c506d64aa7a2e5e9a4fef00eae09dc6bf4ff091ee35028c"}, "cs_abs/test-animal_nv_4.jsonl": {"num_bytes": 19087249, "checksum": "55caeb63629e98c84cf04cdfece45550183410d09276594ac92ce23b8f7d4c9f"}, "cs_abs/test-animal_nv_6.jsonl": {"num_bytes": 8018924, "checksum": "d84e71648ffc3153a6d809d67deffd02439bd0395ee86a84a6b6733fb94747b6"}, "cs_abs/test-animal_nv_7.jsonl": {"num_bytes": 4000037, "checksum": "018bd501b8773ebc7c13c724c4eaeed932762dc1080a35d03e3c622a14b78bcd"}, "cs_abs/test-animal_nv_8.jsonl": {"num_bytes": 2276170, "checksum": "94eebce086fc0bff885c154e5f48198eadd22839df5a56fb1f3f916f50686b46"}, "cs_abs/test-animal_nv_9.jsonl": {"num_bytes": 372467, "checksum": "0ee68efc6261424aa8411f68901cf902ad6d63132fea0adb7fd37ca098d7b697"}, "cs_tdiv/test-animal_tdiv_0.jsonl": {"num_bytes": 7882255, "checksum": "807289673633ed561f31e6645e5af0e445286f800b32b8c29322ba5d8100accf"}, "cs_tdiv/test-animal_tdiv_1.jsonl": {"num_bytes": 17736037, "checksum": "a6ad70404c271b75c9c1dfd7538bcc0f6dcd40ecf475f9f73d8a0fe0d48e8b9e"}, "cs_tdiv/test-animal_tdiv_2.jsonl": {"num_bytes": 36857387, "checksum": "11ac25dd33e4219d509897bf60250c57ee023deeaa058607f430c2517075fb6b"}, "cs_tdiv/test-animal_tdiv_3.jsonl": {"num_bytes": 10914361, "checksum": "59826ed115c869af75bc48190798474209f21f263b978e1a491e679575565cbf"}}, "download_size": 1628093069, "post_processing_size": null, "dataset_size": 1572685822, "size_in_bytes": 3200778891}, "company": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "company", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2359796977, "num_examples": 54978, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 127163348, "num_examples": 2955, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 129201360, "num_examples": 2981, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 2282295, "num_examples": 49, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 4385161, "num_examples": 96, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 16089358, "num_examples": 348, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 31634163, "num_examples": 680, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 37924563, "num_examples": 830, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 10595491, "num_examples": 287, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 1794043, "num_examples": 90, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 185471, "num_examples": 13, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 8001, "num_examples": 1, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 2282491, "num_examples": 49, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 4385545, "num_examples": 96, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 16090750, "num_examples": 348, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 31636883, "num_examples": 680, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 37927883, "num_examples": 830, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 10596639, "num_examples": 287, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 1794403, "num_examples": 90, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 185523, "num_examples": 13, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 8005, "num_examples": 1, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-company.jsonl": {"num_bytes": 2345723937, "checksum": "ab3e6aca833d5999146f6051e7aecb58718dec7b34c2b83da0ca472cfaae3966"}, "main_splits/valid-company.jsonl": {"num_bytes": 126669548, "checksum": "a2050309aa33bbfccb8b3d8fa260adacd32bfb1e21c4d22b68bdcb0ad33a2a56"}, "main_splits/test-company.jsonl": {"num_bytes": 128530697, "checksum": "47920608406dac03fe630bfe58d90b5c4e602e4a330ee8c0b609e345fcd4ae49"}, "cs_abs/test-company_nv_0.jsonl": {"num_bytes": 2287288, "checksum": "b2e802e913032f075bbebd38969e272f671e1414e12ca2f496248308cb72b137"}, "cs_abs/test-company_nv_1.jsonl": {"num_bytes": 4381154, "checksum": "f96fe96b2454f202e48940e778cba71539e63f6965d70b1f4686c4cc148cb11e"}, "cs_abs/test-company_nv_2.jsonl": {"num_bytes": 16147821, "checksum": "58baa15575cc6a1ddeebfe9f97b7b258d87d0a24194e2a9e48201666605c089f"}, "cs_abs/test-company_nv_3.jsonl": {"num_bytes": 31735382, "checksum": "2af447824fc0ec81dcc29d81b3bc92c92e03c07ea0c89f656e9fabc5d75d136d"}, "cs_abs/test-company_nv_4.jsonl": {"num_bytes": 37824725, "checksum": "2fcc406792e25c5ed1590a83159320f0b5879b4ead033e5ca783347c17aa7f7a"}, "cs_abs/test-company_nv_6.jsonl": {"num_bytes": 10237272, "checksum": "f8a0d7bd8b8cef262d65daf218a9b4c905c5d4c5ab936a4e17efcaab680c041b"}, "cs_abs/test-company_nv_7.jsonl": {"num_bytes": 1624554, "checksum": "0d504bf42239cccb3e36399681444056bea8a95cc73d14b25615f335e9f5320b"}, "cs_abs/test-company_nv_8.jsonl": {"num_bytes": 155515, "checksum": "a1533cf9c79647593567eeac61aa931d37e7fd8e44427ef819cfe4e4daa412e0"}, "cs_abs/test-company_nv_9.jsonl": {"num_bytes": 4160, "checksum": "8b1c383866bfe751e1b869271c81dcb524fa5c9415b8bd5e26f3d395ce0cb9c2"}, "cs_tdiv/test-company_tdiv_0.jsonl": {"num_bytes": 13480876, "checksum": "ceef81074d59fc01e0d1a2537fc7874cf0db38dac1ef75adfa45ae7fcdfc3c76"}, "cs_tdiv/test-company_tdiv_1.jsonl": {"num_bytes": 32851851, "checksum": "fd0a285aba889036cc80aba1dbba3f622543b37c35c17c8fbe2e346eb49f3195"}, "cs_tdiv/test-company_tdiv_2.jsonl": {"num_bytes": 60610830, "checksum": "6aaac991032c607d0b9c1564873d4a484f73b2a23f4b247aad53531094469f09"}, "cs_tdiv/test-company_tdiv_3.jsonl": {"num_bytes": 21587140, "checksum": "7871246509e9c8936527d2d7f0a74137138a53363ff261c5faa150648aca8f18"}}, "download_size": 2833852750, "post_processing_size": null, "dataset_size": 2825968353, "size_in_bytes": 5659821103}, "film": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "film", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2122500903, "num_examples": 52334, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 121606957, "num_examples": 3011, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 115796561, "num_examples": 2861, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 2559836, "num_examples": 62, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 5265571, "num_examples": 123, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 14853751, "num_examples": 354, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 28271851, "num_examples": 660, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 29317525, "num_examples": 703, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 10960377, "num_examples": 296, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 3243198, "num_examples": 110, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 228353, "num_examples": 16, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 0, "num_examples": 0, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 2560084, "num_examples": 62, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 5266063, "num_examples": 123, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 14855167, "num_examples": 354, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 28274491, "num_examples": 660, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 29320337, "num_examples": 703, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 10961561, "num_examples": 296, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 3243638, "num_examples": 110, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 228417, "num_examples": 16, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 0, "num_examples": 0, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-film.jsonl": {"num_bytes": 2135138582, "checksum": "1fdb6febf8810aaf3b0ba990fd523481f659384f553108620313c7c89c655eb3"}, "main_splits/valid-film.jsonl": {"num_bytes": 122253297, "checksum": "e6460a6ae575a148d6f5a69600c7d917a4c02f24904f9686d1b232350e8c9788"}, "main_splits/test-film.jsonl": {"num_bytes": 116314114, "checksum": "3a0f13a970d1aa9ffa73e4b4227db482c24575e8196b20175dce9fcf57e47822"}, "cs_abs/test-film_nv_0.jsonl": {"num_bytes": 2557415, "checksum": "800bcd4293e964d4979ac98588f1a9daee4a535f1f74d4d662a2812b4f00b45b"}, "cs_abs/test-film_nv_1.jsonl": {"num_bytes": 5297686, "checksum": "c08af66c50cd1a6ec76767ea8ce368f9b4ed4d9fb0a8549944e065d9ff46029a"}, "cs_abs/test-film_nv_2.jsonl": {"num_bytes": 14972530, "checksum": "dfd8e40a567d6312c71ae052acf7d4ff6aca3b22b3fcb42aa0ba5380b45f68ac"}, "cs_abs/test-film_nv_3.jsonl": {"num_bytes": 28456230, "checksum": "f096888992666117fbf7aab4aad9ef8db3031765b9c67d67e1fe2d899c9412af"}, "cs_abs/test-film_nv_4.jsonl": {"num_bytes": 29404823, "checksum": "b4fb9edefdc9bf16ef1e26462ede839d127ff20574848b25569b3d914522d820"}, "cs_abs/test-film_nv_6.jsonl": {"num_bytes": 10992155, "checksum": "567680a5a51d4355b81fd28250006d5313cb4194235e3cb5e58e97891812328e"}, "cs_abs/test-film_nv_7.jsonl": {"num_bytes": 3210636, "checksum": "6ed81fb7b5ee9f881f79c73a14ab05518ea059c2995aa3c71c9df82848a01ae8"}, "cs_abs/test-film_nv_8.jsonl": {"num_bytes": 207694, "checksum": "146945a6fa47feac1e8f9677bdde4f9e8e861811f64b5d5e5e21633be6486e71"}, "cs_abs/test-film_nv_9.jsonl": {"num_bytes": 0, "checksum": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"}, "cs_tdiv/test-film_tdiv_0.jsonl": {"num_bytes": 6903682, "checksum": "dbfcbac4408de83ee74f6cbcd31d6e208295b573d608920b5def39d12bfdc459"}, "cs_tdiv/test-film_tdiv_1.jsonl": {"num_bytes": 28891633, "checksum": "c2ebef934ac40156eb572d9bd1236984614f6061757aa68e590662986cc5bdd6"}, "cs_tdiv/test-film_tdiv_2.jsonl": {"num_bytes": 64520766, "checksum": "b1d330c5042b88dfa5864e76c213266693366d5ee0b6d940b34bf6d749a5e494"}, "cs_tdiv/test-film_tdiv_3.jsonl": {"num_bytes": 15998033, "checksum": "0912524479945ae72ffa096b3432a2f7611a046b6edf728131faba992aec3fd0"}}, "download_size": 2585119276, "post_processing_size": null, "dataset_size": 2549314641, "size_in_bytes": 5134433917}}
|
|
|
1 |
+
{"animal": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "animal", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297582967, "num_examples": 48234, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 74782710, "num_examples": 2757, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 71400111, "num_examples": 2652, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 1210893, "num_examples": 45, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 2042881, "num_examples": 64, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 6775329, "num_examples": 178, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 14034285, "num_examples": 365, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 18610631, "num_examples": 531, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 7637203, "num_examples": 406, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 4006233, "num_examples": 317, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 2379760, "num_examples": 225, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 399368, "num_examples": 28, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 1211073, "num_examples": 45, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 2043137, "num_examples": 64, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 6776041, "num_examples": 178, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 14035745, "num_examples": 365, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 18612755, "num_examples": 531, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 7638827, "num_examples": 406, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 4007501, "num_examples": 317, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 2380660, "num_examples": 225, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 399480, "num_examples": 28, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-animal.jsonl": {"num_bytes": 1344705154, "checksum": "c4b3bfada5b5955d7254bc011c9e14f12782d3bebab9c21647e2eae9114f9524"}, "main_splits/valid-animal.jsonl": {"num_bytes": 77868655, "checksum": "8bba418f910dc63b2b7752299514886d9acd3e141a28e89ddb89071e11e14604"}, "main_splits/test-animal.jsonl": {"num_bytes": 73390040, "checksum": "a4f2974ef1274454a4ac73a2a1e5c6eb9086a216a26e7e14e3be856e5f5f1b2f"}, "cs_abs/test-animal_nv_0.jsonl": {"num_bytes": 1235774, "checksum": "582547af2aedd21bba34f3e80b38f78687be414ade0bc6741d4e6b23bc601e0c"}, "cs_abs/test-animal_nv_1.jsonl": {"num_bytes": 2097865, "checksum": "006782800d9ea966c2d67cf8750e2602af402beb414cced8e1ecac2d3bfa1123"}, "cs_abs/test-animal_nv_2.jsonl": {"num_bytes": 7095792, "checksum": "909859c2ad78547ea40065b925ecbbf2effa40a2a775a99a43410a1917173f82"}, "cs_abs/test-animal_nv_3.jsonl": {"num_bytes": 14554902, "checksum": "7ff73f4de9b6b5323c506d64aa7a2e5e9a4fef00eae09dc6bf4ff091ee35028c"}, "cs_abs/test-animal_nv_4.jsonl": {"num_bytes": 19087249, "checksum": "55caeb63629e98c84cf04cdfece45550183410d09276594ac92ce23b8f7d4c9f"}, "cs_abs/test-animal_nv_6.jsonl": {"num_bytes": 8018924, "checksum": "d84e71648ffc3153a6d809d67deffd02439bd0395ee86a84a6b6733fb94747b6"}, "cs_abs/test-animal_nv_7.jsonl": {"num_bytes": 4000037, "checksum": "018bd501b8773ebc7c13c724c4eaeed932762dc1080a35d03e3c622a14b78bcd"}, "cs_abs/test-animal_nv_8.jsonl": {"num_bytes": 2276170, "checksum": "94eebce086fc0bff885c154e5f48198eadd22839df5a56fb1f3f916f50686b46"}, "cs_abs/test-animal_nv_9.jsonl": {"num_bytes": 372467, "checksum": "0ee68efc6261424aa8411f68901cf902ad6d63132fea0adb7fd37ca098d7b697"}, "cs_tdiv/test-animal_tdiv_0.jsonl": {"num_bytes": 7882255, "checksum": "807289673633ed561f31e6645e5af0e445286f800b32b8c29322ba5d8100accf"}, "cs_tdiv/test-animal_tdiv_1.jsonl": {"num_bytes": 17736037, "checksum": "a6ad70404c271b75c9c1dfd7538bcc0f6dcd40ecf475f9f73d8a0fe0d48e8b9e"}, "cs_tdiv/test-animal_tdiv_2.jsonl": {"num_bytes": 36857387, "checksum": "11ac25dd33e4219d509897bf60250c57ee023deeaa058607f430c2517075fb6b"}, "cs_tdiv/test-animal_tdiv_3.jsonl": {"num_bytes": 10914361, "checksum": "59826ed115c869af75bc48190798474209f21f263b978e1a491e679575565cbf"}}, "download_size": 1628093069, "post_processing_size": null, "dataset_size": 1557967590, "size_in_bytes": 3186060659}, "company": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "company", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2343174382, "num_examples": 54978, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 126277091, "num_examples": 2955, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 128299756, "num_examples": 2981, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 2267980, "num_examples": 49, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 4354927, "num_examples": 96, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 15985287, "num_examples": 348, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 31434409, "num_examples": 680, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 37677512, "num_examples": 830, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 10501706, "num_examples": 287, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 1765757, "num_examples": 90, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 181349, "num_examples": 13, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 7706, "num_examples": 1, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 2268176, "num_examples": 49, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 4355311, "num_examples": 96, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 15986679, "num_examples": 348, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 31437129, "num_examples": 680, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 37680832, "num_examples": 830, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 10502854, "num_examples": 287, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 1766117, "num_examples": 90, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 181401, "num_examples": 13, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 7710, "num_examples": 1, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-company.jsonl": {"num_bytes": 2345723937, "checksum": "ab3e6aca833d5999146f6051e7aecb58718dec7b34c2b83da0ca472cfaae3966"}, "main_splits/valid-company.jsonl": {"num_bytes": 126669548, "checksum": "a2050309aa33bbfccb8b3d8fa260adacd32bfb1e21c4d22b68bdcb0ad33a2a56"}, "main_splits/test-company.jsonl": {"num_bytes": 128530697, "checksum": "47920608406dac03fe630bfe58d90b5c4e602e4a330ee8c0b609e345fcd4ae49"}, "cs_abs/test-company_nv_0.jsonl": {"num_bytes": 2287288, "checksum": "b2e802e913032f075bbebd38969e272f671e1414e12ca2f496248308cb72b137"}, "cs_abs/test-company_nv_1.jsonl": {"num_bytes": 4381154, "checksum": "f96fe96b2454f202e48940e778cba71539e63f6965d70b1f4686c4cc148cb11e"}, "cs_abs/test-company_nv_2.jsonl": {"num_bytes": 16147821, "checksum": "58baa15575cc6a1ddeebfe9f97b7b258d87d0a24194e2a9e48201666605c089f"}, "cs_abs/test-company_nv_3.jsonl": {"num_bytes": 31735382, "checksum": "2af447824fc0ec81dcc29d81b3bc92c92e03c07ea0c89f656e9fabc5d75d136d"}, "cs_abs/test-company_nv_4.jsonl": {"num_bytes": 37824725, "checksum": "2fcc406792e25c5ed1590a83159320f0b5879b4ead033e5ca783347c17aa7f7a"}, "cs_abs/test-company_nv_6.jsonl": {"num_bytes": 10237272, "checksum": "f8a0d7bd8b8cef262d65daf218a9b4c905c5d4c5ab936a4e17efcaab680c041b"}, "cs_abs/test-company_nv_7.jsonl": {"num_bytes": 1624554, "checksum": "0d504bf42239cccb3e36399681444056bea8a95cc73d14b25615f335e9f5320b"}, "cs_abs/test-company_nv_8.jsonl": {"num_bytes": 155515, "checksum": "a1533cf9c79647593567eeac61aa931d37e7fd8e44427ef819cfe4e4daa412e0"}, "cs_abs/test-company_nv_9.jsonl": {"num_bytes": 4160, "checksum": "8b1c383866bfe751e1b869271c81dcb524fa5c9415b8bd5e26f3d395ce0cb9c2"}, "cs_tdiv/test-company_tdiv_0.jsonl": {"num_bytes": 13480876, "checksum": "ceef81074d59fc01e0d1a2537fc7874cf0db38dac1ef75adfa45ae7fcdfc3c76"}, "cs_tdiv/test-company_tdiv_1.jsonl": {"num_bytes": 32851851, "checksum": "fd0a285aba889036cc80aba1dbba3f622543b37c35c17c8fbe2e346eb49f3195"}, "cs_tdiv/test-company_tdiv_2.jsonl": {"num_bytes": 60610830, "checksum": "6aaac991032c607d0b9c1564873d4a484f73b2a23f4b247aad53531094469f09"}, "cs_tdiv/test-company_tdiv_3.jsonl": {"num_bytes": 21587140, "checksum": "7871246509e9c8936527d2d7f0a74137138a53363ff261c5faa150648aca8f18"}}, "download_size": 2833852750, "post_processing_size": null, "dataset_size": 2806114071, "size_in_bytes": 5639966821}, "film": {"description": "Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.\n", "citation": "@inproceedings{perez2019generating,\n title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},\n author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},\n booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},\n pages={5107--5116},\n year={2019}\n}\n", "homepage": "https://datashare.ed.ac.uk/handle/10283/3368", "license": "CC BY-SA 3.0", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "paragraphs": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "summary": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_cat_sum", "config_name": "film", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2107130330, "num_examples": 52334, "dataset_name": "wiki_cat_sum"}, "test": {"name": "test", "num_bytes": 120732901, "num_examples": 3011, "dataset_name": "wiki_cat_sum"}, "validation": {"name": "validation", "num_bytes": 114959703, "num_examples": 2861, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_0": {"name": "challenge_test_abstractivity_0", "num_bytes": 2541521, "num_examples": 62, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_1": {"name": "challenge_test_abstractivity_1", "num_bytes": 5229859, "num_examples": 123, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_2": {"name": "challenge_test_abstractivity_2", "num_bytes": 14748536, "num_examples": 354, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_3": {"name": "challenge_test_abstractivity_3", "num_bytes": 28075867, "num_examples": 660, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_4": {"name": "challenge_test_abstractivity_4", "num_bytes": 29110256, "num_examples": 703, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_5": {"name": "challenge_test_abstractivity_5", "num_bytes": 10877916, "num_examples": 296, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_6": {"name": "challenge_test_abstractivity_6", "num_bytes": 3211556, "num_examples": 110, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_7": {"name": "challenge_test_abstractivity_7", "num_bytes": 222965, "num_examples": 16, "dataset_name": "wiki_cat_sum"}, "challenge_test_abstractivity_8": {"name": "challenge_test_abstractivity_8", "num_bytes": 0, "num_examples": 0, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_0": {"name": "challenge_test_topic_diversity_0", "num_bytes": 2541769, "num_examples": 62, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_1": {"name": "challenge_test_topic_diversity_1", "num_bytes": 5230351, "num_examples": 123, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_2": {"name": "challenge_test_topic_diversity_2", "num_bytes": 14749952, "num_examples": 354, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_3": {"name": "challenge_test_topic_diversity_3", "num_bytes": 28078507, "num_examples": 660, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_4": {"name": "challenge_test_topic_diversity_4", "num_bytes": 29113068, "num_examples": 703, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_5": {"name": "challenge_test_topic_diversity_5", "num_bytes": 10879100, "num_examples": 296, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_6": {"name": "challenge_test_topic_diversity_6", "num_bytes": 3211996, "num_examples": 110, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_7": {"name": "challenge_test_topic_diversity_7", "num_bytes": 223029, "num_examples": 16, "dataset_name": "wiki_cat_sum"}, "challenge_test_topic_diversity_8": {"name": "challenge_test_topic_diversity_8", "num_bytes": 0, "num_examples": 0, "dataset_name": "wiki_cat_sum"}}, "download_checksums": {"main_splits/train-film.jsonl": {"num_bytes": 2135138582, "checksum": "1fdb6febf8810aaf3b0ba990fd523481f659384f553108620313c7c89c655eb3"}, "main_splits/valid-film.jsonl": {"num_bytes": 122253297, "checksum": "e6460a6ae575a148d6f5a69600c7d917a4c02f24904f9686d1b232350e8c9788"}, "main_splits/test-film.jsonl": {"num_bytes": 116314114, "checksum": "3a0f13a970d1aa9ffa73e4b4227db482c24575e8196b20175dce9fcf57e47822"}, "cs_abs/test-film_nv_0.jsonl": {"num_bytes": 2557415, "checksum": "800bcd4293e964d4979ac98588f1a9daee4a535f1f74d4d662a2812b4f00b45b"}, "cs_abs/test-film_nv_1.jsonl": {"num_bytes": 5297686, "checksum": "c08af66c50cd1a6ec76767ea8ce368f9b4ed4d9fb0a8549944e065d9ff46029a"}, "cs_abs/test-film_nv_2.jsonl": {"num_bytes": 14972530, "checksum": "dfd8e40a567d6312c71ae052acf7d4ff6aca3b22b3fcb42aa0ba5380b45f68ac"}, "cs_abs/test-film_nv_3.jsonl": {"num_bytes": 28456230, "checksum": "f096888992666117fbf7aab4aad9ef8db3031765b9c67d67e1fe2d899c9412af"}, "cs_abs/test-film_nv_4.jsonl": {"num_bytes": 29404823, "checksum": "b4fb9edefdc9bf16ef1e26462ede839d127ff20574848b25569b3d914522d820"}, "cs_abs/test-film_nv_6.jsonl": {"num_bytes": 10992155, "checksum": "567680a5a51d4355b81fd28250006d5313cb4194235e3cb5e58e97891812328e"}, "cs_abs/test-film_nv_7.jsonl": {"num_bytes": 3210636, "checksum": "6ed81fb7b5ee9f881f79c73a14ab05518ea059c2995aa3c71c9df82848a01ae8"}, "cs_abs/test-film_nv_8.jsonl": {"num_bytes": 207694, "checksum": "146945a6fa47feac1e8f9677bdde4f9e8e861811f64b5d5e5e21633be6486e71"}, "cs_abs/test-film_nv_9.jsonl": {"num_bytes": 0, "checksum": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"}, "cs_tdiv/test-film_tdiv_0.jsonl": {"num_bytes": 6903682, "checksum": "dbfcbac4408de83ee74f6cbcd31d6e208295b573d608920b5def39d12bfdc459"}, "cs_tdiv/test-film_tdiv_1.jsonl": {"num_bytes": 28891633, "checksum": "c2ebef934ac40156eb572d9bd1236984614f6061757aa68e590662986cc5bdd6"}, "cs_tdiv/test-film_tdiv_2.jsonl": {"num_bytes": 64520766, "checksum": "b1d330c5042b88dfa5864e76c213266693366d5ee0b6d940b34bf6d749a5e494"}, "cs_tdiv/test-film_tdiv_3.jsonl": {"num_bytes": 15998033, "checksum": "0912524479945ae72ffa096b3432a2f7611a046b6edf728131faba992aec3fd0"}}, "download_size": 2585119276, "post_processing_size": null, "dataset_size": 2530869182, "size_in_bytes": 5115988458}}
|
wiki_cat_sum.json
CHANGED
@@ -127,10 +127,10 @@
|
|
127 |
"has-leaderboard": "no",
|
128 |
"leaderboard-url": "N/A",
|
129 |
"leaderboard-description": "N/A",
|
130 |
-
"website": "https://github.com/lauhaide/WikiCatSum",
|
131 |
-
"data-url": "https://datashare.ed.ac.uk/handle/10283/3368",
|
132 |
-
"paper-url": "https://arxiv.org/abs/1906.04687",
|
133 |
-
"paper-bibtext": "@inproceedings{perez-beltrachini-etal-2019-generating,\n title = \"Generating Summaries with Topic Templates and Structured Convolutional Decoders\",\n author = \"Perez-Beltrachini, Laura and\n Liu, Yang and\n Lapata, Mirella\",\n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2019\",\n address = \"Florence, Italy\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P19-1504\",\n doi = \"10.18653/v1/P19-1504\",\n}",
|
134 |
"contact-name": "Laura Perez-Beltrachini",
|
135 |
"contact-email": "lperez@ed.ac.uk"
|
136 |
},
|
@@ -157,9 +157,13 @@
|
|
157 |
"gem-added-by": "Ronald Cardenas (University of Edinburgh) Laura Perez-Beltrachini (University of Edinburgh) "
|
158 |
},
|
159 |
"structure": {
|
160 |
-
"data-fields": "id
|
161 |
"structure-splits": "Nb of instances in train/valid/test are 50,938/2,855/2,831",
|
162 |
-
"structure-splits-criteria": "
|
|
|
|
|
|
|
|
|
163 |
}
|
164 |
}
|
165 |
}
|
|
|
127 |
"has-leaderboard": "no",
|
128 |
"leaderboard-url": "N/A",
|
129 |
"leaderboard-description": "N/A",
|
130 |
+
"website": "[Github](https://github.com/lauhaide/WikiCatSum)",
|
131 |
+
"data-url": "[Website](https://datashare.ed.ac.uk/handle/10283/3368)",
|
132 |
+
"paper-url": "[Arxiv](https://arxiv.org/abs/1906.04687)",
|
133 |
+
"paper-bibtext": "```\n@inproceedings{perez-beltrachini-etal-2019-generating,\n title = \"Generating Summaries with Topic Templates and Structured Convolutional Decoders\",\n author = \"Perez-Beltrachini, Laura and\n Liu, Yang and\n Lapata, Mirella\",\n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2019\",\n address = \"Florence, Italy\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P19-1504\",\n doi = \"10.18653/v1/P19-1504\",\n}\n```",
|
134 |
"contact-name": "Laura Perez-Beltrachini",
|
135 |
"contact-email": "lperez@ed.ac.uk"
|
136 |
},
|
|
|
157 |
"gem-added-by": "Ronald Cardenas (University of Edinburgh) Laura Perez-Beltrachini (University of Edinburgh) "
|
158 |
},
|
159 |
"structure": {
|
160 |
+
"data-fields": "- `id`: ID of the data example \n- `title`: Is the Wikipedia article's title\n- `paragraphs`: Is the ranked list of paragraphs from the set of crawled texts\n- `summary`: Is constituted by a list of sentences together with their corresponding topic label",
|
161 |
"structure-splits": "Nb of instances in train/valid/test are 50,938/2,855/2,831",
|
162 |
+
"structure-splits-criteria": "The data was split i.i.d., i.e. uniformly split into training, validation, and test datasets. ",
|
163 |
+
"structure-example": "This is a truncated example from the animal setting: \n\n```\n{'gem_id': 'animal-train-1',\n 'gem_parent_id': 'animal-train-1',\n 'id': '2652',\n 'paragraphs': [\"lytrosis (hulst) of louisiana vernon antoine brou jr. 2005. southern lepidopterists' news, 27: 7 ., ...\"],\n 'references': ['lytrosis unitaria , the common lytrosis moth, is a species of moth of the geometridae family. it is found in north america, including arkansas, georgia, iowa , massachusetts, and wisconsin. the wingspan is about 50 mm. the larvae feed on rosa, crataegus, amelanchier, acer, quercus and viburnum species.'],\n 'summary': {'text': ['lytrosis unitaria , the common lytrosis moth , is a species of moth of the geometridae family .',\n 'it is found in north america , including arkansas , georgia , iowa , massachusetts , new hampshire , new jersey , new york , north carolina , ohio , oklahoma , ontario , pennsylvania , south carolina , tennessee , texas , virginia , west virginia and wisconsin .',\n 'the wingspan is about 50 mm .',\n 'the larvae feed on rosa , crataegus , amelanchier , acer , quercus and viburnum species . '],\n 'topic': [29, 20, 9, 8]},\n 'target': 'lytrosis unitaria , the common lytrosis moth, is a species of moth of the geometridae family. it is found in north america, including arkansas, georgia, iowa , massachusetts, and wisconsin. the wingspan is about 50 mm. the larvae feed on rosa, crataegus, amelanchier, acer, quercus and viburnum species.',\n 'title': 'lytrosis unitaria'}\n```"
|
164 |
+
},
|
165 |
+
"what": {
|
166 |
+
"dataset": "WikiCatSum is an English summarization dataset in three domains: animals, companies, and film. It provides multiple paragraphs of text paired with a summary of the paragraphs."
|
167 |
}
|
168 |
}
|
169 |
}
|
wiki_cat_sum.py
CHANGED
@@ -141,7 +141,7 @@ def detokenize(text):
|
|
141 |
|
142 |
|
143 |
class WikiCatSum(datasets.GeneratorBasedBuilder):
|
144 |
-
"""
|
145 |
|
146 |
VERSION = datasets.Version("0.1.0")
|
147 |
|
@@ -269,15 +269,18 @@ class WikiCatSum(datasets.GeneratorBasedBuilder):
|
|
269 |
|
270 |
# If summary is a list itself, we have multi-ref.
|
271 |
if isinstance(data["summary"], list):
|
272 |
-
detok_targets = [
|
273 |
-
detokenize(
|
274 |
-
]
|
275 |
-
|
276 |
-
data["
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
281 |
# elif isinstance(data["summary"]["text"], str):
|
282 |
# detok_target = detokenize(data["summary"]["text"])
|
283 |
else:
|
|
|
141 |
|
142 |
|
143 |
class WikiCatSum(datasets.GeneratorBasedBuilder):
|
144 |
+
"""A summarization dataset with multiple domains."""
|
145 |
|
146 |
VERSION = datasets.Version("0.1.0")
|
147 |
|
|
|
269 |
|
270 |
# If summary is a list itself, we have multi-ref.
|
271 |
if isinstance(data["summary"], list):
|
272 |
+
detok_targets = " ".join([
|
273 |
+
detokenize(s["text"]) for s in data["summary"]
|
274 |
+
])
|
275 |
+
|
276 |
+
data["target"] = detok_targets
|
277 |
+
data["references"] = [detok_targets]
|
278 |
+
# elif isinstance(data["summary"]["text"], list):
|
279 |
+
# detok_target = detokenize(" ".join(data["summary"]["text"]))
|
280 |
+
# print("\n\n\n\n", detok_target)
|
281 |
+
# exit()
|
282 |
+
# data["target"] = detok_target
|
283 |
+
# data["references"] = [detok_target]
|
284 |
# elif isinstance(data["summary"]["text"], str):
|
285 |
# detok_target = detokenize(data["summary"]["text"])
|
286 |
else:
|