Datasets:
GEM
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
wiki_cat_sum / wiki_cat_sum.py
ronaldahmed's picture
challenge sets: abstractivity and topic diversity
5ee6c36
raw
history blame
10.6 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import csv
import json
import os
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{perez2019generating,
title={Generating Summaries with Topic Templates and Structured Convolutional Decoders},
author={Perez-Beltrachini, Laura and Liu, Yang and Lapata, Mirella},
booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},
pages={5107--5116},
year={2019}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
Summarise the most important facts of a given entity in the Film, Company, and Animal domains from a cluster of related documents.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://datashare.ed.ac.uk/handle/10283/3368"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "CC BY-SA 3.0"
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
"animal": {
"train": "./main_splits/train-animal.jsonl",
"validation": "./main_splits/valid-animal.jsonl",
"test": "./main_splits/test-animal.jsonl",
"cs_abs":[
"./cs_abs/test-animal_nv_0.jsonl",
"./cs_abs/test-animal_nv_1.jsonl",
"./cs_abs/test-animal_nv_2.jsonl",
"./cs_abs/test-animal_nv_3.jsonl",
"./cs_abs/test-animal_nv_4.jsonl",
"./cs_abs/test-animal_nv_6.jsonl",
"./cs_abs/test-animal_nv_7.jsonl",
"./cs_abs/test-animal_nv_8.jsonl",
"./cs_abs/test-animal_nv_9.jsonl",
],
"cs_tdiv": [
"./cs_tdiv/test-animal_tdiv_0.jsonl",
"./cs_tdiv/test-animal_tdiv_1.jsonl",
"./cs_tdiv/test-animal_tdiv_2.jsonl",
"./cs_tdiv/test-animal_tdiv_3.jsonl",
]
},
"company": {
"train": "./main_splits/train-company.jsonl",
"validation": "./main_splits/valid-company.jsonl",
"test": "./main_splits/test-company.jsonl",
"cs_abs":[
"./cs_abs/test-company_nv_0.jsonl",
"./cs_abs/test-company_nv_1.jsonl",
"./cs_abs/test-company_nv_2.jsonl",
"./cs_abs/test-company_nv_3.jsonl",
"./cs_abs/test-company_nv_4.jsonl",
"./cs_abs/test-company_nv_6.jsonl",
"./cs_abs/test-company_nv_7.jsonl",
"./cs_abs/test-company_nv_8.jsonl",
"./cs_abs/test-company_nv_9.jsonl",
],
"cs_tdiv": [
"./cs_tdiv/test-company_tdiv_0.jsonl",
"./cs_tdiv/test-company_tdiv_1.jsonl",
"./cs_tdiv/test-company_tdiv_2.jsonl",
"./cs_tdiv/test-company_tdiv_3.jsonl",
]
},
"film": {
"train": "./main_splits/train-film.jsonl",
"validation": "./main_splits/valid-film.jsonl",
"test": "./main_splits/test-film.jsonl",
"cs_abs":[
"./cs_abs/test-film_nv_0.jsonl",
"./cs_abs/test-film_nv_1.jsonl",
"./cs_abs/test-film_nv_2.jsonl",
"./cs_abs/test-film_nv_3.jsonl",
"./cs_abs/test-film_nv_4.jsonl",
"./cs_abs/test-film_nv_6.jsonl",
"./cs_abs/test-film_nv_7.jsonl",
"./cs_abs/test-film_nv_8.jsonl",
"./cs_abs/test-film_nv_9.jsonl",
],
"cs_tdiv": [
"./cs_tdiv/test-film_tdiv_0.jsonl",
"./cs_tdiv/test-film_tdiv_1.jsonl",
"./cs_tdiv/test-film_tdiv_2.jsonl",
"./cs_tdiv/test-film_tdiv_3.jsonl",
]
}
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class WikiCatSum(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.1.0")
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="animal" , version=VERSION, description="Animal domain"),
datasets.BuilderConfig(name="company", version=VERSION, description="Company domain"),
datasets.BuilderConfig(name="film" , version=VERSION, description="Film domain"),
]
DEFAULT_CONFIG_NAME = "animal" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"gem_id": datasets.Value("string"),
"gem_parent_id": datasets.Value("string"),
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"paragraphs": datasets.features.Sequence(
datasets.Value("string")),
"summary": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"topic": datasets.Value("int16"),
})
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
my_urls = _URLs[self.config.name]
d_conf = dl_manager.download_and_extract(my_urls)
challenge_sets = [
("challenge_test_abstractivity_%d" % (lvl), fname) \
for lvl,fname in enumerate(d_conf["cs_abs"])
] + [
("challenge_test_topic_diversity_%d" % (lvl), fname) \
for lvl,fname in enumerate(d_conf["cs_abs"])
]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": d_conf["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": d_conf["validation"],
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": d_conf["test"],
"split": "validation",
},
),
] + [
datasets.SplitGenerator(
name=challenge_split,
gen_kwargs={
"filepath": filename,
"split": challenge_split,
},
)
for challenge_split, filename in challenge_sets
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
# data["gem_parent_id"] = "GEM-wiki_cat_sum-%s-%d" % (split,data["id"]+1)
# data["gem_id"] = "GEM-wiki_cat_sum-%s-%d" % (split,data["id"]+1)
data["gem_parent_id"] = f"{self.config.name}-{split}-{id_+1}"
data["gem_id"] = f"{self.config.name}-{split}-{id_+1}"
yield id_,data