Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
text-simplification
Languages:
English
Size:
100K - 1M
ArXiv:
License:
Commit
•
3fea61a
1
Parent(s):
44256ca
Delete loading script
Browse files- wiki_auto_asset_turk.py +0 -246
wiki_auto_asset_turk.py
DELETED
@@ -1,246 +0,0 @@
|
|
1 |
-
import csv
|
2 |
-
import json
|
3 |
-
import os
|
4 |
-
import datasets
|
5 |
-
|
6 |
-
_CITATION = """\
|
7 |
-
@inproceedings{jiang-etal-2020-neural,
|
8 |
-
title = "Neural {CRF} Model for Sentence Alignment in Text Simplification",
|
9 |
-
author = "Jiang, Chao and
|
10 |
-
Maddela, Mounica and
|
11 |
-
Lan, Wuwei and
|
12 |
-
Zhong, Yang and
|
13 |
-
Xu, Wei",
|
14 |
-
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
|
15 |
-
month = jul,
|
16 |
-
year = "2020",
|
17 |
-
address = "Online",
|
18 |
-
publisher = "Association for Computational Linguistics",
|
19 |
-
url = "https://www.aclweb.org/anthology/2020.acl-main.709",
|
20 |
-
doi = "10.18653/v1/2020.acl-main.709",
|
21 |
-
pages = "7943--7960",
|
22 |
-
}
|
23 |
-
"""
|
24 |
-
|
25 |
-
_DESCRIPTION = """\
|
26 |
-
WikiAuto provides a set of aligned sentences from English Wikipedia and Simple
|
27 |
-
English Wikipedia as a resource to train sentence simplification systems.
|
28 |
-
|
29 |
-
The authors first crowd-sourced a set of manual alignments between sentences in
|
30 |
-
a subset of the Simple English Wikipedia and their corresponding versions in
|
31 |
-
English Wikipedia (this corresponds to the manual config in this version of the
|
32 |
-
dataset), then trained a neural CRF system to predict these alignments.
|
33 |
-
|
34 |
-
The trained alignment prediction model was then applied to the other articles in
|
35 |
-
Simple English Wikipedia with an English counterpart to create a larger corpus
|
36 |
-
of aligned sentences (corresponding to the auto and auto_acl configs here).
|
37 |
-
"""
|
38 |
-
|
39 |
-
_URLs = {
|
40 |
-
"train": "train.tsv",
|
41 |
-
"validation": "valid.tsv",
|
42 |
-
"test_turk": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_turk_detokenized.json",
|
43 |
-
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/wiki_auto_asset_turk_train_valid.zip",
|
44 |
-
"test_contract": "benchmarks/contract-benchmark.tsv",
|
45 |
-
"test_wiki": "benchmarks/wiki-benchmark.tsv",
|
46 |
-
}
|
47 |
-
|
48 |
-
# Add Asset files.
|
49 |
-
_URLs[
|
50 |
-
"test_asset_orig"
|
51 |
-
] = "https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.test.orig"
|
52 |
-
for i in range(10):
|
53 |
-
_URLs[
|
54 |
-
f"test_asset_{i}"
|
55 |
-
] = f"https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.test.simp.{i}"
|
56 |
-
|
57 |
-
|
58 |
-
class WikiAuto(datasets.GeneratorBasedBuilder):
|
59 |
-
VERSION = datasets.Version("1.0.0")
|
60 |
-
DEFAULT_CONFIG_NAME = "wiki_auto_asset_turk"
|
61 |
-
|
62 |
-
def _info(self):
|
63 |
-
features = datasets.Features(
|
64 |
-
{
|
65 |
-
"gem_id": datasets.Value("string"),
|
66 |
-
"gem_parent_id": datasets.Value("string"),
|
67 |
-
"source": datasets.Value("string"),
|
68 |
-
"target": datasets.Value("string"),
|
69 |
-
"references": [datasets.Value("string")],
|
70 |
-
}
|
71 |
-
)
|
72 |
-
|
73 |
-
return datasets.DatasetInfo(
|
74 |
-
description=_DESCRIPTION,
|
75 |
-
features=features,
|
76 |
-
supervised_keys=datasets.info.SupervisedKeysData(
|
77 |
-
input="source", output="target"
|
78 |
-
),
|
79 |
-
homepage="",
|
80 |
-
citation=_CITATION,
|
81 |
-
)
|
82 |
-
|
83 |
-
def _split_generators(self, dl_manager):
|
84 |
-
"""Returns SplitGenerators."""
|
85 |
-
dl_dir = dl_manager.download_and_extract(_URLs)
|
86 |
-
challenge_sets = [
|
87 |
-
(
|
88 |
-
"challenge_train_sample",
|
89 |
-
"train_wiki_auto_asset_turk_RandomSample500.json",
|
90 |
-
),
|
91 |
-
(
|
92 |
-
"challenge_validation_sample",
|
93 |
-
"validation_wiki_auto_asset_turk_RandomSample500.json",
|
94 |
-
),
|
95 |
-
(
|
96 |
-
"challenge_test_asset_backtranslation",
|
97 |
-
"test_asset_wiki_auto_asset_turk_BackTranslation.json",
|
98 |
-
),
|
99 |
-
(
|
100 |
-
"challenge_test_asset_bfp02",
|
101 |
-
"test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json",
|
102 |
-
),
|
103 |
-
(
|
104 |
-
"challenge_test_asset_bfp05",
|
105 |
-
"test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json",
|
106 |
-
),
|
107 |
-
(
|
108 |
-
"challenge_test_asset_nopunc",
|
109 |
-
"test_asset_wiki_auto_asset_turk_WithoutPunctuation.json",
|
110 |
-
),
|
111 |
-
(
|
112 |
-
"challenge_test_turk_backtranslation",
|
113 |
-
"detok_test_turk_wiki_auto_asset_turk_BackTranslation.json",
|
114 |
-
),
|
115 |
-
(
|
116 |
-
"challenge_test_turk_bfp02",
|
117 |
-
"detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json",
|
118 |
-
),
|
119 |
-
(
|
120 |
-
"challenge_test_turk_bfp05",
|
121 |
-
"detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json",
|
122 |
-
),
|
123 |
-
(
|
124 |
-
"challenge_test_turk_nopunc",
|
125 |
-
"detok_test_turk_wiki_auto_asset_turk_WithoutPunctuation.json",
|
126 |
-
),
|
127 |
-
]
|
128 |
-
return [
|
129 |
-
datasets.SplitGenerator(
|
130 |
-
name=datasets.Split.TRAIN,
|
131 |
-
gen_kwargs={
|
132 |
-
"filepath": dl_dir["train"],
|
133 |
-
"split": "train",
|
134 |
-
},
|
135 |
-
),
|
136 |
-
datasets.SplitGenerator(
|
137 |
-
name=datasets.Split.VALIDATION,
|
138 |
-
gen_kwargs={
|
139 |
-
"filepath": dl_dir["validation"],
|
140 |
-
"split": "validation",
|
141 |
-
},
|
142 |
-
),
|
143 |
-
datasets.SplitGenerator(
|
144 |
-
name="test_asset",
|
145 |
-
gen_kwargs={
|
146 |
-
"filepath": "",
|
147 |
-
"split": "test_asset",
|
148 |
-
"filepaths": [dl_dir["test_asset_orig"]]
|
149 |
-
+ [dl_dir[f"test_asset_{i}"] for i in range(10)],
|
150 |
-
},
|
151 |
-
),
|
152 |
-
datasets.SplitGenerator(
|
153 |
-
name="test_turk",
|
154 |
-
gen_kwargs={
|
155 |
-
"filepath": dl_dir["test_turk"],
|
156 |
-
"split": "test_turk",
|
157 |
-
},
|
158 |
-
),
|
159 |
-
datasets.SplitGenerator(
|
160 |
-
name="test_contract",
|
161 |
-
gen_kwargs={
|
162 |
-
"filepath": dl_dir["test_contract"],
|
163 |
-
"split": "test_contract",
|
164 |
-
},
|
165 |
-
),
|
166 |
-
datasets.SplitGenerator(
|
167 |
-
name="test_wiki",
|
168 |
-
gen_kwargs={
|
169 |
-
"filepath": dl_dir["test_wiki"],
|
170 |
-
"split": "test_wiki",
|
171 |
-
},
|
172 |
-
),
|
173 |
-
] + [
|
174 |
-
datasets.SplitGenerator(
|
175 |
-
name=challenge_split,
|
176 |
-
gen_kwargs={
|
177 |
-
"filepath": os.path.join(
|
178 |
-
dl_dir["challenge_set"], "wiki_auto_asset_turk", filename
|
179 |
-
),
|
180 |
-
"split": challenge_split,
|
181 |
-
},
|
182 |
-
)
|
183 |
-
for challenge_split, filename in challenge_sets
|
184 |
-
]
|
185 |
-
|
186 |
-
def _generate_examples(self, filepath, split, filepaths=None, lang=None):
|
187 |
-
"""Yields examples."""
|
188 |
-
if split in ["train", "validation"]:
|
189 |
-
keys = [
|
190 |
-
"source",
|
191 |
-
"target",
|
192 |
-
]
|
193 |
-
with open(filepath, encoding="utf-8") as f:
|
194 |
-
for id_, line in enumerate(f):
|
195 |
-
values = line.strip().split("\t")
|
196 |
-
assert (
|
197 |
-
len(values) == 2
|
198 |
-
), f"Not enough fields in ---- {line} --- {values}"
|
199 |
-
example = dict([(k, val) for k, val in zip(keys, values)])
|
200 |
-
example["gem_id"] = f"wiki_auto_asset_turk-{split}-{id_}"
|
201 |
-
example["gem_parent_id"] = example["gem_id"]
|
202 |
-
example["references"] = (
|
203 |
-
[] if split == "train" else [example["target"]]
|
204 |
-
)
|
205 |
-
yield id_, example
|
206 |
-
elif split == "test_turk":
|
207 |
-
examples = json.load(open(filepath, encoding="utf-8"))
|
208 |
-
for id_, example in enumerate(examples):
|
209 |
-
example["gem_parent_id"] = example["gem_id"]
|
210 |
-
for k in ["source_id", "target_id"]:
|
211 |
-
if k in example:
|
212 |
-
del example[k]
|
213 |
-
yield id_, example
|
214 |
-
elif split == "test_asset":
|
215 |
-
files = [open(f_name, encoding="utf-8") for f_name in filepaths]
|
216 |
-
for id_, lines in enumerate(zip(*files)):
|
217 |
-
yield id_, {
|
218 |
-
"gem_id": f"wiki_auto_asset_turk-{split}-{id_}",
|
219 |
-
"gem_parent_id": f"wiki_auto_asset_turk-{split}-{id_}",
|
220 |
-
"target": lines[1].strip(),
|
221 |
-
"source": lines[0].strip(),
|
222 |
-
"references": [line.strip() for line in lines[1:]],
|
223 |
-
}
|
224 |
-
elif split == "test_wiki" or split == "test_contract":
|
225 |
-
with open(filepath, 'r') as f:
|
226 |
-
reader = csv.DictReader(f, delimiter="\t")
|
227 |
-
for id_, entry in enumerate(reader):
|
228 |
-
yield id_, {
|
229 |
-
"gem_id": f"wiki_auto_asset_turk-{split}-{id_}",
|
230 |
-
"gem_parent_id": f"wiki_auto_asset_turk-{split}-{id_}",
|
231 |
-
"target": entry["simple"],
|
232 |
-
"source": entry["complex"],
|
233 |
-
"references": [entry["simple"]],
|
234 |
-
}
|
235 |
-
else:
|
236 |
-
exples = json.load(open(filepath, encoding="utf-8"))
|
237 |
-
if isinstance(exples, dict):
|
238 |
-
assert len(exples) == 1, "multiple entries found"
|
239 |
-
exples = list(exples.values())[0]
|
240 |
-
for id_, exple in enumerate(exples):
|
241 |
-
exple["gem_parent_id"] = exple["gem_id"]
|
242 |
-
exple["gem_id"] = f"wiki_auto_asset_turk-{split}-{id_}"
|
243 |
-
for k in ["source_id", "target_id"]:
|
244 |
-
if k in exple:
|
245 |
-
del exple[k]
|
246 |
-
yield id_, exple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|