Datasets:
Tasks:
Text2Text Generation
Sub-tasks:
text-simplification
Languages:
Italian
Multilinguality:
unknown
Size Categories:
unknown
Language Creators:
unknown
Annotations Creators:
crowd-sourced
Source Datasets:
original
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Data Loader for SIMPITIKI Dataset with challenge splits""" | |
import csv | |
import json | |
import os | |
import datasets | |
from lxml import etree | |
_CITATION = """\ | |
@article{tonelli2016simpitiki, | |
title={SIMPITIKI: a Simplification corpus for Italian}, | |
author={Tonelli, Sara and Aprosio, Alessio Palmero and Saltori, Francesca}, | |
journal={Proceedings of CLiC-it}, | |
year={2016} | |
} | |
""" | |
_DESCRIPTION = """\ | |
SIMPITIKI is a Simplification corpus for Italian and it consists of two sets of simplified pairs: the first one is harvested from the Italian Wikipedia in a semi-automatic way; the second one is manually annotated sentence-by-sentence from documents in the administrative domain. | |
""" | |
_HOMEPAGE = "https://github.com/dhfbk/simpitiki" | |
_LICENSE = "CC-BY 4.0" | |
_URLs = { | |
"v1":{ | |
"random": { | |
"train":"./v1/random_split/train.jsonl", | |
"val":"./v1/random_split/val.jsonl", | |
"test":"./v1/random_split/test.jsonl" | |
}, | |
"transformations": { | |
"train": "./v1/transformations_split/train.jsonl", | |
"val": "./v1/transformations_split/val.jsonl", | |
"seen_transformations_test": "./v1/transformations_split/seen_transformations_test.jsonl", | |
"unseen_transformations_test":"./v1/transformations_split/unseen_transformations_test.jsonl" | |
}, | |
"source_dataset": { | |
"itwiki_train":"./v1/source_dataset_split/itwiki_train.jsonl", | |
"itwiki_val": "./v1/source_dataset_split/itwiki_val.jsonl", | |
"itwiki_test":"./v1/source_dataset_split/itwiki_test.jsonl", | |
"tn_test":"./v1/source_dataset_split/tn_test.jsonl" | |
} | |
}, | |
"v2":{ | |
"random": { | |
"train":"./v2/random_split/train.jsonl", | |
"val":"./v2/random_split/val.jsonl", | |
"test":"./v2/random_split/test.jsonl" | |
}, | |
"transformations": { | |
"train": "./v2/transformations_split/train.jsonl", | |
"val": "./v2/transformations_split/val.jsonl", | |
"seen_transformations_test": "./v2/transformations_split/seen_transformations_test.jsonl", | |
"unseen_transformations_test":"./v2/transformations_split/unseen_transformations_test.jsonl" | |
}, | |
"source_dataset": { | |
"itwiki_train":"./v2/source_dataset_split/itwiki_train.jsonl", | |
"itwiki_val": "./v2/source_dataset_split/itwiki_val.jsonl", | |
"itwiki_test":"./v2/source_dataset_split/itwiki_test.jsonl", | |
"tn_test":"./v2/source_dataset_split/tn_test.jsonl" | |
} | |
} | |
} | |
class SIMPITIKI(datasets.GeneratorBasedBuilder): | |
"""SIMPITIKI is a dataset built for Sentence Simplification Task. It provides complex-to-simple sentence pairs.""" | |
VERSION_1 = datasets.Version("1.0.0") | |
VERSION_2 = datasets.Version("2.0.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="v1", version=VERSION_1, description="First version"), | |
datasets.BuilderConfig(name="v2", version=VERSION_2, description="Second version with better sentence boundaries."), | |
] | |
DEFAULT_CONFIG_NAME = "v2" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
features = datasets.Features( | |
{ | |
"gem_id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"simplified_text": datasets.Value("string"), | |
"transformation_type":datasets.Value("string"), | |
"source_dataset":datasets.Value("string") | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
my_urls = _URLs[self.config.name] | |
downloaded_files = dl_manager.download_and_extract(my_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['random']['train'], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['random']['val'], | |
"split": "val" | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['random']['test'], | |
"split": "test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name='challenge_seen_transformations_train', | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['transformations']['train'], | |
"split": "challenge_seen_transformations_train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name='challenge_seen_transformations_val', | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['transformations']['val'], | |
"split": "challenge_seen_transformations_val", | |
}, | |
), | |
datasets.SplitGenerator( | |
name='challenge_seen_transformations_test', | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['transformations']['seen_transformations_test'], | |
"split": "challenge_seen_transformations_test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name='challenge_unseen_transformations_test', | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['transformations']['unseen_transformations_test'], | |
"split": "challenge_unseen_transformations_test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name='challenge_itwiki_train', | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['source_dataset']['itwiki_train'], | |
"split": "challenge_itwiki_train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name='challenge_itwiki_val', | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['source_dataset']['itwiki_val'], | |
"split": "challenge_itwiki_val", | |
}, | |
), | |
datasets.SplitGenerator( | |
name='challenge_itwiki_test', | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['source_dataset']['itwiki_test'], | |
"split": "challenge_itwiki_test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name='challenge_tn_test', | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files['source_dataset']['tn_test'], | |
"split": "challenge_tn_test", | |
}, | |
), | |
] | |
def _generate_examples( | |
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
): | |
""" Yields examples as (key, example) tuples. """ | |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is here for legacy reason (tfds) and is not important in itself. | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
yield id_, { | |
"text": data["text"], | |
"simplified_text": data["simplified_text"], | |
"transformation_type":data["transformation_type"], | |
"source_dataset": data["source_dataset"], | |
"gem_id": f"gem-SIMPITIKI-{split}-{id_}", | |
} | |