|
import datasets |
|
from clean_funcs import clean_text |
|
from filter_stats_funcs import filter_stats |
|
|
|
fi_mc4 = datasets.load_from_disk("/researchdisk/mc4_3.1.0_fi") |
|
print(fi_mc4) |
|
|
|
min_alphabet_ratio = 0.75 |
|
max_upper_ratio = 0.10 |
|
max_number_ratio = 0.05 |
|
min_pred_lang_percentage = 0.95 |
|
|
|
|
|
print(f"Original dataset train rows {fi_mc4['train'].num_rows}") |
|
fi_mc4["train"] = fi_mc4["train"].map( |
|
clean_text, num_proc=64, batched=False |
|
) |
|
|
|
fi_train_only_longer = fi_mc4["train"].filter( |
|
lambda example: len(example["text"].split()) >= 20, num_proc=64 |
|
) |
|
print(f"Only longer texts dataset train rows {fi_train_only_longer.num_rows}") |
|
|
|
fi_train_only_longer = fi_train_only_longer.map( |
|
filter_stats, num_proc=64, batched=False |
|
) |
|
|
|
fi_train_cleaned = fi_train_only_longer.filter( |
|
lambda example: example["alphabet_ratio"] > min_alphabet_ratio |
|
and example["upper_ratio"] < max_upper_ratio |
|
and example["number_ratio"] < max_number_ratio |
|
and example["predicted_lang"] == "__label__fi" |
|
and example["predicted_lang_percentage"] > min_pred_lang_percentage, |
|
num_proc=64, |
|
) |
|
print(f"Final cleaned dataset train rows {fi_train_cleaned.num_rows}") |
|
|
|
|
|
print(f"Original dataset val rows {fi_mc4['validation'].num_rows}") |
|
fi_mc4["validation"] = fi_mc4["validation"].map( |
|
clean_text, num_proc=32, batched=False |
|
) |
|
|
|
fi_val_only_longer = fi_mc4["validation"].filter( |
|
lambda example: len(example["text"].split()) >= 20, num_proc=32 |
|
) |
|
print(f"Only longer texts dataset val rows {fi_val_only_longer.num_rows}") |
|
|
|
fi_val_only_longer = fi_val_only_longer.map(filter_stats, num_proc=32, batched=False) |
|
|
|
fi_val_cleaned = fi_val_only_longer.filter( |
|
lambda example: example["alphabet_ratio"] > min_alphabet_ratio |
|
and example["upper_ratio"] < max_upper_ratio |
|
and example["number_ratio"] < max_number_ratio |
|
and example["predicted_lang"] == "__label__fi" |
|
and example["predicted_lang_percentage"] > min_pred_lang_percentage, |
|
num_proc=32, |
|
) |
|
print(f"Final cleaned dataset val rows {fi_val_cleaned.num_rows}") |
|
|
|
|
|
fi_train_cleaned = fi_train_cleaned.remove_columns( |
|
[ |
|
"alphabet_len", |
|
"number_len", |
|
"upper_len", |
|
"total_len", |
|
"predicted_lang", |
|
"predicted_lang_percentage", |
|
"alphabet_ratio", |
|
"number_ratio", |
|
"upper_ratio", |
|
] |
|
) |
|
fi_val_cleaned = fi_val_cleaned.remove_columns( |
|
[ |
|
"alphabet_len", |
|
"number_len", |
|
"upper_len", |
|
"total_len", |
|
"predicted_lang", |
|
"predicted_lang_percentage", |
|
"alphabet_ratio", |
|
"number_ratio", |
|
"upper_ratio", |
|
] |
|
) |
|
|
|
fi_mc4_cleaned = datasets.DatasetDict() |
|
fi_mc4_cleaned["train"] = fi_train_cleaned |
|
fi_mc4_cleaned["validation"] = fi_val_cleaned |
|
|
|
fi_mc4_cleaned.save_to_disk("/researchdisk/mc4_3.1.0_fi_cleaned", num_proc=32) |
|
|