FemkeBakker's picture
Upload dataset
ce9e264 verified
|
raw
history blame
1.54 kB
---
language:
- nl
license: eupl-1.1
size_categories:
- 10K<n<100K
tags:
- documents
- fine-tuning
dataset_info:
features:
- name: prompt_id
dtype: int64
- name: message
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 9011452
num_examples: 9900
- name: test
num_bytes: 998068
num_examples: 1100
- name: val
num_bytes: 1000675
num_examples: 1100
- name: discard
num_bytes: 7897005
num_examples: 8718
download_size: 5846654
dataset_size: 18907200
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: val
path: data/val-*
- split: discard
path: data/discard-*
---
This dataset is used in the Woo-document classification project from the Municipality of Amsterdam.
The goal of this dataset is to fine-tune LLMs. The documents are formatted into a zero-shot prompt and then turned into conversations,
where the ideal response of the model is the prediction (class) formatted into JSON format.
Specifics:
- Truncation: first 200 tokens of each document. Docs are tokenized using the Llama tokenizer.
- Data split:
- test set: first 100 docs of each class (in total 1100 docs)
- train set: remaining docs, with max of 1500 docs per class (11000 docs)
- train set: 90% of train set is used for fine-tuning model (9900 docs)
- val set: 10% of train segt is used for evaluating the loss during training (1100 docs)