EliteVoiceProject / EliteVoiceProject.py
noflm
fix config
c1ac263
raw
history blame
6.24 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Elite Voice Project"""
import csv
import json
import os
import datasets
_CITATION = """\
@InProceedings{elitevoiceproject:dataset,
title = {Elite Voice Project},
author={Elite35P Server.},
year={2022}
}
"""
_HOMEPAGE = "https://nyahello.jp/"
_LICENSE = "https://hololive.hololivepro.com/guidelines/"
_BASE_URL = "https://huggingface.co/datasets/Elite35P-Server/EliteVoiceProject/resolve/main/"
_AUDIO_URL = _BASE_URL + "audio/{platform}/{split}/{platform}_{split}_{version}.tar"
_TRANSCRIPT_URL = _BASE_URL + "transcript/{platform}/{split}/{platform}_{split}_{version}.tsv"
class EliteVoiceProjectConfig(datasets.BuilderConfig):
"""BuilderConfig for EliteVoiceProject."""
def __init__(self, name, version, **kwargs):
self.language = kwargs.pop("language", None)
self.release_date = kwargs.pop("release_date", None)
description = (
f"Elite Voice Project speech to text dataset in {self.language} released on {self.release_date}. "
)
super(EliteVoiceProjectConfig, self).__init__(
name=name,
version=datasets.Version(version),
description=description,
**kwargs,
)
class EliteVoiceProject(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [
EliteVoiceProjectConfig(
name=platporm,
version='0.0.1',
language='Japanese',
release_date='2022-12-06',
)
for platporm in ["twitter", "youtube", "youtube"]
]
def _info(self):
description = (
"Elite Voice Project はホロライブ所属VTuberのさくらみこ氏の声をデータセット化することを目的に"
"TwitterのSpace配信等のアーカイブから音声を切り出し、センテンスを当てています。"
"当データセットは、hololive productionの二次創作ガイドラインに沿ってご利用ください。"
)
features = datasets.Features(
{
"audio": datasets.features.Audio(sampling_rate=48_000),
"sentence": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.config.version,
)
def _split_generators(self, dl_manager):
platporm = self.config.name
version = self.config.version
audio_urls = {}
#splits = ("twitter", "youtube", "twitch", "test")
splits = ["train", "test"]
for split in splits:
audio_urls[split] = [
_AUDIO_URL.format(platform=platporm, split=split, version=version)
]
archive_paths = dl_manager.download(audio_urls)
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
meta_urls = {split: _TRANSCRIPT_URL.format(platform=platporm, split=split, version=version) for split in splits}
meta_paths = dl_manager.download_and_extract(meta_urls)
split_generators = []
split_names = {
"train": datasets.Split.TRAIN,
"test": datasets.Split.TEST,
}
for split in splits:
split_generators.append(
datasets.SplitGenerator(
name=split_names.get(split, split),
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
"meta_path": meta_paths[split],
},
),
)
return split_generators
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
data_fields = list(self._info().features.keys())
metadata = {}
with open(meta_path, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in tqdm(reader, desc="Reading metadata..."):
if not row["path"].endswith(".mp3"):
row["path"] += ".mp3"
# accent -> accents in CV 8.0
if "accents" in row:
row["accent"] = row["accents"]
del row["accents"]
# if data is incomplete, fill with empty values
for field in data_fields:
if field not in row:
row[field] = ""
metadata[row["path"]] = row
for i, audio_archive in enumerate(archives):
for filename, file in audio_archive:
_, filename = os.path.split(filename)
if filename in metadata:
result = dict(metadata[filename])
# set the audio feature and the path to the extracted file
path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename
result["audio"] = {"path": path, "bytes": file.read()}
# set path to None if the audio file doesn't exist locally (i.e. in streaming mode)
result["path"] = path if local_extracted_archive_paths else filename
yield path, result