|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from __future__ import absolute_import, division, print_function | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  | _BASE_URL = "https://huggingface.co/datasets/EMBO/SourceData/resolve/main/" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SourceData(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology.""" | 
					
						
						|  |  | 
					
						
						|  | _NER_LABEL_NAMES = [ | 
					
						
						|  | "O", | 
					
						
						|  | "B-SMALL_MOLECULE", | 
					
						
						|  | "I-SMALL_MOLECULE", | 
					
						
						|  | "B-GENEPROD", | 
					
						
						|  | "I-GENEPROD", | 
					
						
						|  | "B-SUBCELLULAR", | 
					
						
						|  | "I-SUBCELLULAR", | 
					
						
						|  | "B-CELL_TYPE", | 
					
						
						|  | "I-CELL_TYPE", | 
					
						
						|  | "B-TISSUE", | 
					
						
						|  | "I-TISSUE", | 
					
						
						|  | "B-ORGANISM", | 
					
						
						|  | "I-ORGANISM", | 
					
						
						|  | "B-EXP_ASSAY", | 
					
						
						|  | "I-EXP_ASSAY", | 
					
						
						|  | "B-DISEASE", | 
					
						
						|  | "I-DISEASE", | 
					
						
						|  | "B-CELL_LINE", | 
					
						
						|  | "I-CELL_LINE", | 
					
						
						|  | ] | 
					
						
						|  | _SEMANTIC_ROLES = [ | 
					
						
						|  | "O", | 
					
						
						|  | "B-CONTROLLED_VAR", | 
					
						
						|  | "I-CONTROLLED_VAR", | 
					
						
						|  | "B-MEASURED_VAR", | 
					
						
						|  | "I-MEASURED_VAR", | 
					
						
						|  | ] | 
					
						
						|  | _PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"] | 
					
						
						|  | _ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"] | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @article{abreu2023sourcedata, | 
					
						
						|  | title={The SourceData-NLP dataset: integrating curation into scientific publishing | 
					
						
						|  | for training large language models}, | 
					
						
						|  | author={Abreu-Vicente, Jorge and Sonntag, Hannah and Eidens, Thomas and Lemberger, Thomas}, | 
					
						
						|  | journal={arXiv preprint arXiv:2310.20440}, | 
					
						
						|  | year={2023} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | This dataset is based on the SourceData database and is intented to facilitate training of NLP tasks in the cell and molecualr biology domain. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://huggingface.co/datasets/EMBO/SourceData" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "CC-BY 4.0" | 
					
						
						|  |  | 
					
						
						|  | DEFAULT_CONFIG_NAME = "NER" | 
					
						
						|  |  | 
					
						
						|  | _LATEST_VERSION = "2.0.3" | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | VERSION = ( | 
					
						
						|  | self.config.version | 
					
						
						|  | if self.config.version not in ["0.0.0", "latest"] | 
					
						
						|  | else self._LATEST_VERSION | 
					
						
						|  | ) | 
					
						
						|  | self._URLS = { | 
					
						
						|  | "NER": f"{_BASE_URL}token_classification/v_{VERSION}/ner/", | 
					
						
						|  | "PANELIZATION": f"{_BASE_URL}token_classification/v_{VERSION}/panelization/", | 
					
						
						|  | "ROLES_GP": f"{_BASE_URL}token_classification/v_{VERSION}/roles_gene/", | 
					
						
						|  | "ROLES_SM": f"{_BASE_URL}token_classification/v_{VERSION}/roles_small_mol/", | 
					
						
						|  | "ROLES_MULTI": f"{_BASE_URL}token_classification/v_{VERSION}/roles_multi/", | 
					
						
						|  | "FULL": os.path.join( | 
					
						
						|  | _BASE_URL, | 
					
						
						|  | "bigbio", | 
					
						
						|  |  | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | self.BUILDER_CONFIGS = [ | 
					
						
						|  | datasets.BuilderConfig( | 
					
						
						|  | name="NER", | 
					
						
						|  | version=VERSION, | 
					
						
						|  | description="Dataset for named-entity recognition.", | 
					
						
						|  | ), | 
					
						
						|  | datasets.BuilderConfig( | 
					
						
						|  | name="PANELIZATION", | 
					
						
						|  | version=VERSION, | 
					
						
						|  | description="Dataset to separate figure captions into panels.", | 
					
						
						|  | ), | 
					
						
						|  | datasets.BuilderConfig( | 
					
						
						|  | name="ROLES_GP", | 
					
						
						|  | version=VERSION, | 
					
						
						|  | description="Dataset for semantic roles of gene products.", | 
					
						
						|  | ), | 
					
						
						|  | datasets.BuilderConfig( | 
					
						
						|  | name="ROLES_SM", | 
					
						
						|  | version=VERSION, | 
					
						
						|  | description="Dataset for semantic roles of small molecules.", | 
					
						
						|  | ), | 
					
						
						|  | datasets.BuilderConfig( | 
					
						
						|  | name="ROLES_MULTI", | 
					
						
						|  | version=VERSION, | 
					
						
						|  | description="Dataset to train roles. ROLES_GP and ROLES_SM at once.", | 
					
						
						|  | ), | 
					
						
						|  | datasets.BuilderConfig( | 
					
						
						|  | name="FULL", | 
					
						
						|  | version=VERSION, | 
					
						
						|  | description="Full dataset including all NER + entity linking annotations, links to figure images, etc.", | 
					
						
						|  | ), | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | if self.config.name in ["NER", "default"]: | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._NER_LABEL_NAMES), | 
					
						
						|  | names=self._NER_LABEL_NAMES, | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  |  | 
					
						
						|  | "tag_mask": datasets.Sequence(feature=datasets.Value("int8")), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.name == "ROLES_GP": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._SEMANTIC_ROLES), | 
					
						
						|  | names=self._SEMANTIC_ROLES, | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  |  | 
					
						
						|  | "tag_mask": datasets.Sequence(feature=datasets.Value("int8")), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.name == "ROLES_SM": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._SEMANTIC_ROLES), | 
					
						
						|  | names=self._SEMANTIC_ROLES, | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  |  | 
					
						
						|  | "tag_mask": datasets.Sequence(feature=datasets.Value("int8")), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.name == "ROLES_MULTI": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._SEMANTIC_ROLES), | 
					
						
						|  | names=self._SEMANTIC_ROLES, | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | "is_category": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._ROLES_MULTI), names=self._ROLES_MULTI | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | "tag_mask": datasets.Sequence(feature=datasets.Value("int8")), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.name == "PANELIZATION": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._PANEL_START_NAMES), | 
					
						
						|  | names=self._PANEL_START_NAMES, | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | "tag_mask": datasets.Sequence(feature=datasets.Value("int8")), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif self.config.name == "FULL": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "doi": datasets.Value("string"), | 
					
						
						|  | "abstract": datasets.Value("string"), | 
					
						
						|  |  | 
					
						
						|  | "figures": [ | 
					
						
						|  | { | 
					
						
						|  | "fig_id": datasets.Value("string"), | 
					
						
						|  | "label": datasets.Value("string"), | 
					
						
						|  | "fig_graphic_url": datasets.Value("string"), | 
					
						
						|  | "panels": [ | 
					
						
						|  | { | 
					
						
						|  | "panel_id": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | "panel_graphic_url": datasets.Value("string"), | 
					
						
						|  | "entities": [ | 
					
						
						|  | { | 
					
						
						|  | "annotation_id": datasets.Value("string"), | 
					
						
						|  | "source": datasets.Value("string"), | 
					
						
						|  | "category": datasets.Value("string"), | 
					
						
						|  | "entity_type": datasets.Value("string"), | 
					
						
						|  | "role": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | "ext_ids": datasets.Value("string"), | 
					
						
						|  | "norm_text": datasets.Value("string"), | 
					
						
						|  | "ext_dbs": datasets.Value("string"), | 
					
						
						|  | "in_caption": datasets.Value("bool"), | 
					
						
						|  | "ext_names": datasets.Value("string"), | 
					
						
						|  | "ext_tax_ids": datasets.Value("string"), | 
					
						
						|  | "ext_tax_names": datasets.Value("string"), | 
					
						
						|  | "ext_urls": datasets.Value("string"), | 
					
						
						|  | "offsets": [datasets.Value("int64")], | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=self._DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | supervised_keys=("words", "label_ids"), | 
					
						
						|  | homepage=self._HOMEPAGE, | 
					
						
						|  | license=self._LICENSE, | 
					
						
						|  | citation=self._CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager: datasets.DownloadManager): | 
					
						
						|  | """Returns SplitGenerators. | 
					
						
						|  | Uses local files if a data_dir is specified. Otherwise downloads the files from their official url. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | config_name = self.config.name if self.config.name != "default" else "NER" | 
					
						
						|  |  | 
					
						
						|  | if config_name == "FULL": | 
					
						
						|  | url = os.path.join( | 
					
						
						|  | self._URLS[config_name], | 
					
						
						|  |  | 
					
						
						|  | "source_data_json_splits_2.0.2.zip", | 
					
						
						|  | ) | 
					
						
						|  | data_dir = dl_manager.download_and_extract(url) | 
					
						
						|  | data_files = [ | 
					
						
						|  | os.path.join(data_dir, filename) | 
					
						
						|  | for filename in ["train.jsonl", "test.jsonl", "validation.jsonl"] | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  | urls = [ | 
					
						
						|  | os.path.join(self._URLS[config_name], "train.jsonl"), | 
					
						
						|  | os.path.join(self._URLS[config_name], "test.jsonl"), | 
					
						
						|  | os.path.join(self._URLS[config_name], "validation.jsonl"), | 
					
						
						|  | ] | 
					
						
						|  | data_files = dl_manager.download(urls) | 
					
						
						|  | except: | 
					
						
						|  | raise ValueError(f"unkonwn config name: {self.config.name}") | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs={"filepath": data_files[0]}, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TEST, | 
					
						
						|  | gen_kwargs={"filepath": data_files[1]}, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.VALIDATION, | 
					
						
						|  | gen_kwargs={"filepath": data_files[2]}, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, filepath): | 
					
						
						|  | """Yields examples. This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method. | 
					
						
						|  | It is in charge of opening the given file and yielding (key, example) tuples from the dataset | 
					
						
						|  | The key is not important, it's more here for legacy reason (legacy from tfds)""" | 
					
						
						|  |  | 
					
						
						|  | no_panels = 0 | 
					
						
						|  | no_entities = 0 | 
					
						
						|  | has_panels = 0 | 
					
						
						|  | has_entities = 0 | 
					
						
						|  |  | 
					
						
						|  | with open(filepath, encoding="utf-8") as f: | 
					
						
						|  |  | 
					
						
						|  | for id_, row in enumerate(f): | 
					
						
						|  | data = json.loads(row.strip()) | 
					
						
						|  | if self.config.name in ["NER", "default"]: | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": data["is_category"], | 
					
						
						|  | "text": data["text"], | 
					
						
						|  | } | 
					
						
						|  | elif self.config.name == "ROLES_GP": | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": data["is_category"], | 
					
						
						|  | "text": data["text"], | 
					
						
						|  | } | 
					
						
						|  | elif self.config.name == "ROLES_MULTI": | 
					
						
						|  | labels = data["labels"] | 
					
						
						|  | tag_mask = [1 if t != 0 else 0 for t in labels] | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": tag_mask, | 
					
						
						|  | "is_category": data["is_category"], | 
					
						
						|  | "text": data["text"], | 
					
						
						|  | } | 
					
						
						|  | elif self.config.name == "ROLES_SM": | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": data["is_category"], | 
					
						
						|  | "text": data["text"], | 
					
						
						|  | } | 
					
						
						|  | elif self.config.name == "PANELIZATION": | 
					
						
						|  | labels = data["labels"] | 
					
						
						|  | tag_mask = [1 if t == "B-PANEL_START" else 0 for t in labels] | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": tag_mask, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | elif self.config.name == "FULL": | 
					
						
						|  | doc_figs = data["figures"] | 
					
						
						|  | all_figures = [] | 
					
						
						|  | for fig in doc_figs: | 
					
						
						|  | all_panels = [] | 
					
						
						|  | figure = { | 
					
						
						|  | "fig_id": fig["fig_id"], | 
					
						
						|  | "label": fig["label"], | 
					
						
						|  | "fig_graphic_url": fig["fig_graphic_url"], | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | for p in fig["panels"]: | 
					
						
						|  | panel = { | 
					
						
						|  | "panel_id": p["panel_id"], | 
					
						
						|  | "text": p["text"].strip(), | 
					
						
						|  | "panel_graphic_url": p["panel_graphic_url"], | 
					
						
						|  | "entities": [ | 
					
						
						|  | { | 
					
						
						|  | "annotation_id": t["tag_id"], | 
					
						
						|  | "source": t["source"], | 
					
						
						|  | "category": t["category"], | 
					
						
						|  | "entity_type": t["entity_type"], | 
					
						
						|  | "role": t["role"], | 
					
						
						|  | "text": t["text"], | 
					
						
						|  | "ext_ids": t["ext_ids"], | 
					
						
						|  | "norm_text": t["norm_text"], | 
					
						
						|  | "ext_dbs": t["ext_dbs"], | 
					
						
						|  | "in_caption": bool(t["in_caption"]), | 
					
						
						|  | "ext_names": t["ext_names"], | 
					
						
						|  | "ext_tax_ids": t["ext_tax_ids"], | 
					
						
						|  | "ext_tax_names": t["ext_tax_names"], | 
					
						
						|  | "ext_urls": t["ext_urls"], | 
					
						
						|  | "offsets": t["local_offsets"], | 
					
						
						|  | } | 
					
						
						|  | for t in p["tags"] | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | for e in panel["entities"]: | 
					
						
						|  | assert type(e["offsets"]) == list | 
					
						
						|  | if len(panel["entities"]) == 0: | 
					
						
						|  | no_entities += 1 | 
					
						
						|  | continue | 
					
						
						|  | else: | 
					
						
						|  | has_entities += 1 | 
					
						
						|  | all_panels.append(panel) | 
					
						
						|  |  | 
					
						
						|  | figure["panels"] = all_panels | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(all_panels) == 0: | 
					
						
						|  | no_panels += 1 | 
					
						
						|  | continue | 
					
						
						|  | else: | 
					
						
						|  | has_panels += 1 | 
					
						
						|  | all_figures.append(figure) | 
					
						
						|  |  | 
					
						
						|  | output = { | 
					
						
						|  | "doi": data["doi"], | 
					
						
						|  | "abstract": data["abstract"], | 
					
						
						|  | "figures": all_figures, | 
					
						
						|  | } | 
					
						
						|  | yield id_, output | 
					
						
						|  |  | 
					
						
						|  |  |