DiaMED / DiaMED.py
qanastek's picture
Update DiaMED.py
6a0aa6c
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DIAMED"""
import os
import json
import math
import datasets
_DESCRIPTION = """\
DIAMED
"""
_HOMEPAGE = "DIAMED"
_LICENSE = "Apache License 2.0"
_URL = "https://huggingface.co/datasets/Dr-BERT/DiaMED/resolve/main/data.zip"
_CITATION = """\
DIAMED
"""
class DiaMed(datasets.GeneratorBasedBuilder):
"""DIAMED"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"DiaMED data"),
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
features = datasets.Features(
{
"identifier": datasets.Value("string"),
"title": datasets.Value("string"),
"clinical_case": datasets.Value("string"),
"topic": datasets.Value("string"),
"keywords": datasets.Sequence(
datasets.Value("string"),
),
"domains": datasets.Sequence(
datasets.Value("string"),
),
"collected_at": datasets.Value("string"),
"published_at": datasets.Value("string"),
"source_url": datasets.Value("string"),
"source_name": datasets.Value("string"),
"license": datasets.Value("string"),
"figures_urls": datasets.Sequence(
datasets.Value("string"),
),
"figures_paths": datasets.Sequence(
datasets.Value("string"),
),
"figures": datasets.Sequence(
datasets.Image(),
),
"icd-10": datasets.features.ClassLabel(names=[
'A00-B99 Certain infectious and parasitic diseases',
'C00-D49 Neoplasms',
'D50-D89 Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism',
'E00-E89 Endocrine, nutritional and metabolic diseases',
'F01-F99 Mental, Behavioral and Neurodevelopmental disorders',
'G00-G99 Diseases of the nervous system',
'H00-H59 Diseases of the eye and adnexa',
'H60-H95 Diseases of the ear and mastoid process',
'I00-I99 Diseases of the circulatory system',
'J00-J99 Diseases of the respiratory system',
'K00-K95 Diseases of the digestive system',
'L00-L99 Diseases of the skin and subcutaneous tissue',
'M00-M99 Diseases of the musculoskeletal system and connective tissue',
'N00-N99 Diseases of the genitourinary system',
'O00-O9A Pregnancy, childbirth and the puerperium',
'P00-P96 Certain conditions originating in the perinatal period',
'Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities',
'R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified',
'S00-T88 Injury, poisoning and certain other consequences of external causes',
'U00-U85 Codes for special purposes',
'V00-Y99 External causes of morbidity',
'Z00-Z99 Factors influencing health status and contact with health services',
]),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"base_path": data_dir,
"filepath": data_dir + "/splits/train.json",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"base_path": data_dir,
"filepath": data_dir + "/splits/validation.json",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"base_path": data_dir,
"filepath": data_dir + "/splits/test.json",
},
),
]
def _generate_examples(self, base_path, filepath):
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for key, d in enumerate(data):
if str(d["icd-10"]) == "nan" or d["icd-10"].find("Plusieurs cas cliniques") != -1 or d["icd-10"].find("Aucune annotation") != -1:
continue
yield key, {
"identifier": d["identifier"],
"title": d["title"],
"clinical_case": d["clinical_case"],
"topic": d["topic"],
"keywords": d["keywords"],
"domains": d["domain"],
"collected_at": d["collected_at"],
"published_at": d["published_at"],
"source_url": d["source_url"],
"source_name": d["source_name"],
"license": d["license"],
"figures_urls": d["figures"],
"figures": [base_path + fg.lstrip(".") for fg in d["local_figures"]],
"figures_paths": [base_path + fg.lstrip(".") for fg in d["local_figures"]],
"icd-10": d["icd-10"],
}