Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
natural-language-inference
Size:
1M - 10M
ArXiv:
License:
update builder script
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +163 -0
- .history/indicxnli_20220823214315.py +0 -203
- .history/indicxnli_20220823214334.py +0 -200
- .history/indicxnli_20220823220704.py +0 -201
- .history/indicxnli_20220823220708.py +0 -201
- .history/indicxnli_20220823220724.py +0 -201
- .history/indicxnli_20220823220725.py +0 -201
- .history/indicxnli_20220823220728.py +0 -201
- .history/indicxnli_20220823220732.py +0 -201
- .history/indicxnli_20220823220735.py +0 -201
- .history/indicxnli_20220823220738.py +0 -201
- .history/indicxnli_20220823220742.py +0 -201
- .history/indicxnli_20220823221124.py +0 -201
- .history/indicxnli_20220823221128.py +0 -202
- .history/indicxnli_20220823221142.py +0 -202
- .history/indicxnli_20220823221147.py +0 -202
- .history/indicxnli_20220823221200.py +0 -203
- .history/indicxnli_20220823221210.py +0 -203
- .history/indicxnli_20220823221213.py +0 -203
- .history/indicxnli_20220823221223.py +0 -203
- .history/indicxnli_20220823221227.py +0 -203
- .history/indicxnli_20220823221233.py +0 -203
- .history/indicxnli_20220823221235.py +0 -203
- .history/indicxnli_20220823221240.py +0 -203
- .history/indicxnli_20220823221242.py +0 -203
- .history/indicxnli_20220823221316.py +0 -203
- .history/indicxnli_20220823221318.py +0 -203
- .history/indicxnli_20220823221321.py +0 -203
- .history/indicxnli_20220823221324.py +0 -203
- .history/indicxnli_20220823221328.py +0 -203
- .history/indicxnli_20220823221331.py +0 -203
- .history/indicxnli_20220823221333.py +0 -203
- .history/indicxnli_20220823221334.py +0 -203
- .history/indicxnli_20220823221336.py +0 -203
- .history/indicxnli_20220823221338.py +0 -203
- .history/indicxnli_20220823221339.py +0 -203
- .history/indicxnli_20220823221341.py +0 -203
- .history/indicxnli_20220823221351.py +0 -203
- .history/indicxnli_20220823221357.py +0 -203
- .history/indicxnli_20220823221400.py +0 -203
- .history/indicxnli_20220823221408.py +0 -203
- .history/indicxnli_20220823221440.py +0 -203
- .history/indicxnli_20220823221501.py +0 -203
- .history/indicxnli_20220823221505.py +0 -203
- .history/indicxnli_20220823221601.py +0 -203
- .history/indicxnli_20220823221611.py +0 -203
- .history/indicxnli_20220823221621.py +0 -203
- .history/indicxnli_20220823221623.py +0 -203
- .history/indicxnli_20220823221950.py +0 -151
- .history/indicxnli_20220823221952.py +0 -151
.gitignore
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.history/
|
2 |
+
|
3 |
+
# Byte-compiled / optimized / DLL files
|
4 |
+
__pycache__/
|
5 |
+
*.py[cod]
|
6 |
+
*$py.class
|
7 |
+
|
8 |
+
# C extensions
|
9 |
+
*.so
|
10 |
+
|
11 |
+
# Distribution / packaging
|
12 |
+
.Python
|
13 |
+
build/
|
14 |
+
develop-eggs/
|
15 |
+
dist/
|
16 |
+
downloads/
|
17 |
+
eggs/
|
18 |
+
.eggs/
|
19 |
+
lib/
|
20 |
+
lib64/
|
21 |
+
parts/
|
22 |
+
sdist/
|
23 |
+
var/
|
24 |
+
wheels/
|
25 |
+
share/python-wheels/
|
26 |
+
*.egg-info/
|
27 |
+
.installed.cfg
|
28 |
+
*.egg
|
29 |
+
MANIFEST
|
30 |
+
|
31 |
+
# PyInstaller
|
32 |
+
# Usually these files are written by a python script from a template
|
33 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
34 |
+
*.manifest
|
35 |
+
*.spec
|
36 |
+
|
37 |
+
# Installer logs
|
38 |
+
pip-log.txt
|
39 |
+
pip-delete-this-directory.txt
|
40 |
+
|
41 |
+
# Unit test / coverage reports
|
42 |
+
htmlcov/
|
43 |
+
.tox/
|
44 |
+
.nox/
|
45 |
+
.coverage
|
46 |
+
.coverage.*
|
47 |
+
.cache
|
48 |
+
nosetests.xml
|
49 |
+
coverage.xml
|
50 |
+
*.cover
|
51 |
+
*.py,cover
|
52 |
+
.hypothesis/
|
53 |
+
.pytest_cache/
|
54 |
+
cover/
|
55 |
+
|
56 |
+
# Translations
|
57 |
+
*.mo
|
58 |
+
*.pot
|
59 |
+
|
60 |
+
# Django stuff:
|
61 |
+
*.log
|
62 |
+
local_settings.py
|
63 |
+
db.sqlite3
|
64 |
+
db.sqlite3-journal
|
65 |
+
|
66 |
+
# Flask stuff:
|
67 |
+
instance/
|
68 |
+
.webassets-cache
|
69 |
+
|
70 |
+
# Scrapy stuff:
|
71 |
+
.scrapy
|
72 |
+
|
73 |
+
# Sphinx documentation
|
74 |
+
docs/_build/
|
75 |
+
|
76 |
+
# PyBuilder
|
77 |
+
.pybuilder/
|
78 |
+
target/
|
79 |
+
|
80 |
+
# Jupyter Notebook
|
81 |
+
.ipynb_checkpoints
|
82 |
+
|
83 |
+
# IPython
|
84 |
+
profile_default/
|
85 |
+
ipython_config.py
|
86 |
+
|
87 |
+
# pyenv
|
88 |
+
# For a library or package, you might want to ignore these files since the code is
|
89 |
+
# intended to run in multiple environments; otherwise, check them in:
|
90 |
+
# .python-version
|
91 |
+
|
92 |
+
# pipenv
|
93 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
94 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
95 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
96 |
+
# install all needed dependencies.
|
97 |
+
#Pipfile.lock
|
98 |
+
|
99 |
+
# poetry
|
100 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
101 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
102 |
+
# commonly ignored for libraries.
|
103 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
104 |
+
#poetry.lock
|
105 |
+
|
106 |
+
# pdm
|
107 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
108 |
+
#pdm.lock
|
109 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
110 |
+
# in version control.
|
111 |
+
# https://pdm.fming.dev/#use-with-ide
|
112 |
+
.pdm.toml
|
113 |
+
|
114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
+
__pypackages__/
|
116 |
+
|
117 |
+
# Celery stuff
|
118 |
+
celerybeat-schedule
|
119 |
+
celerybeat.pid
|
120 |
+
|
121 |
+
# SageMath parsed files
|
122 |
+
*.sage.py
|
123 |
+
|
124 |
+
# Environments
|
125 |
+
.env
|
126 |
+
.venv
|
127 |
+
env/
|
128 |
+
venv/
|
129 |
+
ENV/
|
130 |
+
env.bak/
|
131 |
+
venv.bak/
|
132 |
+
|
133 |
+
# Spyder project settings
|
134 |
+
.spyderproject
|
135 |
+
.spyproject
|
136 |
+
|
137 |
+
# Rope project settings
|
138 |
+
.ropeproject
|
139 |
+
|
140 |
+
# mkdocs documentation
|
141 |
+
/site
|
142 |
+
|
143 |
+
# mypy
|
144 |
+
.mypy_cache/
|
145 |
+
.dmypy.json
|
146 |
+
dmypy.json
|
147 |
+
|
148 |
+
# Pyre type checker
|
149 |
+
.pyre/
|
150 |
+
|
151 |
+
# pytype static type analyzer
|
152 |
+
.pytype/
|
153 |
+
|
154 |
+
# Cython debug symbols
|
155 |
+
cython_debug/
|
156 |
+
|
157 |
+
# PyCharm
|
158 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
159 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
160 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
161 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
162 |
+
#.idea/
|
163 |
+
Foo
|
.history/indicxnli_20220823214315.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
# _TRAIN_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip"
|
56 |
-
# _TESTVAL_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip"
|
57 |
-
|
58 |
-
_LANGUAGES = (
|
59 |
-
'hi',
|
60 |
-
'bn',
|
61 |
-
'mr',
|
62 |
-
'as',
|
63 |
-
'ta',
|
64 |
-
'te',
|
65 |
-
'or',
|
66 |
-
'ml',
|
67 |
-
'pa',
|
68 |
-
'gu',
|
69 |
-
'kn'
|
70 |
-
)
|
71 |
-
|
72 |
-
|
73 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
74 |
-
"""BuilderConfig for XNLI."""
|
75 |
-
|
76 |
-
def __init__(self, language: str, **kwargs):
|
77 |
-
"""BuilderConfig for XNLI.
|
78 |
-
|
79 |
-
Args:
|
80 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
81 |
-
**kwargs: keyword arguments forwarded to super.
|
82 |
-
"""
|
83 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
84 |
-
self.language = language
|
85 |
-
|
86 |
-
|
87 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
88 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
89 |
-
|
90 |
-
VERSION = datasets.Version("1.1.0", "")
|
91 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
92 |
-
BUILDER_CONFIGS = [
|
93 |
-
IndicxnliConfig(
|
94 |
-
name=lang,
|
95 |
-
language=lang,
|
96 |
-
version=datasets.Version("1.1.0", ""),
|
97 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
98 |
-
)
|
99 |
-
for lang in _LANGUAGES
|
100 |
-
]
|
101 |
-
|
102 |
-
def _info(self):
|
103 |
-
features = datasets.Features(
|
104 |
-
{
|
105 |
-
"premise": datasets.Value("string"),
|
106 |
-
"hypothesis": datasets.Value("string"),
|
107 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
108 |
-
}
|
109 |
-
)
|
110 |
-
return datasets.DatasetInfo(
|
111 |
-
description=_DESCRIPTION,
|
112 |
-
features=features,
|
113 |
-
# No default supervised_keys (as we have to pass both premise
|
114 |
-
# and hypothesis as input).
|
115 |
-
supervised_keys=None,
|
116 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
117 |
-
citation=_CITATION,
|
118 |
-
)
|
119 |
-
|
120 |
-
def _split_generators(self, dl_manager):
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823214334.py
DELETED
@@ -1,200 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
|
119 |
-
return [
|
120 |
-
datasets.SplitGenerator(
|
121 |
-
name=datasets.Split.TRAIN,
|
122 |
-
gen_kwargs={
|
123 |
-
"filepaths": [
|
124 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
125 |
-
],
|
126 |
-
"data_format": "XNLI-MT",
|
127 |
-
},
|
128 |
-
),
|
129 |
-
datasets.SplitGenerator(
|
130 |
-
name=datasets.Split.TEST,
|
131 |
-
gen_kwargs={"filepaths": [os.path.join(
|
132 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
133 |
-
),
|
134 |
-
datasets.SplitGenerator(
|
135 |
-
name=datasets.Split.VALIDATION,
|
136 |
-
gen_kwargs={"filepaths": [os.path.join(
|
137 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
138 |
-
),
|
139 |
-
]
|
140 |
-
|
141 |
-
def _generate_examples(self, data_format, filepaths):
|
142 |
-
"""This function returns the examples in the raw (text) form."""
|
143 |
-
|
144 |
-
if self.config.language == "all_languages":
|
145 |
-
if data_format == "XNLI-MT":
|
146 |
-
with ExitStack() as stack:
|
147 |
-
files = [stack.enter_context(
|
148 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
149 |
-
readers = [csv.DictReader(
|
150 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
151 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
152 |
-
yield row_idx, {
|
153 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
154 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
156 |
-
}
|
157 |
-
else:
|
158 |
-
rows_per_pair_id = collections.defaultdict(list)
|
159 |
-
for filepath in filepaths:
|
160 |
-
with open(filepath, encoding="utf-8") as f:
|
161 |
-
reader = csv.DictReader(
|
162 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
163 |
-
for row in reader:
|
164 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
165 |
-
|
166 |
-
for rows in rows_per_pair_id.values():
|
167 |
-
premise = {row["language"]: row["sentence1"]
|
168 |
-
for row in rows}
|
169 |
-
hypothesis = {row["language"]: row["sentence2"]
|
170 |
-
for row in rows}
|
171 |
-
yield rows[0]["pairID"], {
|
172 |
-
"premise": premise,
|
173 |
-
"hypothesis": hypothesis,
|
174 |
-
"label": rows[0]["gold_label"],
|
175 |
-
}
|
176 |
-
else:
|
177 |
-
if data_format == "XNLI-MT":
|
178 |
-
for file_idx, filepath in enumerate(filepaths):
|
179 |
-
file = open(filepath, encoding="utf-8")
|
180 |
-
reader = csv.DictReader(
|
181 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
182 |
-
for row_idx, row in enumerate(reader):
|
183 |
-
key = str(file_idx) + "_" + str(row_idx)
|
184 |
-
yield key, {
|
185 |
-
"premise": row["premise"],
|
186 |
-
"hypothesis": row["hypo"],
|
187 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
188 |
-
}
|
189 |
-
else:
|
190 |
-
for filepath in filepaths:
|
191 |
-
with open(filepath, encoding="utf-8") as f:
|
192 |
-
reader = csv.DictReader(
|
193 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
194 |
-
for row in reader:
|
195 |
-
if row["language"] == self.config.language:
|
196 |
-
yield row["pairID"], {
|
197 |
-
"premise": row["sentence1"],
|
198 |
-
"hypothesis": row["sentence2"],
|
199 |
-
"label": row["gold_label"],
|
200 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823220704.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823220708.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open()
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823220724.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open('forward/train')
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823220725.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open('forward/train', )
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823220728.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open('forward/train', 'r')
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823220732.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open('forward/train/', 'r')
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823220735.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open('forward/train/{}', 'r')
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823220738.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open(f'forward/train/{}', 'r')
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823220742.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open(f'forward/train/{language}', 'r')
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221124.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open(f'forward/train/{self.config.language}', 'r')
|
119 |
-
|
120 |
-
return [
|
121 |
-
datasets.SplitGenerator(
|
122 |
-
name=datasets.Split.TRAIN,
|
123 |
-
gen_kwargs={
|
124 |
-
"filepaths": [
|
125 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
-
],
|
127 |
-
"data_format": "XNLI-MT",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.TEST,
|
132 |
-
gen_kwargs={"filepaths": [os.path.join(
|
133 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
-
),
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
gen_kwargs={"filepaths": [os.path.join(
|
138 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
-
),
|
140 |
-
]
|
141 |
-
|
142 |
-
def _generate_examples(self, data_format, filepaths):
|
143 |
-
"""This function returns the examples in the raw (text) form."""
|
144 |
-
|
145 |
-
if self.config.language == "all_languages":
|
146 |
-
if data_format == "XNLI-MT":
|
147 |
-
with ExitStack() as stack:
|
148 |
-
files = [stack.enter_context(
|
149 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
-
readers = [csv.DictReader(
|
151 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
-
yield row_idx, {
|
154 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
-
}
|
158 |
-
else:
|
159 |
-
rows_per_pair_id = collections.defaultdict(list)
|
160 |
-
for filepath in filepaths:
|
161 |
-
with open(filepath, encoding="utf-8") as f:
|
162 |
-
reader = csv.DictReader(
|
163 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
-
for row in reader:
|
165 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
-
|
167 |
-
for rows in rows_per_pair_id.values():
|
168 |
-
premise = {row["language"]: row["sentence1"]
|
169 |
-
for row in rows}
|
170 |
-
hypothesis = {row["language"]: row["sentence2"]
|
171 |
-
for row in rows}
|
172 |
-
yield rows[0]["pairID"], {
|
173 |
-
"premise": premise,
|
174 |
-
"hypothesis": hypothesis,
|
175 |
-
"label": rows[0]["gold_label"],
|
176 |
-
}
|
177 |
-
else:
|
178 |
-
if data_format == "XNLI-MT":
|
179 |
-
for file_idx, filepath in enumerate(filepaths):
|
180 |
-
file = open(filepath, encoding="utf-8")
|
181 |
-
reader = csv.DictReader(
|
182 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
-
for row_idx, row in enumerate(reader):
|
184 |
-
key = str(file_idx) + "_" + str(row_idx)
|
185 |
-
yield key, {
|
186 |
-
"premise": row["premise"],
|
187 |
-
"hypothesis": row["hypo"],
|
188 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
-
}
|
190 |
-
else:
|
191 |
-
for filepath in filepaths:
|
192 |
-
with open(filepath, encoding="utf-8") as f:
|
193 |
-
reader = csv.DictReader(
|
194 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
-
for row in reader:
|
196 |
-
if row["language"] == self.config.language:
|
197 |
-
yield row["pairID"], {
|
198 |
-
"premise": row["sentence1"],
|
199 |
-
"hypothesis": row["sentence2"],
|
200 |
-
"label": row["gold_label"],
|
201 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221128.py
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open(f'forward/train/{self.config.language}', 'r') as f:
|
119 |
-
|
120 |
-
|
121 |
-
return [
|
122 |
-
datasets.SplitGenerator(
|
123 |
-
name=datasets.Split.TRAIN,
|
124 |
-
gen_kwargs={
|
125 |
-
"filepaths": [
|
126 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
127 |
-
],
|
128 |
-
"data_format": "XNLI-MT",
|
129 |
-
},
|
130 |
-
),
|
131 |
-
datasets.SplitGenerator(
|
132 |
-
name=datasets.Split.TEST,
|
133 |
-
gen_kwargs={"filepaths": [os.path.join(
|
134 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
135 |
-
),
|
136 |
-
datasets.SplitGenerator(
|
137 |
-
name=datasets.Split.VALIDATION,
|
138 |
-
gen_kwargs={"filepaths": [os.path.join(
|
139 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
140 |
-
),
|
141 |
-
]
|
142 |
-
|
143 |
-
def _generate_examples(self, data_format, filepaths):
|
144 |
-
"""This function returns the examples in the raw (text) form."""
|
145 |
-
|
146 |
-
if self.config.language == "all_languages":
|
147 |
-
if data_format == "XNLI-MT":
|
148 |
-
with ExitStack() as stack:
|
149 |
-
files = [stack.enter_context(
|
150 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
151 |
-
readers = [csv.DictReader(
|
152 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
153 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
154 |
-
yield row_idx, {
|
155 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
158 |
-
}
|
159 |
-
else:
|
160 |
-
rows_per_pair_id = collections.defaultdict(list)
|
161 |
-
for filepath in filepaths:
|
162 |
-
with open(filepath, encoding="utf-8") as f:
|
163 |
-
reader = csv.DictReader(
|
164 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
165 |
-
for row in reader:
|
166 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
167 |
-
|
168 |
-
for rows in rows_per_pair_id.values():
|
169 |
-
premise = {row["language"]: row["sentence1"]
|
170 |
-
for row in rows}
|
171 |
-
hypothesis = {row["language"]: row["sentence2"]
|
172 |
-
for row in rows}
|
173 |
-
yield rows[0]["pairID"], {
|
174 |
-
"premise": premise,
|
175 |
-
"hypothesis": hypothesis,
|
176 |
-
"label": rows[0]["gold_label"],
|
177 |
-
}
|
178 |
-
else:
|
179 |
-
if data_format == "XNLI-MT":
|
180 |
-
for file_idx, filepath in enumerate(filepaths):
|
181 |
-
file = open(filepath, encoding="utf-8")
|
182 |
-
reader = csv.DictReader(
|
183 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
184 |
-
for row_idx, row in enumerate(reader):
|
185 |
-
key = str(file_idx) + "_" + str(row_idx)
|
186 |
-
yield key, {
|
187 |
-
"premise": row["premise"],
|
188 |
-
"hypothesis": row["hypo"],
|
189 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
190 |
-
}
|
191 |
-
else:
|
192 |
-
for filepath in filepaths:
|
193 |
-
with open(filepath, encoding="utf-8") as f:
|
194 |
-
reader = csv.DictReader(
|
195 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
196 |
-
for row in reader:
|
197 |
-
if row["language"] == self.config.language:
|
198 |
-
yield row["pairID"], {
|
199 |
-
"premise": row["sentence1"],
|
200 |
-
"hypothesis": row["sentence2"],
|
201 |
-
"label": row["gold_label"],
|
202 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221142.py
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open(f'forward/train/xnli_{self.config.language}', 'r') as f:
|
119 |
-
|
120 |
-
|
121 |
-
return [
|
122 |
-
datasets.SplitGenerator(
|
123 |
-
name=datasets.Split.TRAIN,
|
124 |
-
gen_kwargs={
|
125 |
-
"filepaths": [
|
126 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
127 |
-
],
|
128 |
-
"data_format": "XNLI-MT",
|
129 |
-
},
|
130 |
-
),
|
131 |
-
datasets.SplitGenerator(
|
132 |
-
name=datasets.Split.TEST,
|
133 |
-
gen_kwargs={"filepaths": [os.path.join(
|
134 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
135 |
-
),
|
136 |
-
datasets.SplitGenerator(
|
137 |
-
name=datasets.Split.VALIDATION,
|
138 |
-
gen_kwargs={"filepaths": [os.path.join(
|
139 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
140 |
-
),
|
141 |
-
]
|
142 |
-
|
143 |
-
def _generate_examples(self, data_format, filepaths):
|
144 |
-
"""This function returns the examples in the raw (text) form."""
|
145 |
-
|
146 |
-
if self.config.language == "all_languages":
|
147 |
-
if data_format == "XNLI-MT":
|
148 |
-
with ExitStack() as stack:
|
149 |
-
files = [stack.enter_context(
|
150 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
151 |
-
readers = [csv.DictReader(
|
152 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
153 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
154 |
-
yield row_idx, {
|
155 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
158 |
-
}
|
159 |
-
else:
|
160 |
-
rows_per_pair_id = collections.defaultdict(list)
|
161 |
-
for filepath in filepaths:
|
162 |
-
with open(filepath, encoding="utf-8") as f:
|
163 |
-
reader = csv.DictReader(
|
164 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
165 |
-
for row in reader:
|
166 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
167 |
-
|
168 |
-
for rows in rows_per_pair_id.values():
|
169 |
-
premise = {row["language"]: row["sentence1"]
|
170 |
-
for row in rows}
|
171 |
-
hypothesis = {row["language"]: row["sentence2"]
|
172 |
-
for row in rows}
|
173 |
-
yield rows[0]["pairID"], {
|
174 |
-
"premise": premise,
|
175 |
-
"hypothesis": hypothesis,
|
176 |
-
"label": rows[0]["gold_label"],
|
177 |
-
}
|
178 |
-
else:
|
179 |
-
if data_format == "XNLI-MT":
|
180 |
-
for file_idx, filepath in enumerate(filepaths):
|
181 |
-
file = open(filepath, encoding="utf-8")
|
182 |
-
reader = csv.DictReader(
|
183 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
184 |
-
for row_idx, row in enumerate(reader):
|
185 |
-
key = str(file_idx) + "_" + str(row_idx)
|
186 |
-
yield key, {
|
187 |
-
"premise": row["premise"],
|
188 |
-
"hypothesis": row["hypo"],
|
189 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
190 |
-
}
|
191 |
-
else:
|
192 |
-
for filepath in filepaths:
|
193 |
-
with open(filepath, encoding="utf-8") as f:
|
194 |
-
reader = csv.DictReader(
|
195 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
196 |
-
for row in reader:
|
197 |
-
if row["language"] == self.config.language:
|
198 |
-
yield row["pairID"], {
|
199 |
-
"premise": row["sentence1"],
|
200 |
-
"hypothesis": row["sentence2"],
|
201 |
-
"label": row["gold_label"],
|
202 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221147.py
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open(f'forward/train/xnli_{self.config.language}.json', 'r') as f:
|
119 |
-
|
120 |
-
|
121 |
-
return [
|
122 |
-
datasets.SplitGenerator(
|
123 |
-
name=datasets.Split.TRAIN,
|
124 |
-
gen_kwargs={
|
125 |
-
"filepaths": [
|
126 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
127 |
-
],
|
128 |
-
"data_format": "XNLI-MT",
|
129 |
-
},
|
130 |
-
),
|
131 |
-
datasets.SplitGenerator(
|
132 |
-
name=datasets.Split.TEST,
|
133 |
-
gen_kwargs={"filepaths": [os.path.join(
|
134 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
135 |
-
),
|
136 |
-
datasets.SplitGenerator(
|
137 |
-
name=datasets.Split.VALIDATION,
|
138 |
-
gen_kwargs={"filepaths": [os.path.join(
|
139 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
140 |
-
),
|
141 |
-
]
|
142 |
-
|
143 |
-
def _generate_examples(self, data_format, filepaths):
|
144 |
-
"""This function returns the examples in the raw (text) form."""
|
145 |
-
|
146 |
-
if self.config.language == "all_languages":
|
147 |
-
if data_format == "XNLI-MT":
|
148 |
-
with ExitStack() as stack:
|
149 |
-
files = [stack.enter_context(
|
150 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
151 |
-
readers = [csv.DictReader(
|
152 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
153 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
154 |
-
yield row_idx, {
|
155 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
156 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
158 |
-
}
|
159 |
-
else:
|
160 |
-
rows_per_pair_id = collections.defaultdict(list)
|
161 |
-
for filepath in filepaths:
|
162 |
-
with open(filepath, encoding="utf-8") as f:
|
163 |
-
reader = csv.DictReader(
|
164 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
165 |
-
for row in reader:
|
166 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
167 |
-
|
168 |
-
for rows in rows_per_pair_id.values():
|
169 |
-
premise = {row["language"]: row["sentence1"]
|
170 |
-
for row in rows}
|
171 |
-
hypothesis = {row["language"]: row["sentence2"]
|
172 |
-
for row in rows}
|
173 |
-
yield rows[0]["pairID"], {
|
174 |
-
"premise": premise,
|
175 |
-
"hypothesis": hypothesis,
|
176 |
-
"label": rows[0]["gold_label"],
|
177 |
-
}
|
178 |
-
else:
|
179 |
-
if data_format == "XNLI-MT":
|
180 |
-
for file_idx, filepath in enumerate(filepaths):
|
181 |
-
file = open(filepath, encoding="utf-8")
|
182 |
-
reader = csv.DictReader(
|
183 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
184 |
-
for row_idx, row in enumerate(reader):
|
185 |
-
key = str(file_idx) + "_" + str(row_idx)
|
186 |
-
yield key, {
|
187 |
-
"premise": row["premise"],
|
188 |
-
"hypothesis": row["hypo"],
|
189 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
190 |
-
}
|
191 |
-
else:
|
192 |
-
for filepath in filepaths:
|
193 |
-
with open(filepath, encoding="utf-8") as f:
|
194 |
-
reader = csv.DictReader(
|
195 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
196 |
-
for row in reader:
|
197 |
-
if row["language"] == self.config.language:
|
198 |
-
yield row["pairID"], {
|
199 |
-
"premise": row["sentence1"],
|
200 |
-
"hypothesis": row["sentence2"],
|
201 |
-
"label": row["gold_label"],
|
202 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221200.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
with open(f'forward/train/xnli_{self.config.language}.json', 'r') as f:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221210.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_path = f'forward/train/xnli_{self.config.language}.json', 'r') as f:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221213.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221223.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
train_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
-
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221227.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
dev_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
-
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221233.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
dev_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
-
train_path = f'forward/train/xnli_{self.config.language}.json'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221235.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
dev_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
-
test_path = f'forward/train/xnli_{self.config.language}.json'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221240.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
dev_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
-
test_path = f'forward/test/xnli_{self.config.language}.json'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221242.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
dev_path = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
-
test_path = f'forward/test/xnli_{self.config.language}.json'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221316.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
dev_path = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
-
test_path = f'forward/test/xnli_{self.config.language}.json'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221318.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
dev_dir = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
-
test_path = f'forward/test/xnli_{self.config.language}.json'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221321.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = f'forward/train/xnli_{self.config.language}.json'
|
119 |
-
dev_dir = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
-
test_dir = f'forward/test/xnli_{self.config.language}.json'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221324.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = f'forward/train/'
|
119 |
-
dev_dir = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
-
test_dir = f'forward/test/xnli_{self.config.language}.json'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221328.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = f'forward/train/'
|
119 |
-
dev_dir = f'forward/dev/'
|
120 |
-
test_dir = f'forward/test/xnli_{self.config.language}.json'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221331.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = f'forward/train/'
|
119 |
-
dev_dir = f'forward/dev/'
|
120 |
-
test_dir = f'forward/test/'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221333.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = f'forward/train/'
|
119 |
-
dev_dir = f'forward/dev'
|
120 |
-
test_dir = f'forward/test/'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221334.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = f'forward/train/'
|
119 |
-
dev_dir = f'forward/dev'
|
120 |
-
test_dir = f'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221336.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = f'forward/train'
|
119 |
-
dev_dir = f'forward/dev'
|
120 |
-
test_dir = f'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221338.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = f'forward/dev'
|
120 |
-
test_dir = f'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221339.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = f'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221341.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221351.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"multinli.train.{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221357.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI-MT",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221400.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "XNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221408.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221440.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
test_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221501.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
test_dir, f"xnli_{lang}.json")], "data_format": "XNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221505.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
test_dir, f"xnli_{lang}.json")], "data_format": "IndicXNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221601.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221611.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
testval_dir, "xnli.dev.tsv") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221621.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221623.py
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
dev_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
if self.config.language == "all_languages":
|
148 |
-
if data_format == "XNLI-MT":
|
149 |
-
with ExitStack() as stack:
|
150 |
-
files = [stack.enter_context(
|
151 |
-
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
-
readers = [csv.DictReader(
|
153 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
-
yield row_idx, {
|
156 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
rows_per_pair_id = collections.defaultdict(list)
|
162 |
-
for filepath in filepaths:
|
163 |
-
with open(filepath, encoding="utf-8") as f:
|
164 |
-
reader = csv.DictReader(
|
165 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
-
for row in reader:
|
167 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
-
|
169 |
-
for rows in rows_per_pair_id.values():
|
170 |
-
premise = {row["language"]: row["sentence1"]
|
171 |
-
for row in rows}
|
172 |
-
hypothesis = {row["language"]: row["sentence2"]
|
173 |
-
for row in rows}
|
174 |
-
yield rows[0]["pairID"], {
|
175 |
-
"premise": premise,
|
176 |
-
"hypothesis": hypothesis,
|
177 |
-
"label": rows[0]["gold_label"],
|
178 |
-
}
|
179 |
-
else:
|
180 |
-
if data_format == "XNLI-MT":
|
181 |
-
for file_idx, filepath in enumerate(filepaths):
|
182 |
-
file = open(filepath, encoding="utf-8")
|
183 |
-
reader = csv.DictReader(
|
184 |
-
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
-
for row_idx, row in enumerate(reader):
|
186 |
-
key = str(file_idx) + "_" + str(row_idx)
|
187 |
-
yield key, {
|
188 |
-
"premise": row["premise"],
|
189 |
-
"hypothesis": row["hypo"],
|
190 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
-
}
|
192 |
-
else:
|
193 |
-
for filepath in filepaths:
|
194 |
-
with open(filepath, encoding="utf-8") as f:
|
195 |
-
reader = csv.DictReader(
|
196 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
-
for row in reader:
|
198 |
-
if row["language"] == self.config.language:
|
199 |
-
yield row["pairID"], {
|
200 |
-
"premise": row["sentence1"],
|
201 |
-
"hypothesis": row["sentence2"],
|
202 |
-
"label": row["gold_label"],
|
203 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221950.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
dev_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
yield row["pairID"], {
|
148 |
-
"premise": row["sentence1"],
|
149 |
-
"hypothesis": row["sentence2"],
|
150 |
-
"label": row["gold_label"],
|
151 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.history/indicxnli_20220823221952.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import collections
|
21 |
-
import csv
|
22 |
-
import os
|
23 |
-
from contextlib import ExitStack
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
|
28 |
-
_CITATION = """\
|
29 |
-
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
-
doi = {10.48550/ARXIV.2204.08776},
|
31 |
-
|
32 |
-
url = {https://arxiv.org/abs/2204.08776},
|
33 |
-
|
34 |
-
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
-
|
36 |
-
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
-
|
38 |
-
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
-
|
40 |
-
publisher = {arXiv},
|
41 |
-
|
42 |
-
year = {2022},
|
43 |
-
|
44 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
-
}
|
46 |
-
}"""
|
47 |
-
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
-
B) and is a classification task (given two sentences, predict one of three
|
52 |
-
labels).
|
53 |
-
"""
|
54 |
-
|
55 |
-
_LANGUAGES = (
|
56 |
-
'hi',
|
57 |
-
'bn',
|
58 |
-
'mr',
|
59 |
-
'as',
|
60 |
-
'ta',
|
61 |
-
'te',
|
62 |
-
'or',
|
63 |
-
'ml',
|
64 |
-
'pa',
|
65 |
-
'gu',
|
66 |
-
'kn'
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
-
"""BuilderConfig for XNLI."""
|
72 |
-
|
73 |
-
def __init__(self, language: str, **kwargs):
|
74 |
-
"""BuilderConfig for XNLI.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
-
**kwargs: keyword arguments forwarded to super.
|
79 |
-
"""
|
80 |
-
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
-
self.language = language
|
82 |
-
|
83 |
-
|
84 |
-
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
-
|
87 |
-
VERSION = datasets.Version("1.1.0", "")
|
88 |
-
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
-
BUILDER_CONFIGS = [
|
90 |
-
IndicxnliConfig(
|
91 |
-
name=lang,
|
92 |
-
language=lang,
|
93 |
-
version=datasets.Version("1.1.0", ""),
|
94 |
-
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
-
)
|
96 |
-
for lang in _LANGUAGES
|
97 |
-
]
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"premise": datasets.Value("string"),
|
103 |
-
"hypothesis": datasets.Value("string"),
|
104 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
-
}
|
106 |
-
)
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
description=_DESCRIPTION,
|
109 |
-
features=features,
|
110 |
-
# No default supervised_keys (as we have to pass both premise
|
111 |
-
# and hypothesis as input).
|
112 |
-
supervised_keys=None,
|
113 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
-
citation=_CITATION,
|
115 |
-
)
|
116 |
-
|
117 |
-
def _split_generators(self, dl_manager):
|
118 |
-
train_dir = 'forward/train'
|
119 |
-
dev_dir = 'forward/dev'
|
120 |
-
test_dir = 'forward/test'
|
121 |
-
|
122 |
-
return [
|
123 |
-
datasets.SplitGenerator(
|
124 |
-
name=datasets.Split.TRAIN,
|
125 |
-
gen_kwargs={
|
126 |
-
"filepaths": [
|
127 |
-
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
-
],
|
129 |
-
"data_format": "IndicXNLI",
|
130 |
-
},
|
131 |
-
),
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TEST,
|
134 |
-
gen_kwargs={"filepaths": [os.path.join(
|
135 |
-
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.VALIDATION,
|
139 |
-
gen_kwargs={"filepaths": [os.path.join(
|
140 |
-
dev_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _generate_examples(self, data_format, filepaths):
|
145 |
-
"""This function returns the examples in the raw (text) form."""
|
146 |
-
|
147 |
-
yield row["pairID"], {
|
148 |
-
"premise": row["sentence1"],
|
149 |
-
"hypothesis": row["sentence2"],
|
150 |
-
"label": row["gold_label"],
|
151 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|