Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
natural-language-inference
Size:
1M - 10M
ArXiv:
License:
added loading script
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .history/indicxnli_20220823214315.py +203 -0
- .history/indicxnli_20220823214334.py +200 -0
- .history/indicxnli_20220823220704.py +201 -0
- .history/indicxnli_20220823220708.py +201 -0
- .history/indicxnli_20220823220724.py +201 -0
- .history/indicxnli_20220823220725.py +201 -0
- .history/indicxnli_20220823220728.py +201 -0
- .history/indicxnli_20220823220732.py +201 -0
- .history/indicxnli_20220823220735.py +201 -0
- .history/indicxnli_20220823220738.py +201 -0
- .history/indicxnli_20220823220742.py +201 -0
- .history/indicxnli_20220823221124.py +201 -0
- .history/indicxnli_20220823221128.py +202 -0
- .history/indicxnli_20220823221142.py +202 -0
- .history/indicxnli_20220823221147.py +202 -0
- .history/indicxnli_20220823221200.py +203 -0
- .history/indicxnli_20220823221210.py +203 -0
- .history/indicxnli_20220823221213.py +203 -0
- .history/indicxnli_20220823221223.py +203 -0
- .history/indicxnli_20220823221227.py +203 -0
- .history/indicxnli_20220823221233.py +203 -0
- .history/indicxnli_20220823221235.py +203 -0
- .history/indicxnli_20220823221240.py +203 -0
- .history/indicxnli_20220823221242.py +203 -0
- .history/indicxnli_20220823221316.py +203 -0
- .history/indicxnli_20220823221318.py +203 -0
- .history/indicxnli_20220823221321.py +203 -0
- .history/indicxnli_20220823221324.py +203 -0
- .history/indicxnli_20220823221328.py +203 -0
- .history/indicxnli_20220823221331.py +203 -0
- .history/indicxnli_20220823221333.py +203 -0
- .history/indicxnli_20220823221334.py +203 -0
- .history/indicxnli_20220823221336.py +203 -0
- .history/indicxnli_20220823221338.py +203 -0
- .history/indicxnli_20220823221339.py +203 -0
- .history/indicxnli_20220823221341.py +203 -0
- .history/indicxnli_20220823221351.py +203 -0
- .history/indicxnli_20220823221357.py +203 -0
- .history/indicxnli_20220823221400.py +203 -0
- .history/indicxnli_20220823221408.py +203 -0
- .history/indicxnli_20220823221440.py +203 -0
- .history/indicxnli_20220823221501.py +203 -0
- .history/indicxnli_20220823221505.py +203 -0
- .history/indicxnli_20220823221601.py +203 -0
- .history/indicxnli_20220823221611.py +203 -0
- .history/indicxnli_20220823221621.py +203 -0
- .history/indicxnli_20220823221623.py +203 -0
- .history/indicxnli_20220823221950.py +151 -0
- .history/indicxnli_20220823221952.py +151 -0
- .history/indicxnli_20220823221954.py +151 -0
.history/indicxnli_20220823214315.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
# _TRAIN_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip"
|
56 |
+
# _TESTVAL_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip"
|
57 |
+
|
58 |
+
_LANGUAGES = (
|
59 |
+
'hi',
|
60 |
+
'bn',
|
61 |
+
'mr',
|
62 |
+
'as',
|
63 |
+
'ta',
|
64 |
+
'te',
|
65 |
+
'or',
|
66 |
+
'ml',
|
67 |
+
'pa',
|
68 |
+
'gu',
|
69 |
+
'kn'
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
74 |
+
"""BuilderConfig for XNLI."""
|
75 |
+
|
76 |
+
def __init__(self, language: str, **kwargs):
|
77 |
+
"""BuilderConfig for XNLI.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
81 |
+
**kwargs: keyword arguments forwarded to super.
|
82 |
+
"""
|
83 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
84 |
+
self.language = language
|
85 |
+
|
86 |
+
|
87 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
88 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
89 |
+
|
90 |
+
VERSION = datasets.Version("1.1.0", "")
|
91 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
92 |
+
BUILDER_CONFIGS = [
|
93 |
+
IndicxnliConfig(
|
94 |
+
name=lang,
|
95 |
+
language=lang,
|
96 |
+
version=datasets.Version("1.1.0", ""),
|
97 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
98 |
+
)
|
99 |
+
for lang in _LANGUAGES
|
100 |
+
]
|
101 |
+
|
102 |
+
def _info(self):
|
103 |
+
features = datasets.Features(
|
104 |
+
{
|
105 |
+
"premise": datasets.Value("string"),
|
106 |
+
"hypothesis": datasets.Value("string"),
|
107 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
108 |
+
}
|
109 |
+
)
|
110 |
+
return datasets.DatasetInfo(
|
111 |
+
description=_DESCRIPTION,
|
112 |
+
features=features,
|
113 |
+
# No default supervised_keys (as we have to pass both premise
|
114 |
+
# and hypothesis as input).
|
115 |
+
supervised_keys=None,
|
116 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
117 |
+
citation=_CITATION,
|
118 |
+
)
|
119 |
+
|
120 |
+
def _split_generators(self, dl_manager):
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823214334.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
|
119 |
+
return [
|
120 |
+
datasets.SplitGenerator(
|
121 |
+
name=datasets.Split.TRAIN,
|
122 |
+
gen_kwargs={
|
123 |
+
"filepaths": [
|
124 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
125 |
+
],
|
126 |
+
"data_format": "XNLI-MT",
|
127 |
+
},
|
128 |
+
),
|
129 |
+
datasets.SplitGenerator(
|
130 |
+
name=datasets.Split.TEST,
|
131 |
+
gen_kwargs={"filepaths": [os.path.join(
|
132 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
133 |
+
),
|
134 |
+
datasets.SplitGenerator(
|
135 |
+
name=datasets.Split.VALIDATION,
|
136 |
+
gen_kwargs={"filepaths": [os.path.join(
|
137 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
138 |
+
),
|
139 |
+
]
|
140 |
+
|
141 |
+
def _generate_examples(self, data_format, filepaths):
|
142 |
+
"""This function returns the examples in the raw (text) form."""
|
143 |
+
|
144 |
+
if self.config.language == "all_languages":
|
145 |
+
if data_format == "XNLI-MT":
|
146 |
+
with ExitStack() as stack:
|
147 |
+
files = [stack.enter_context(
|
148 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
149 |
+
readers = [csv.DictReader(
|
150 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
151 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
152 |
+
yield row_idx, {
|
153 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
154 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
156 |
+
}
|
157 |
+
else:
|
158 |
+
rows_per_pair_id = collections.defaultdict(list)
|
159 |
+
for filepath in filepaths:
|
160 |
+
with open(filepath, encoding="utf-8") as f:
|
161 |
+
reader = csv.DictReader(
|
162 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
163 |
+
for row in reader:
|
164 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
165 |
+
|
166 |
+
for rows in rows_per_pair_id.values():
|
167 |
+
premise = {row["language"]: row["sentence1"]
|
168 |
+
for row in rows}
|
169 |
+
hypothesis = {row["language"]: row["sentence2"]
|
170 |
+
for row in rows}
|
171 |
+
yield rows[0]["pairID"], {
|
172 |
+
"premise": premise,
|
173 |
+
"hypothesis": hypothesis,
|
174 |
+
"label": rows[0]["gold_label"],
|
175 |
+
}
|
176 |
+
else:
|
177 |
+
if data_format == "XNLI-MT":
|
178 |
+
for file_idx, filepath in enumerate(filepaths):
|
179 |
+
file = open(filepath, encoding="utf-8")
|
180 |
+
reader = csv.DictReader(
|
181 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
182 |
+
for row_idx, row in enumerate(reader):
|
183 |
+
key = str(file_idx) + "_" + str(row_idx)
|
184 |
+
yield key, {
|
185 |
+
"premise": row["premise"],
|
186 |
+
"hypothesis": row["hypo"],
|
187 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
188 |
+
}
|
189 |
+
else:
|
190 |
+
for filepath in filepaths:
|
191 |
+
with open(filepath, encoding="utf-8") as f:
|
192 |
+
reader = csv.DictReader(
|
193 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
194 |
+
for row in reader:
|
195 |
+
if row["language"] == self.config.language:
|
196 |
+
yield row["pairID"], {
|
197 |
+
"premise": row["sentence1"],
|
198 |
+
"hypothesis": row["sentence2"],
|
199 |
+
"label": row["gold_label"],
|
200 |
+
}
|
.history/indicxnli_20220823220704.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823220708.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open()
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823220724.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open('forward/train')
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823220725.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open('forward/train', )
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823220728.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open('forward/train', 'r')
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823220732.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open('forward/train/', 'r')
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823220735.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open('forward/train/{}', 'r')
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823220738.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open(f'forward/train/{}', 'r')
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823220742.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open(f'forward/train/{language}', 'r')
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823221124.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open(f'forward/train/{self.config.language}', 'r')
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepaths": [
|
125 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
126 |
+
],
|
127 |
+
"data_format": "XNLI-MT",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.TEST,
|
132 |
+
gen_kwargs={"filepaths": [os.path.join(
|
133 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"filepaths": [os.path.join(
|
138 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, data_format, filepaths):
|
143 |
+
"""This function returns the examples in the raw (text) form."""
|
144 |
+
|
145 |
+
if self.config.language == "all_languages":
|
146 |
+
if data_format == "XNLI-MT":
|
147 |
+
with ExitStack() as stack:
|
148 |
+
files = [stack.enter_context(
|
149 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
150 |
+
readers = [csv.DictReader(
|
151 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
152 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
153 |
+
yield row_idx, {
|
154 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
155 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
157 |
+
}
|
158 |
+
else:
|
159 |
+
rows_per_pair_id = collections.defaultdict(list)
|
160 |
+
for filepath in filepaths:
|
161 |
+
with open(filepath, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(
|
163 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
164 |
+
for row in reader:
|
165 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
166 |
+
|
167 |
+
for rows in rows_per_pair_id.values():
|
168 |
+
premise = {row["language"]: row["sentence1"]
|
169 |
+
for row in rows}
|
170 |
+
hypothesis = {row["language"]: row["sentence2"]
|
171 |
+
for row in rows}
|
172 |
+
yield rows[0]["pairID"], {
|
173 |
+
"premise": premise,
|
174 |
+
"hypothesis": hypothesis,
|
175 |
+
"label": rows[0]["gold_label"],
|
176 |
+
}
|
177 |
+
else:
|
178 |
+
if data_format == "XNLI-MT":
|
179 |
+
for file_idx, filepath in enumerate(filepaths):
|
180 |
+
file = open(filepath, encoding="utf-8")
|
181 |
+
reader = csv.DictReader(
|
182 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
183 |
+
for row_idx, row in enumerate(reader):
|
184 |
+
key = str(file_idx) + "_" + str(row_idx)
|
185 |
+
yield key, {
|
186 |
+
"premise": row["premise"],
|
187 |
+
"hypothesis": row["hypo"],
|
188 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
189 |
+
}
|
190 |
+
else:
|
191 |
+
for filepath in filepaths:
|
192 |
+
with open(filepath, encoding="utf-8") as f:
|
193 |
+
reader = csv.DictReader(
|
194 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
195 |
+
for row in reader:
|
196 |
+
if row["language"] == self.config.language:
|
197 |
+
yield row["pairID"], {
|
198 |
+
"premise": row["sentence1"],
|
199 |
+
"hypothesis": row["sentence2"],
|
200 |
+
"label": row["gold_label"],
|
201 |
+
}
|
.history/indicxnli_20220823221128.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open(f'forward/train/{self.config.language}', 'r') as f:
|
119 |
+
|
120 |
+
|
121 |
+
return [
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TRAIN,
|
124 |
+
gen_kwargs={
|
125 |
+
"filepaths": [
|
126 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
127 |
+
],
|
128 |
+
"data_format": "XNLI-MT",
|
129 |
+
},
|
130 |
+
),
|
131 |
+
datasets.SplitGenerator(
|
132 |
+
name=datasets.Split.TEST,
|
133 |
+
gen_kwargs={"filepaths": [os.path.join(
|
134 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
135 |
+
),
|
136 |
+
datasets.SplitGenerator(
|
137 |
+
name=datasets.Split.VALIDATION,
|
138 |
+
gen_kwargs={"filepaths": [os.path.join(
|
139 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
140 |
+
),
|
141 |
+
]
|
142 |
+
|
143 |
+
def _generate_examples(self, data_format, filepaths):
|
144 |
+
"""This function returns the examples in the raw (text) form."""
|
145 |
+
|
146 |
+
if self.config.language == "all_languages":
|
147 |
+
if data_format == "XNLI-MT":
|
148 |
+
with ExitStack() as stack:
|
149 |
+
files = [stack.enter_context(
|
150 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
151 |
+
readers = [csv.DictReader(
|
152 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
153 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
154 |
+
yield row_idx, {
|
155 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
158 |
+
}
|
159 |
+
else:
|
160 |
+
rows_per_pair_id = collections.defaultdict(list)
|
161 |
+
for filepath in filepaths:
|
162 |
+
with open(filepath, encoding="utf-8") as f:
|
163 |
+
reader = csv.DictReader(
|
164 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
165 |
+
for row in reader:
|
166 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
167 |
+
|
168 |
+
for rows in rows_per_pair_id.values():
|
169 |
+
premise = {row["language"]: row["sentence1"]
|
170 |
+
for row in rows}
|
171 |
+
hypothesis = {row["language"]: row["sentence2"]
|
172 |
+
for row in rows}
|
173 |
+
yield rows[0]["pairID"], {
|
174 |
+
"premise": premise,
|
175 |
+
"hypothesis": hypothesis,
|
176 |
+
"label": rows[0]["gold_label"],
|
177 |
+
}
|
178 |
+
else:
|
179 |
+
if data_format == "XNLI-MT":
|
180 |
+
for file_idx, filepath in enumerate(filepaths):
|
181 |
+
file = open(filepath, encoding="utf-8")
|
182 |
+
reader = csv.DictReader(
|
183 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
184 |
+
for row_idx, row in enumerate(reader):
|
185 |
+
key = str(file_idx) + "_" + str(row_idx)
|
186 |
+
yield key, {
|
187 |
+
"premise": row["premise"],
|
188 |
+
"hypothesis": row["hypo"],
|
189 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
190 |
+
}
|
191 |
+
else:
|
192 |
+
for filepath in filepaths:
|
193 |
+
with open(filepath, encoding="utf-8") as f:
|
194 |
+
reader = csv.DictReader(
|
195 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
196 |
+
for row in reader:
|
197 |
+
if row["language"] == self.config.language:
|
198 |
+
yield row["pairID"], {
|
199 |
+
"premise": row["sentence1"],
|
200 |
+
"hypothesis": row["sentence2"],
|
201 |
+
"label": row["gold_label"],
|
202 |
+
}
|
.history/indicxnli_20220823221142.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open(f'forward/train/xnli_{self.config.language}', 'r') as f:
|
119 |
+
|
120 |
+
|
121 |
+
return [
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TRAIN,
|
124 |
+
gen_kwargs={
|
125 |
+
"filepaths": [
|
126 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
127 |
+
],
|
128 |
+
"data_format": "XNLI-MT",
|
129 |
+
},
|
130 |
+
),
|
131 |
+
datasets.SplitGenerator(
|
132 |
+
name=datasets.Split.TEST,
|
133 |
+
gen_kwargs={"filepaths": [os.path.join(
|
134 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
135 |
+
),
|
136 |
+
datasets.SplitGenerator(
|
137 |
+
name=datasets.Split.VALIDATION,
|
138 |
+
gen_kwargs={"filepaths": [os.path.join(
|
139 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
140 |
+
),
|
141 |
+
]
|
142 |
+
|
143 |
+
def _generate_examples(self, data_format, filepaths):
|
144 |
+
"""This function returns the examples in the raw (text) form."""
|
145 |
+
|
146 |
+
if self.config.language == "all_languages":
|
147 |
+
if data_format == "XNLI-MT":
|
148 |
+
with ExitStack() as stack:
|
149 |
+
files = [stack.enter_context(
|
150 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
151 |
+
readers = [csv.DictReader(
|
152 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
153 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
154 |
+
yield row_idx, {
|
155 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
158 |
+
}
|
159 |
+
else:
|
160 |
+
rows_per_pair_id = collections.defaultdict(list)
|
161 |
+
for filepath in filepaths:
|
162 |
+
with open(filepath, encoding="utf-8") as f:
|
163 |
+
reader = csv.DictReader(
|
164 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
165 |
+
for row in reader:
|
166 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
167 |
+
|
168 |
+
for rows in rows_per_pair_id.values():
|
169 |
+
premise = {row["language"]: row["sentence1"]
|
170 |
+
for row in rows}
|
171 |
+
hypothesis = {row["language"]: row["sentence2"]
|
172 |
+
for row in rows}
|
173 |
+
yield rows[0]["pairID"], {
|
174 |
+
"premise": premise,
|
175 |
+
"hypothesis": hypothesis,
|
176 |
+
"label": rows[0]["gold_label"],
|
177 |
+
}
|
178 |
+
else:
|
179 |
+
if data_format == "XNLI-MT":
|
180 |
+
for file_idx, filepath in enumerate(filepaths):
|
181 |
+
file = open(filepath, encoding="utf-8")
|
182 |
+
reader = csv.DictReader(
|
183 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
184 |
+
for row_idx, row in enumerate(reader):
|
185 |
+
key = str(file_idx) + "_" + str(row_idx)
|
186 |
+
yield key, {
|
187 |
+
"premise": row["premise"],
|
188 |
+
"hypothesis": row["hypo"],
|
189 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
190 |
+
}
|
191 |
+
else:
|
192 |
+
for filepath in filepaths:
|
193 |
+
with open(filepath, encoding="utf-8") as f:
|
194 |
+
reader = csv.DictReader(
|
195 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
196 |
+
for row in reader:
|
197 |
+
if row["language"] == self.config.language:
|
198 |
+
yield row["pairID"], {
|
199 |
+
"premise": row["sentence1"],
|
200 |
+
"hypothesis": row["sentence2"],
|
201 |
+
"label": row["gold_label"],
|
202 |
+
}
|
.history/indicxnli_20220823221147.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open(f'forward/train/xnli_{self.config.language}.json', 'r') as f:
|
119 |
+
|
120 |
+
|
121 |
+
return [
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TRAIN,
|
124 |
+
gen_kwargs={
|
125 |
+
"filepaths": [
|
126 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
127 |
+
],
|
128 |
+
"data_format": "XNLI-MT",
|
129 |
+
},
|
130 |
+
),
|
131 |
+
datasets.SplitGenerator(
|
132 |
+
name=datasets.Split.TEST,
|
133 |
+
gen_kwargs={"filepaths": [os.path.join(
|
134 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
135 |
+
),
|
136 |
+
datasets.SplitGenerator(
|
137 |
+
name=datasets.Split.VALIDATION,
|
138 |
+
gen_kwargs={"filepaths": [os.path.join(
|
139 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
140 |
+
),
|
141 |
+
]
|
142 |
+
|
143 |
+
def _generate_examples(self, data_format, filepaths):
|
144 |
+
"""This function returns the examples in the raw (text) form."""
|
145 |
+
|
146 |
+
if self.config.language == "all_languages":
|
147 |
+
if data_format == "XNLI-MT":
|
148 |
+
with ExitStack() as stack:
|
149 |
+
files = [stack.enter_context(
|
150 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
151 |
+
readers = [csv.DictReader(
|
152 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
153 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
154 |
+
yield row_idx, {
|
155 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
156 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
158 |
+
}
|
159 |
+
else:
|
160 |
+
rows_per_pair_id = collections.defaultdict(list)
|
161 |
+
for filepath in filepaths:
|
162 |
+
with open(filepath, encoding="utf-8") as f:
|
163 |
+
reader = csv.DictReader(
|
164 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
165 |
+
for row in reader:
|
166 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
167 |
+
|
168 |
+
for rows in rows_per_pair_id.values():
|
169 |
+
premise = {row["language"]: row["sentence1"]
|
170 |
+
for row in rows}
|
171 |
+
hypothesis = {row["language"]: row["sentence2"]
|
172 |
+
for row in rows}
|
173 |
+
yield rows[0]["pairID"], {
|
174 |
+
"premise": premise,
|
175 |
+
"hypothesis": hypothesis,
|
176 |
+
"label": rows[0]["gold_label"],
|
177 |
+
}
|
178 |
+
else:
|
179 |
+
if data_format == "XNLI-MT":
|
180 |
+
for file_idx, filepath in enumerate(filepaths):
|
181 |
+
file = open(filepath, encoding="utf-8")
|
182 |
+
reader = csv.DictReader(
|
183 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
184 |
+
for row_idx, row in enumerate(reader):
|
185 |
+
key = str(file_idx) + "_" + str(row_idx)
|
186 |
+
yield key, {
|
187 |
+
"premise": row["premise"],
|
188 |
+
"hypothesis": row["hypo"],
|
189 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
190 |
+
}
|
191 |
+
else:
|
192 |
+
for filepath in filepaths:
|
193 |
+
with open(filepath, encoding="utf-8") as f:
|
194 |
+
reader = csv.DictReader(
|
195 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
196 |
+
for row in reader:
|
197 |
+
if row["language"] == self.config.language:
|
198 |
+
yield row["pairID"], {
|
199 |
+
"premise": row["sentence1"],
|
200 |
+
"hypothesis": row["sentence2"],
|
201 |
+
"label": row["gold_label"],
|
202 |
+
}
|
.history/indicxnli_20220823221200.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
with open(f'forward/train/xnli_{self.config.language}.json', 'r') as f:
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221210.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_path = f'forward/train/xnli_{self.config.language}.json', 'r') as f:
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221213.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221223.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
train_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
+
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221227.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
dev_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
+
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221233.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
dev_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
+
train_path = f'forward/train/xnli_{self.config.language}.json'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221235.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
dev_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
+
test_path = f'forward/train/xnli_{self.config.language}.json'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221240.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
dev_path = f'forward/train/xnli_{self.config.language}.json'
|
120 |
+
test_path = f'forward/test/xnli_{self.config.language}.json'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221242.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_path = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
dev_path = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
+
test_path = f'forward/test/xnli_{self.config.language}.json'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221316.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
dev_path = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
+
test_path = f'forward/test/xnli_{self.config.language}.json'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221318.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
dev_dir = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
+
test_path = f'forward/test/xnli_{self.config.language}.json'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221321.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = f'forward/train/xnli_{self.config.language}.json'
|
119 |
+
dev_dir = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
+
test_dir = f'forward/test/xnli_{self.config.language}.json'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221324.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = f'forward/train/'
|
119 |
+
dev_dir = f'forward/dev/xnli_{self.config.language}.json'
|
120 |
+
test_dir = f'forward/test/xnli_{self.config.language}.json'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221328.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = f'forward/train/'
|
119 |
+
dev_dir = f'forward/dev/'
|
120 |
+
test_dir = f'forward/test/xnli_{self.config.language}.json'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221331.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = f'forward/train/'
|
119 |
+
dev_dir = f'forward/dev/'
|
120 |
+
test_dir = f'forward/test/'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221333.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = f'forward/train/'
|
119 |
+
dev_dir = f'forward/dev'
|
120 |
+
test_dir = f'forward/test/'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221334.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = f'forward/train/'
|
119 |
+
dev_dir = f'forward/dev'
|
120 |
+
test_dir = f'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221336.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = f'forward/train'
|
119 |
+
dev_dir = f'forward/dev'
|
120 |
+
test_dir = f'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221338.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = f'forward/dev'
|
120 |
+
test_dir = f'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221339.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = f'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221341.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221351.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"multinli.train.{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221357.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI-MT",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221400.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "XNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221408.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221440.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221501.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, f"xnli_{lang}.json")], "data_format": "XNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221505.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, f"xnli_{lang}.json")], "data_format": "IndicXNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221601.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221611.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
testval_dir, "xnli.dev.tsv") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221621.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221623.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
dev_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
if self.config.language == "all_languages":
|
148 |
+
if data_format == "XNLI-MT":
|
149 |
+
with ExitStack() as stack:
|
150 |
+
files = [stack.enter_context(
|
151 |
+
open(filepath, encoding="utf-8")) for filepath in filepaths]
|
152 |
+
readers = [csv.DictReader(
|
153 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
154 |
+
for row_idx, rows in enumerate(zip(*readers)):
|
155 |
+
yield row_idx, {
|
156 |
+
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
157 |
+
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
158 |
+
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
rows_per_pair_id = collections.defaultdict(list)
|
162 |
+
for filepath in filepaths:
|
163 |
+
with open(filepath, encoding="utf-8") as f:
|
164 |
+
reader = csv.DictReader(
|
165 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
166 |
+
for row in reader:
|
167 |
+
rows_per_pair_id[row["pairID"]].append(row)
|
168 |
+
|
169 |
+
for rows in rows_per_pair_id.values():
|
170 |
+
premise = {row["language"]: row["sentence1"]
|
171 |
+
for row in rows}
|
172 |
+
hypothesis = {row["language"]: row["sentence2"]
|
173 |
+
for row in rows}
|
174 |
+
yield rows[0]["pairID"], {
|
175 |
+
"premise": premise,
|
176 |
+
"hypothesis": hypothesis,
|
177 |
+
"label": rows[0]["gold_label"],
|
178 |
+
}
|
179 |
+
else:
|
180 |
+
if data_format == "XNLI-MT":
|
181 |
+
for file_idx, filepath in enumerate(filepaths):
|
182 |
+
file = open(filepath, encoding="utf-8")
|
183 |
+
reader = csv.DictReader(
|
184 |
+
file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
185 |
+
for row_idx, row in enumerate(reader):
|
186 |
+
key = str(file_idx) + "_" + str(row_idx)
|
187 |
+
yield key, {
|
188 |
+
"premise": row["premise"],
|
189 |
+
"hypothesis": row["hypo"],
|
190 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
191 |
+
}
|
192 |
+
else:
|
193 |
+
for filepath in filepaths:
|
194 |
+
with open(filepath, encoding="utf-8") as f:
|
195 |
+
reader = csv.DictReader(
|
196 |
+
f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
197 |
+
for row in reader:
|
198 |
+
if row["language"] == self.config.language:
|
199 |
+
yield row["pairID"], {
|
200 |
+
"premise": row["sentence1"],
|
201 |
+
"hypothesis": row["sentence2"],
|
202 |
+
"label": row["gold_label"],
|
203 |
+
}
|
.history/indicxnli_20220823221950.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
dev_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
yield row["pairID"], {
|
148 |
+
"premise": row["sentence1"],
|
149 |
+
"hypothesis": row["sentence2"],
|
150 |
+
"label": row["gold_label"],
|
151 |
+
}
|
.history/indicxnli_20220823221952.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
dev_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
yield row["pairID"], {
|
148 |
+
"premise": row["sentence1"],
|
149 |
+
"hypothesis": row["sentence2"],
|
150 |
+
"label": row["gold_label"],
|
151 |
+
}
|
.history/indicxnli_20220823221954.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""XNLI: The Cross-Lingual NLI Corpus."""
|
18 |
+
|
19 |
+
|
20 |
+
import collections
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
from contextlib import ExitStack
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@misc{https://doi.org/10.48550/arxiv.2204.08776,
|
30 |
+
doi = {10.48550/ARXIV.2204.08776},
|
31 |
+
|
32 |
+
url = {https://arxiv.org/abs/2204.08776},
|
33 |
+
|
34 |
+
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
|
35 |
+
|
36 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
37 |
+
|
38 |
+
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
39 |
+
|
40 |
+
publisher = {arXiv},
|
41 |
+
|
42 |
+
year = {2022},
|
43 |
+
|
44 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
45 |
+
}
|
46 |
+
}"""
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is
|
50 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
51 |
+
B) and is a classification task (given two sentences, predict one of three
|
52 |
+
labels).
|
53 |
+
"""
|
54 |
+
|
55 |
+
_LANGUAGES = (
|
56 |
+
'hi',
|
57 |
+
'bn',
|
58 |
+
'mr',
|
59 |
+
'as',
|
60 |
+
'ta',
|
61 |
+
'te',
|
62 |
+
'or',
|
63 |
+
'ml',
|
64 |
+
'pa',
|
65 |
+
'gu',
|
66 |
+
'kn'
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class IndicxnliConfig(datasets.BuilderConfig):
|
71 |
+
"""BuilderConfig for XNLI."""
|
72 |
+
|
73 |
+
def __init__(self, language: str, **kwargs):
|
74 |
+
"""BuilderConfig for XNLI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
super(IndicxnliConfig, self).__init__(**kwargs)
|
81 |
+
self.language = language
|
82 |
+
|
83 |
+
|
84 |
+
class Indicxnli(datasets.GeneratorBasedBuilder):
|
85 |
+
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
86 |
+
|
87 |
+
VERSION = datasets.Version("1.1.0", "")
|
88 |
+
BUILDER_CONFIG_CLASS = IndicxnliConfig
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
IndicxnliConfig(
|
91 |
+
name=lang,
|
92 |
+
language=lang,
|
93 |
+
version=datasets.Version("1.1.0", ""),
|
94 |
+
description=f"Plain text import of IndicXNLI for the {lang} language",
|
95 |
+
)
|
96 |
+
for lang in _LANGUAGES
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"premise": datasets.Value("string"),
|
103 |
+
"hypothesis": datasets.Value("string"),
|
104 |
+
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
# No default supervised_keys (as we have to pass both premise
|
111 |
+
# and hypothesis as input).
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
114 |
+
citation=_CITATION,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
train_dir = 'forward/train'
|
119 |
+
dev_dir = 'forward/dev'
|
120 |
+
test_dir = 'forward/test'
|
121 |
+
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepaths": [
|
127 |
+
os.path.join(train_dir, f"xnli_{lang}.json") for lang in self.config.languages
|
128 |
+
],
|
129 |
+
"data_format": "IndicXNLI",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={"filepaths": [os.path.join(
|
135 |
+
test_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "IndicXNLI"},
|
136 |
+
),
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.VALIDATION,
|
139 |
+
gen_kwargs={"filepaths": [os.path.join(
|
140 |
+
dev_dir, f"xnli_{lang}.json") for lang in self.config.languages], "data_format": "XNLI"},
|
141 |
+
),
|
142 |
+
]
|
143 |
+
|
144 |
+
def _generate_examples(self, data_format, filepaths):
|
145 |
+
"""This function returns the examples in the raw (text) form."""
|
146 |
+
|
147 |
+
yield row["pairID"], {
|
148 |
+
"premise": row["sentence1"],
|
149 |
+
"hypothesis": row["sentence2"],
|
150 |
+
"label": row["gold_label"],
|
151 |
+
}
|