id
stringlengths
14
16
text
stringlengths
20
3.3k
source
stringlengths
60
181
be44b8defb38-11
jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output]
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-12
kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-13
Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-14
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenaAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config(
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-15
# max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-16
self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. Parameters kwargs (Any) – Return type Dict classmethod from_model_id(model_id: str, task: str, backend: str = 'default', device: Optional[int] = -1, device_map: Optional[str] = None, model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, batch_size: int = 4, **kwargs: Any) → HuggingFacePipeline¶ Construct the pipeline object from model_id and task. Parameters model_id (str) – task (str) – backend (str) – device (Optional[int]) – device_map (Optional[str]) – model_kwargs (Optional[dict]) – pipeline_kwargs (Optional[dict]) – batch_size (int) – kwargs (Any) – Return type HuggingFacePipeline classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to a model and return generations.
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-17
Pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-18
Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-19
methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text (str) – The string input to tokenize. Returns The integer number of tokens in the text. Return type int get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages (List[BaseMessage]) – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. Return type int get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-20
Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text (str) – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. Return type List[int] invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. stop (Optional[List[str]]) – kwargs (Any) –
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-21
stop (Optional[List[str]]) – kwargs (Any) – Returns The output of the runnable. Return type str classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs,
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-22
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json)
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-23
chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-24
Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage save(file_path: Union[Path, str]) → None¶
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-25
Return type BaseMessage save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path (Union[Path, str]) – Path to file to save the LLM to. Return type None Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type Iterator[str] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-26
to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar"
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-27
def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[Listener]) – on_end (Optional[Listener]) – on_error (Optional[Listener]) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-28
on_error (Optional[Listener]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output] with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) → Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]¶ [Beta] Implement this if there is a way of steering the model to generate responses that match a given schema. Notes Parameters schema (Union[Dict, Type[BaseModel]]) – kwargs (Any) – Return type Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) –
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-29
Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
692ecb4cc60d-0
langchain_community.llms.amazon_api_gateway.ContentHandlerAmazonAPIGateway¶ class langchain_community.llms.amazon_api_gateway.ContentHandlerAmazonAPIGateway[source]¶ Adapter to prepare the inputs from Langchain to a format that LLM model expects. It also provides helper function to extract the generated text from the model response. Methods __init__() transform_input(prompt, model_kwargs) transform_output(response) __init__()¶ classmethod transform_input(prompt: str, model_kwargs: Dict[str, Any]) → Dict[str, Any][source]¶ Parameters prompt (str) – model_kwargs (Dict[str, Any]) – Return type Dict[str, Any] classmethod transform_output(response: Any) → str[source]¶ Parameters response (Any) – Return type str
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.amazon_api_gateway.ContentHandlerAmazonAPIGateway.html
0b2251285290-0
langchain_community.llms.symblai_nebula.make_request¶ langchain_community.llms.symblai_nebula.make_request(self: Nebula, prompt: str, url: str = 'https://api-nebula.symbl.ai/v1/model/generate', params: Optional[Dict] = None) → Any[source]¶ Generate text from the model. Parameters self (Nebula) – prompt (str) – url (str) – params (Optional[Dict]) – Return type Any
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.symblai_nebula.make_request.html
fb6bd3dc9ea3-0
langchain_community.llms.databricks.get_default_api_token¶ langchain_community.llms.databricks.get_default_api_token() → str[source]¶ Gets the default Databricks personal access token. Raises an error if the token cannot be automatically determined. Return type str
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.databricks.get_default_api_token.html
788d16cbaf45-0
langchain_community.llms.promptlayer_openai.PromptLayerOpenAI¶ class langchain_community.llms.promptlayer_openai.PromptLayerOpenAI[source]¶ Bases: OpenAI PromptLayer OpenAI large language models. To use, you should have the openai and promptlayer python package installed, and the environment variable OPENAI_API_KEY and PROMPTLAYER_API_KEY set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAI LLM can also be passed here. The PromptLayerOpenAI LLM adds two optional Parameters pl_tags – List of strings to tag the request with. return_pl_id – If True, the PromptLayer request ID will be returned in the generation_info field of the Generation object. Example from langchain_community.llms import PromptLayerOpenAI openai = PromptLayerOpenAI(model_name="gpt-3.5-turbo-instruct") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param allowed_special: Union[Literal['all'], AbstractSet[str]] = {}¶ Set of special tokens that are allowed。 param batch_size: int = 20¶ Batch size to use when passing multiple documents to generate. param best_of: int = 1¶ Generates best_of completions server-side and returns the “best”. param cache: Union[BaseCache, bool, None] = None¶ Whether to cache the response. If true, will use the global cache. If false, will not use a cache If None, will use the global cache if it’s set, otherwise no cache. If instance of BaseCache, will use the provided cache. Caching is not currently supported for streaming methods of models.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-1
Caching is not currently supported for streaming methods of models. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param default_headers: Union[Mapping[str, str], None] = None¶ param default_query: Union[Mapping[str, object], None] = None¶ param disallowed_special: Union[Literal['all'], Collection[str]] = 'all'¶ Set of special tokens that are not allowed。 param frequency_penalty: float = 0¶ Penalizes repeated tokens according to frequency. param http_client: Union[Any, None] = None¶ Optional httpx.Client. param logit_bias: Optional[Dict[str, float]] [Optional]¶ Adjust the probability of specific tokens being generated. param max_retries: int = 2¶ Maximum number of retries to make when generating. param max_tokens: int = 256¶ The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'gpt-3.5-turbo-instruct' (alias 'model')¶ Model name to use. param n: int = 1¶ How many completions to generate for each prompt. param openai_api_base: Optional[str] = None (alias 'base_url')¶ Base URL path for API requests, leave blank if not using a proxy or service emulator.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-2
emulator. param openai_api_key: Optional[str] = None (alias 'api_key')¶ Automatically inferred from env var OPENAI_API_KEY if not provided. param openai_organization: Optional[str] = None (alias 'organization')¶ Automatically inferred from env var OPENAI_ORG_ID if not provided. param openai_proxy: Optional[str] = None¶ param pl_tags: Optional[List[str]] = None¶ param presence_penalty: float = 0¶ Penalizes repeated tokens. param request_timeout: Union[float, Tuple[float, float], Any, None] = None (alias 'timeout')¶ Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None. param return_pl_id: Optional[bool] = False¶ param streaming: bool = False¶ Whether to stream the results or not. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use. param tiktoken_model_name: Optional[str] = None¶ The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here. param top_p: float = 1¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-3
param top_p: float = 1¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ [Deprecated] Check Cache and run the LLM on the given prompt and input. Notes Deprecated since version 0.1.7: Use invoke instead. Parameters prompt (str) – stop (Optional[List[str]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type str async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-4
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value,
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-5
need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls,
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-6
API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-7
Subclasses should override this method if they can run asynchronously. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type str async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-8
prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-9
stop (Optional[List[str]]) – kwargs (Any) – Return type AsyncIterator[str] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-10
on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} {“generations”: […], “llm_output”: None, …} on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_stream some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-11
format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-12
Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-13
jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-14
kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-15
Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-16
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenaAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config(
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-17
# max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-18
self (Model) – Returns new model instance Return type Model create_llm_result(choices: Any, prompts: List[str], params: Dict[str, Any], token_usage: Dict[str, int], *, system_fingerprint: Optional[str] = None) → LLMResult¶ Create the LLMResult from the choices and prompts. Parameters choices (Any) – prompts (List[str]) – params (Dict[str, Any]) – token_usage (Dict[str, int]) – system_fingerprint (Optional[str]) – Return type LLMResult dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. Parameters kwargs (Any) – Return type Dict classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value,
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-19
need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls,
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-20
API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-21
This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text (str) – The string input to tokenize. Returns The integer number of tokens in the text. Return type int get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages (List[BaseMessage]) – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. Return type int get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-22
config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) → List[List[str]]¶ Get the sub prompts for llm call. Parameters params (Dict[str, Any]) – prompts (List[str]) – stop (Optional[List[str]]) – Return type List[List[str]] get_token_ids(text: str) → List[int]¶ Get the token IDs using the tiktoken package. Parameters text (str) – Return type List[int] invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. stop (Optional[List[str]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-23
for more details. stop (Optional[List[str]]) – kwargs (Any) – Returns The output of the runnable. Return type str classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-24
List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] max_tokens_for_prompt(prompt: str) → int¶ Calculate the maximum number of tokens possible to generate for a prompt. Parameters prompt (str) – The prompt to pass into the model. Returns The maximum number of tokens to generate for a prompt. Return type int Example max_tokens = openai.max_token_for_prompt("Tell me a joke.") static modelname_to_contextsize(modelname: str) → int¶ Calculate the maximum number of tokens possible to generate for a model. Parameters modelname (str) – The modelname we want to know the context size for. Returns The maximum context size Return type int Example max_tokens = openai.modelname_to_contextsize("gpt-3.5-turbo-instruct") classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-25
classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-26
) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-27
# -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path (Union[Path, str]) – Path to file to save the LLM to. Return type None Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-28
ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type Iterator[str] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-29
Parameters value (Any) – Return type Model with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-30
fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[Listener]) – on_end (Optional[Listener]) – on_error (Optional[Listener]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-31
Return type Runnable[Input, Output] with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) → Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]¶ [Beta] Implement this if there is a way of steering the model to generate responses that match a given schema. Notes Parameters schema (Union[Dict, Type[BaseModel]]) – kwargs (Any) – Return type Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict[str, Any]¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
788d16cbaf45-32
A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property max_context_size: int¶ Get max context size for this model. name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model. Examples using PromptLayerOpenAI¶ PromptLayer PromptLayer OpenAI
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.promptlayer_openai.PromptLayerOpenAI.html
2dc2f857588d-0
langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint¶ class langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint[source]¶ Bases: LLM HuggingFace Endpoint. To use this class, you should have installed the huggingface_hub package, and the environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or given as a named parameter to the constructor. Example # Basic Example (no streaming) llm = HuggingFaceEndpoint( endpoint_url="http://localhost:8010/", max_new_tokens=512, top_k=10, top_p=0.95, typical_p=0.95, temperature=0.01, repetition_penalty=1.03, huggingfacehub_api_token="my-api-key" ) print(llm("What is Deep Learning?")) # Streaming response example from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler callbacks = [StreamingStdOutCallbackHandler()] llm = HuggingFaceEndpoint( endpoint_url="http://localhost:8010/", max_new_tokens=512, top_k=10, top_p=0.95, typical_p=0.95, temperature=0.01, repetition_penalty=1.03, callbacks=callbacks, streaming=True, huggingfacehub_api_token="my-api-key" ) print(llm("What is Deep Learning?")) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param async_client: Any = None¶ param cache: Union[BaseCache, bool, None] = None¶ Whether to cache the response.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-1
Whether to cache the response. If true, will use the global cache. If false, will not use a cache If None, will use the global cache if it’s set, otherwise no cache. If instance of BaseCache, will use the provided cache. Caching is not currently supported for streaming methods of models. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param client: Any = None¶ param do_sample: bool = False¶ Activate logits sampling param endpoint_url: Optional[str] = None¶ Endpoint URL to use. param huggingfacehub_api_token: Optional[str] = None¶ param inference_server_url: str = ''¶ text-generation-inference instance base url param max_new_tokens: int = 512¶ Maximum number of generated tokens param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model: str [Required]¶ param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for call not explicitly specified param repetition_penalty: Optional[float] = None¶ The parameter for repetition penalty. 1.0 means no penalty. See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. param repo_id: Optional[str] = None¶ Repo to use. param return_full_text: bool = False¶ Whether to prepend the prompt to the generated text param seed: Optional[int] = None¶ Random sampling seed param server_kwargs: Dict[str, Any] [Optional]¶ Holds any text-generation-inference server parameters not explicitly specified param stop_sequences: List[str] [Optional]¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-2
param stop_sequences: List[str] [Optional]¶ Stop generating tokens if a member of stop_sequences is generated param streaming: bool = False¶ Whether to generate a stream of tokens asynchronously param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param task: Optional[str] = None¶ Task to call the model with. Should be a task that returns generated_text or summary_text. param temperature: Optional[float] = 0.8¶ The value used to module the logits distribution. param timeout: int = 120¶ Timeout in seconds param top_k: Optional[int] = None¶ The number of highest probability vocabulary tokens to keep for top-k-filtering. param top_p: Optional[float] = 0.95¶ If set to < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. param truncate: Optional[int] = None¶ Truncate inputs tokens to the given size param typical_p: Optional[float] = 0.95¶ Typical Decoding mass. See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information. param verbose: bool [Optional]¶ Whether to print out response text. param watermark: bool = False¶ Watermarking with [A Watermark for Large Language Models] (https://arxiv.org/abs/2301.10226) __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-3
[Deprecated] Check Cache and run the LLM on the given prompt and input. Notes Deprecated since version 0.1.7: Use invoke instead. Parameters prompt (str) – stop (Optional[List[str]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type str async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-4
yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-5
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-6
first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type str async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-7
kwargs (Any) – Return type str async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str',
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-8
{'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type AsyncIterator[str] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-9
about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} {“generations”: […], “llm_output”: None, …} on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-10
“hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_stream some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-11
return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-12
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-13
include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-14
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-15
Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenaAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-16
default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-17
values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. Parameters kwargs (Any) – Return type Dict classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-18
Parameters obj (Any) – Return type Model generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-19
tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-20
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_num_tokens(text: str) → int¶ Get the number of tokens present in the text.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-21
Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text (str) – The string input to tokenize. Returns The integer number of tokens in the text. Return type int get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages (List[BaseMessage]) – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. Return type int get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text (str) – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. Return type List[int]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-22
Return type List[int] invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. stop (Optional[List[str]]) – kwargs (Any) – Returns The output of the runnable. Return type str classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-23
Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-24
Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-25
) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-26
# -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path (Union[Path, str]) – Path to file to save the LLM to. Return type None Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-27
ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type Iterator[str] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-28
Parameters value (Any) – Return type Model with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-29
fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[Listener]) – on_end (Optional[Listener]) – on_error (Optional[Listener]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-30
Return type Runnable[Input, Output] with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) → Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]¶ [Beta] Implement this if there is a way of steering the model to generate responses that match a given schema. Notes Parameters schema (Union[Dict, Type[BaseModel]]) – kwargs (Any) – Return type Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
2dc2f857588d-31
For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html
e6c4da39dafa-0
langchain_community.llms.mosaicml.MosaicML¶ class langchain_community.llms.mosaicml.MosaicML[source]¶ Bases: LLM MosaicML LLM service. To use, you should have the environment variable MOSAICML_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Example from langchain_community.llms import MosaicML endpoint_url = ( "https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict" ) mosaic_llm = MosaicML( endpoint_url=endpoint_url, mosaicml_api_token="my-api-key" ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Union[BaseCache, bool, None] = None¶ Whether to cache the response. If true, will use the global cache. If false, will not use a cache If None, will use the global cache if it’s set, otherwise no cache. If instance of BaseCache, will use the provided cache. Caching is not currently supported for streaming methods of models. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param endpoint_url: str = 'https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict'¶ Endpoint URL to use. param inject_instruction_format: bool = False¶ Whether to inject the instruction format into the prompt. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-1
Metadata to add to the run trace. param model_kwargs: Optional[dict] = None¶ Keyword arguments to pass to the model. param mosaicml_api_token: Optional[str] = None¶ param retry_sleep: float = 1.0¶ How long to try sleeping for if a rate limit is encountered param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ [Deprecated] Check Cache and run the LLM on the given prompt and input. Notes Deprecated since version 0.1.7: Use invoke instead. Parameters prompt (str) – stop (Optional[List[str]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type str async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently;
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-2
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts to a model and return generations.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-3
Asynchronously pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-4
Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-5
Subclasses should override this method if they can run asynchronously. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type str async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-6
prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-7
stop (Optional[List[str]]) – kwargs (Any) – Return type AsyncIterator[str] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-8
on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} {“generations”: […], “llm_output”: None, …} on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_stream some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-9
format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-10
Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-11
jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html
e6c4da39dafa-12
kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mosaicml.MosaicML.html