id
stringlengths
14
16
text
stringlengths
20
3.3k
source
stringlengths
60
181
8d494eea46a4-9
on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse",
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-10
"metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-11
An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-12
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-13
kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-14
The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenaAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-15
Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-16
values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. Parameters kwargs (Any) – Return type Dict classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-17
Parameters obj (Any) – Return type Model generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-18
tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-19
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_num_tokens(text: str) → int¶ Get the number of tokens present in the text.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-20
Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text (str) – The string input to tokenize. Returns The integer number of tokens in the text. Return type int get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages (List[BaseMessage]) – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. Return type int get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text (str) – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. Return type List[int]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-21
Return type List[int] invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. stop (Optional[List[str]]) – kwargs (Any) – Returns The output of the runnable. Return type str classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-22
Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-23
Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-24
) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-25
# -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage run_creation() → None[source]¶ Creates a Python file which will be deployed on beam. Return type None save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path (Union[Path, str]) – Path to file to save the LLM to. Return type None Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-26
Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type Iterator[str] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-27
Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-28
and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[Listener]) – on_end (Optional[Listener]) – on_error (Optional[Listener]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-29
Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output] with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) → Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]¶ [Beta] Implement this if there is a way of steering the model to generate responses that match a given schema. Notes Parameters schema (Union[Dict, Type[BaseModel]]) – kwargs (Any) – Return type Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property authorization: str¶ property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
8d494eea46a4-30
property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} name: str = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model. Examples using Beam¶ Beam
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.beam.Beam.html
a98c54a293ce-0
langchain_community.llms.arcee.Arcee¶ class langchain_community.llms.arcee.Arcee[source]¶ Bases: LLM Arcee’s Domain Adapted Language Models (DALMs). To use, set the ARCEE_API_KEY environment variable with your Arcee API key, or pass arcee_api_key as a named parameter. Example from langchain_community.llms import Arcee arcee = Arcee( model="DALM-PubMed", arcee_api_key="ARCEE-API-KEY" ) response = arcee("AI-driven music therapy") Initializes private fields. param arcee_api_key: Optional[Union[SecretStr, str]] = None¶ Arcee API Key param arcee_api_url: str = 'https://api.arcee.ai'¶ Arcee API URL param arcee_api_version: str = 'v2'¶ Arcee API Version param arcee_app_url: str = 'https://app.arcee.ai'¶ Arcee App URL param cache: Union[BaseCache, bool, None] = None¶ Whether to cache the response. If true, will use the global cache. If false, will not use a cache If None, will use the global cache if it’s set, otherwise no cache. If instance of BaseCache, will use the provided cache. Caching is not currently supported for streaming methods of models. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model: str [Required]¶ Arcee DALM name param model_id: str = ''¶ Arcee Model ID
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-1
Arcee DALM name param model_id: str = ''¶ Arcee Model ID param model_kwargs: Optional[Dict[str, Any]] = None¶ Keyword arguments to pass to the model. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ [Deprecated] Check Cache and run the LLM on the given prompt and input. Notes Deprecated since version 0.1.7: Use invoke instead. Parameters prompt (str) – stop (Optional[List[str]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type str async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-2
e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts to a model and return generations.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-3
Asynchronously pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-4
Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-5
Subclasses should override this method if they can run asynchronously. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type str async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-6
prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-7
stop (Optional[List[str]]) – kwargs (Any) – Return type AsyncIterator[str] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-8
on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} {“generations”: […], “llm_output”: None, …} on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_stream some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-9
format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-10
Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-11
jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-12
kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-13
Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-14
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenaAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config(
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-15
# max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-16
self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. Parameters kwargs (Any) – Return type Dict classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-17
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-18
first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-19
Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text (str) – The string input to tokenize. Returns The integer number of tokens in the text. Return type int get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages (List[BaseMessage]) – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. Return type int get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text (str) – The string input to tokenize. Returns
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-20
Parameters text (str) – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. Return type List[int] invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. stop (Optional[List[str]]) – kwargs (Any) – Returns The output of the runnable. Return type str classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-21
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-22
encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) )
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-23
json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-24
# -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path (Union[Path, str]) – Path to file to save the LLM to. Return type None Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-25
ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type Iterator[str] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-26
Parameters value (Any) – Return type Model with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-27
fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[Listener]) – on_end (Optional[Listener]) – on_error (Optional[Listener]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-28
Return type Runnable[Input, Output] with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) → Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]¶ [Beta] Implement this if there is a way of steering the model to generate responses that match a given schema. Notes Parameters schema (Union[Dict, Type[BaseModel]]) – kwargs (Any) – Return type Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
a98c54a293ce-29
For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.arcee.Arcee.html
707441b663c7-0
langchain_community.llms.tongyi.agenerate_with_last_element_mark¶ async langchain_community.llms.tongyi.agenerate_with_last_element_mark(iterable: AsyncIterable[T]) → AsyncIterator[Tuple[T, bool]][source]¶ Generate elements from an async iterable, and a boolean indicating if it is the last element. Parameters iterable (AsyncIterable[T]) – Return type AsyncIterator[Tuple[T, bool]]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.tongyi.agenerate_with_last_element_mark.html
e07c14f1fbad-0
langchain_community.llms.layerup_security.default_guardrail_violation_handler¶ langchain_community.llms.layerup_security.default_guardrail_violation_handler(violation: dict) → str[source]¶ Parameters violation (dict) – Return type str
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.layerup_security.default_guardrail_violation_handler.html
6134345d728e-0
langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint¶ class langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint[source]¶ Bases: LLM Langchain LLM class to help to access eass llm service. To use this endpoint, must have a deployed eas chat llm service on PAI AliCloud. One can set the environment variable eas_service_url and eas_service_token. The environment variables can set with your eas service url and service token. Example from langchain_community.llms.pai_eas_endpoint import PaiEasEndpoint eas_chat_endpoint = PaiEasChatEndpoint( eas_service_url="your_service_url", eas_service_token="your_service_token" ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Union[BaseCache, bool, None] = None¶ Whether to cache the response. If true, will use the global cache. If false, will not use a cache If None, will use the global cache if it’s set, otherwise no cache. If instance of BaseCache, will use the provided cache. Caching is not currently supported for streaming methods of models. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param eas_service_token: str [Required]¶ PAI-EAS Service Infer Params param eas_service_url: str [Required]¶ PAI-EAS Service TOKEN param max_new_tokens: Optional[int] = 512¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-1
Metadata to add to the run trace. param model_kwargs: Optional[dict] = None¶ param stop_sequences: Optional[List[str]] = None¶ Enable stream chat mode. param streaming: bool = False¶ Key/value arguments to pass to the model. Reserved for future use param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: Optional[float] = 0.95¶ param top_k: Optional[int] = 0¶ param top_p: Optional[float] = 0.1¶ param verbose: bool [Optional]¶ Whether to print out response text. param version: Optional[str] = '2.0'¶ __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ [Deprecated] Check Cache and run the LLM on the given prompt and input. Notes Deprecated since version 0.1.7: Use invoke instead. Parameters prompt (str) – stop (Optional[List[str]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type str async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-2
Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-3
Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-4
tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-5
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type str async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters messages (List[BaseMessage]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-6
Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-7
Return type RunnableSerializable[Any, Any] async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type AsyncIterator[str] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-8
A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} {“generations”: […], “llm_output”: None, …} on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_stream some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-9
on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"},
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-10
}, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-11
An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-12
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-13
kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-14
The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenaAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-15
Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-16
values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. Parameters kwargs (Any) – Return type Dict classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-17
Parameters obj (Any) – Return type Model generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-18
tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-19
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_num_tokens(text: str) → int¶ Get the number of tokens present in the text.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-20
Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text (str) – The string input to tokenize. Returns The integer number of tokens in the text. Return type int get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages (List[BaseMessage]) – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. Return type int get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text (str) – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. Return type List[int]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-21
Return type List[int] invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. stop (Optional[List[str]]) – kwargs (Any) – Returns The output of the runnable. Return type str classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-22
Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-23
Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-24
) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-25
# -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path (Union[Path, str]) – Path to file to save the LLM to. Return type None Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-26
ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type Iterator[str] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-27
Parameters value (Any) – Return type Model with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-28
fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[Listener]) – on_end (Optional[Listener]) – on_error (Optional[Listener]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-29
Return type Runnable[Input, Output] with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) → Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]¶ [Beta] Implement this if there is a way of steering the model to generate responses that match a given schema. Notes Parameters schema (Union[Dict, Type[BaseModel]]) – kwargs (Any) – Return type Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
6134345d728e-30
For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.pai_eas_endpoint.PaiEasEndpoint.html
c7ee4f3da636-0
langchain_community.llms.azureml_endpoint.LlamaContentFormatter¶ class langchain_community.llms.azureml_endpoint.LlamaContentFormatter[source]¶ Deprecated: Kept for backwards compatibility Content formatter for Llama. Attributes accepts The MIME type of the response data returned from the endpoint content_formatter content_type The MIME type of the input data passed to the endpoint format_error_msg supported_api_types Supported APIs for the given formatter. Methods __init__() escape_special_characters(prompt) Escapes any special characters in prompt format_request_payload(prompt, model_kwargs, ...) Formats the request according to the chosen api format_response_payload(output, api_type) Formats response __init__() → None[source]¶ Return type None static escape_special_characters(prompt: str) → str¶ Escapes any special characters in prompt Parameters prompt (str) – Return type str format_request_payload(prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType) → bytes¶ Formats the request according to the chosen api Parameters prompt (str) – model_kwargs (Dict) – api_type (AzureMLEndpointApiType) – Return type bytes format_response_payload(output: bytes, api_type: AzureMLEndpointApiType) → Generation¶ Formats response Parameters output (bytes) – api_type (AzureMLEndpointApiType) – Return type Generation Examples using LlamaContentFormatter¶ AzureML Chat Online Endpoint
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.azureml_endpoint.LlamaContentFormatter.html
49cb8b56a3fa-0
langchain_community.llms.mlx_pipeline.MLXPipeline¶ class langchain_community.llms.mlx_pipeline.MLXPipeline[source]¶ Bases: LLM MLX Pipeline API. To use, you should have the mlx-lm python package installed. Example using from_model_id:from langchain_community.llms import MLXPipeline pipe = MLXPipeline.from_model_id( model_id="mlx-community/quantized-gemma-2b", pipeline_kwargs={"max_tokens": 10}, ) Example passing model and tokenizer in directly:from langchain_community.llms import MLXPipeline from mlx_lm import load model_id="mlx-community/quantized-gemma-2b" model, tokenizer = load(model_id) pipe = MLXPipeline(model=model, tokenizer=tokenizer) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param adapter_file: Optional[str] = None¶ Path to the adapter file. If provided, applies LoRA layers to the model. Defaults to None. param cache: Union[BaseCache, bool, None] = None¶ Whether to cache the response. If true, will use the global cache. If false, will not use a cache If None, will use the global cache if it’s set, otherwise no cache. If instance of BaseCache, will use the provided cache. Caching is not currently supported for streaming methods of models. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param lazy: bool = False¶ If False eval the model parameters to make sure they are loaded in memory before returning, otherwise they will be loaded
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-1
loaded in memory before returning, otherwise they will be loaded when needed. Default: False param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model: Any = None¶ Model. param model_id: str = 'mlx-community/quantized-gemma-2b'¶ Model name to use. param pipeline_kwargs: Optional[dict] = None¶ Keyword arguments passed to the pipeline. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param tokenizer: Any = None¶ Tokenizer. param tokenizer_config: Optional[dict] = None¶ Configuration parameters specifically for the tokenizer. Defaults to an empty dictionary. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ [Deprecated] Check Cache and run the LLM on the given prompt and input. Notes Deprecated since version 0.1.7: Use invoke instead. Parameters prompt (str) – stop (Optional[List[str]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type str
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-2
kwargs (Any) – Return type str async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-3
Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-4
tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-5
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type str async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters messages (List[BaseMessage]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-6
Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-7
Return type RunnableSerializable[Any, Any] async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type AsyncIterator[str] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-8
A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} {“generations”: […], “llm_output”: None, …} on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_stream some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-9
on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"},
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-10
}, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-11
An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-12
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-13
kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html