id
stringlengths 14
16
| text
stringlengths 20
3.3k
| source
stringlengths 60
181
|
---|---|---|
16781f00ca6a-1
|
chat_history_memory (Optional[BaseChatMessageHistory]) –
classmethod from_llm_and_tools(ai_name: str, ai_role: str, memory: VectorStoreRetriever, tools: List[BaseTool], llm: BaseChatModel, human_in_the_loop: bool = False, output_parser: Optional[BaseAutoGPTOutputParser] = None, chat_history_memory: Optional[BaseChatMessageHistory] = None) → AutoGPT[source]¶
Parameters
ai_name (str) –
ai_role (str) –
memory (VectorStoreRetriever) –
tools (List[BaseTool]) –
llm (BaseChatModel) –
human_in_the_loop (bool) –
output_parser (Optional[BaseAutoGPTOutputParser]) –
chat_history_memory (Optional[BaseChatMessageHistory]) –
Return type
AutoGPT
run(goals: List[str]) → str[source]¶
Parameters
goals (List[str]) –
Return type
str
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.agent.AutoGPT.html
|
e4d62f905678-0
|
langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain¶
class langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain[source]¶
Bases: LLMChain
Chain to execute tasks.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
[DEPRECATED] Use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param llm: Union[Runnable[LanguageModelInput, str], Runnable[LanguageModelInput, BaseMessage]] [Required]¶
Language model to call.
param llm_kwargs: dict [Optional]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param output_parser: BaseLLMOutputParser [Optional]¶
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-1
|
param output_parser: BaseLLMOutputParser [Optional]¶
Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise.
param prompt: BasePromptTemplate [Required]¶
Prompt object to use.
param return_final_only: bool = True¶
Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to the global verbose value,
accessible via langchain.globals.get_verbose().
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
[Deprecated] Execute the chain.
Parameters
inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs (bool) – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-2
|
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the chain. Defaults to None
include_run_info (bool) – Whether to include run info in the response. Defaults
to False.
run_name (Optional[str]) –
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
Return type
Dict[str, Any]
Notes
Deprecated since version 0.1.0: Use invoke instead.
async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
Parameters
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
Return type
List[Dict[str, str]]
async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-3
|
Call apply and then parse the results.
Parameters
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
Return type
Sequence[Union[str, List[str], Dict[str, str]]]
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-4
|
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
[Deprecated] Asynchronously execute the chain.
Parameters
inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs (bool) – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the chain. Defaults to None
include_run_info (bool) – Whether to include run info in the response. Defaults
to False.
run_name (Optional[str]) –
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-5
|
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
Return type
Dict[str, Any]
Notes
Deprecated since version 0.1.0: Use ainvoke instead.
async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
Parameters
input_list (List[Dict[str, Any]]) –
run_manager (Optional[AsyncCallbackManagerForChainRun]) –
Return type
LLMResult
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
Parameters
input (Dict[str, Any]) –
config (Optional[RunnableConfig]) –
kwargs (Any) –
Return type
Dict[str, Any]
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
Parameters
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
Return type
List[Dict[str, str]]
apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
Parameters
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-6
|
Call apply and then parse the results.
Parameters
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
Return type
Sequence[Union[str, List[str], Dict[str, str]]]
async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass to LLMChain
**kwargs (Any) – Keys to pass to prompt template.
Returns
Completion from LLM.
Return type
str
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶
Call apredict and then parse the results.
Parameters
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
kwargs (Any) –
Return type
Union[str, List[str], Dict[str, str]]
async aprep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Prepare chain inputs, including adding inputs from memory.
Parameters
inputs (Union[Dict[str, Any], Any]) – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
Return type
Dict[str, str]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-7
|
Return type
Dict[str, str]
async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
Parameters
input_list (List[Dict[str, Any]]) –
run_manager (Optional[AsyncCallbackManagerForChainRun]) –
Return type
Tuple[List[PromptValue], Optional[List[str]]]
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
[Deprecated] Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args (Any) – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs (Any) – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
metadata (Optional[Dict[str, Any]]) –
**kwargs –
Returns
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-8
|
metadata (Optional[Dict[str, Any]]) –
**kwargs –
Returns
The chain output.
Return type
Any
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
Notes
Deprecated since version 0.1.0: Use ainvoke instead.
assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶
Assigns new fields to the dict output of this runnable.
Returns a new runnable.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
print(chain_with_assign.input_schema.schema())
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-9
|
print(chain_with_assign.input_schema.schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.schema()) #
{'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
Parameters
kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
Return type
RunnableSerializable[Any, Any]
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶
[Beta] Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the runnable, including StreamEvents from intermediate
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-10
|
about the progress of the runnable, including StreamEvents from intermediate
results.
A StreamEvent is a dictionary with the following schema:
event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name: str - The name of the runnable that generated the event.
run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event.
A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.
tags: Optional[List[str]] - The tags of the runnable that generatedthe event.
metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event.
data: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
{“generations”: […], “llm_output”: None, …}
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-11
|
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_stream
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_chunk
[retriever name]
{documents: […]}
on_retriever_end
[retriever name]
{“query”: “hello”}
{documents: […]}
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
Here are declarations associated with the events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-12
|
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
event async for event in chain.astream_events("hello", version="v1")
]
# will produce the following events (run_id has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
version (Literal['v1']) – The version of the schema to use.
Currently only version 1 is available.
No default will be assigned until the API is stabilized.
include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.
include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.
include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.
exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.
exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-13
|
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the runnable.
These will be passed to astream_log as this implementation
of astream_events is built on top of astream_log.
Returns
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
diff (bool) – Whether to yield diffs between each step, or the current state.
with_streamed_output_list (bool) – Whether to yield the streamed_output list.
include_names (Optional[Sequence[str]]) – Only include logs with these names.
include_types (Optional[Sequence[str]]) – Only include logs with these types.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-14
|
include_types (Optional[Sequence[str]]) – Only include logs with these types.
include_tags (Optional[Sequence[str]]) – Only include logs with these tags.
exclude_names (Optional[Sequence[str]]) – Exclude logs with these names.
exclude_types (Optional[Sequence[str]]) – Exclude logs with these types.
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
kwargs (Any) –
Return type
Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (AsyncIterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-15
|
kwargs (Optional[Any]) –
Return type
List[Output]
batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶
Run invoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
Iterator[Tuple[int, Union[Output, Exception]]]
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
Useful when a runnable in a chain requires an argument that is not
in the output of the previous runnable or included in the user input.
Example:
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
llm = ChatOllama(model='llama2')
# Without bind.
chain = (
llm
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind.
chain = (
llm.bind(stop=["three"])
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
Parameters
kwargs (Any) –
Return type
Runnable[Input, Output]
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-16
|
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include (Optional[Sequence[str]]) – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
Return type
Type[BaseModel]
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
Configure alternatives for runnables that can be set at runtime.
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI()
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenaAI
print(
model.with_config(
configurable={"llm": "openai"}
).invoke("which organization created you?").content
)
Parameters
which (ConfigurableField) –
default_key (str) –
prefix_keys (bool) –
kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) –
Return type
RunnableSerializable[Input, Output]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-17
|
Return type
RunnableSerializable[Input, Output]
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
Configure particular runnable fields at runtime.
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print(
"max_tokens_20: ",
model.invoke("tell me something about chess").content
)
# max_tokens = 200
print("max_tokens_200: ", model.with_config(
configurable={"output_token_number": 200}
).invoke("tell me something about chess").content
)
Parameters
kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) –
Return type
RunnableSerializable[Input, Output]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-18
|
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶
Create outputs from response.
Parameters
llm_result (LLMResult) –
Return type
List[Dict[str, Any]]
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs (Any) – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Return type
Dict
Example
chain.dict(exclude_unset=True)
# -> {"_type": "foo", "verbose": False, ...}
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-19
|
# -> {"_type": "foo", "verbose": False, ...}
classmethod from_llm(llm: BaseLanguageModel, demos: List[Dict] = [{'role': 'user', 'content': "please show me a video and an image of (based on the text) 'a boy is running' and dub it"}, {'role': 'assistant', 'content': '[{{"task": "video_generator", "id": 0, "dep": [-1], "args": {{"prompt": "a boy is running" }}}}, {{"task": "text_reader", "id": 1, "dep": [-1], "args": {{"text": "a boy is running" }}}}, {{"task": "image_generator", "id": 2, "dep": [-1], "args": {{"prompt": "a boy is running" }}}}]'}, {'role': 'user', 'content': 'Give you some pictures e1.jpg, e2.png, e3.jpg, help me count the number of sheep?'}, {'role': 'assistant', 'content': '[ {{"task": "image_qa", "id": 0, "dep": [-1], "args": {{"image": "e1.jpg", "question": "How many sheep in the picture"}}}}, {{"task": "image_qa", "id": 1, "dep": [-1], "args": {{"image": "e2.jpg", "question": "How many sheep in the picture"}}}}, {{"task": "image_qa", "id": 2, "dep": [-1], "args": {{"image": "e3.jpg", "question": "How many sheep in the picture"}}}}]'}], verbose: bool = True) → LLMChain[source]¶
Get the response parser.
Parameters
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-20
|
Get the response parser.
Parameters
llm (BaseLanguageModel) –
demos (List[Dict]) –
verbose (bool) –
Return type
LLMChain
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶
Create LLMChain from LLM and template.
Parameters
llm (BaseLanguageModel) –
template (str) –
Return type
LLMChain
generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
Parameters
input_list (List[Dict[str, Any]]) –
run_manager (Optional[CallbackManagerForChainRun]) –
Return type
LLMResult
get_graph(config: Optional[RunnableConfig] = None) → Graph¶
Return a graph representation of this runnable.
Parameters
config (Optional[RunnableConfig]) –
Return type
Graph
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
Return type
Type[BaseModel]
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-21
|
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
Return type
List[str]
get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶
Get the name of the runnable.
Parameters
suffix (Optional[str]) –
name (Optional[str]) –
Return type
str
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
Return type
Type[BaseModel]
get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶
Parameters
config (Optional[RunnableConfig]) –
Return type
List[BasePromptTemplate]
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Transform a single input into an output. Override to implement.
Parameters
input (Dict[str, Any]) – The input to the runnable.
config (Optional[RunnableConfig]) – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-22
|
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
kwargs (Any) –
Returns
The output of the runnable.
Return type
Dict[str, Any]
classmethod is_lc_serializable() → bool¶
Is this class serializable?
Return type
bool
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
Return type
List[str]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-23
|
to the object.
Return type
List[str]
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
Example
from langchain_core.runnables import RunnableLambda
def _lambda(x: int) -> int:
return x + 1
runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
Return type
Runnable[List[Input], List[Output]]
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶
Pick keys from the dict output of this runnable.
Pick single key:import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-24
|
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick list of keys:from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(
str=as_str,
json=as_json,
bytes=RunnableLambda(as_bytes)
)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
Parameters
keys (Union[str, List[str]]) –
Return type
RunnableSerializable[Any, Any]
pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-25
|
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
Equivalent to RunnableSequence(self, *others) or self | others[0] | …
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
Parameters
others (Union[Runnable[Any, Other], Callable[[Any], Other]]) –
name (Optional[str]) –
Return type
RunnableSerializable[Input, Other]
predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass to LLMChain
**kwargs (Any) – Keys to pass to prompt template.
Returns
Completion from LLM.
Return type
str
Example
completion = llm.predict(adjective="funny")
predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-26
|
Call predict and then parse the results.
Parameters
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
kwargs (Any) –
Return type
Union[str, List[str], Dict[str, Any]]
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Prepare chain inputs, including adding inputs from memory.
Parameters
inputs (Union[Dict[str, Any], Any]) – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
Return type
Dict[str, str]
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs (Dict[str, str]) – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs (Dict[str, str]) – Dictionary of initial chain outputs.
return_only_outputs (bool) – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
Return type
Dict[str, str]
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
Parameters
input_list (List[Dict[str, Any]]) –
run_manager (Optional[CallbackManagerForChainRun]) –
Return type
Tuple[List[PromptValue], Optional[List[str]]]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-27
|
Return type
Tuple[List[PromptValue], Optional[List[str]]]
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
[Deprecated] Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args (Any) – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs (Any) – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
metadata (Optional[Dict[str, Any]]) –
**kwargs –
Returns
The chain output.
Return type
Any
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-28
|
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
Notes
Deprecated since version 0.1.0: Use invoke instead.
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path (Union[Path, str]) – Path to file to save the chain to.
Return type
None
Example
chain.save(file_path="path/chain.yaml")
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
Serialize the runnable to JSON.
Return type
Union[SerializedConstructor, SerializedNotImplemented]
to_json_not_implemented() → SerializedNotImplemented¶
Return type
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-29
|
to_json_not_implemented() → SerializedNotImplemented¶
Return type
SerializedNotImplemented
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (Iterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
Parameters
config (Optional[RunnableConfig]) –
kwargs (Any) –
Return type
Runnable[Input, Output]
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-30
|
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print(''.join(runnable.stream({}))) #foo bar
Parameters
fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle.
exception_key (Optional[str]) – If string is specified then handled exceptions will be passed
to fallbacks as part of the input under the specified key. If None,
exceptions will not be passed to fallbacks. If used, the base runnable
and its fallbacks must accept a dictionary as input.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
Return type
RunnableWithFallbacksT[Input, Output]
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
Example:
Parameters
on_start (Optional[Listener]) –
on_end (Optional[Listener]) –
on_error (Optional[Listener]) –
Return type
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-31
|
on_error (Optional[Listener]) –
Return type
Runnable[Input, Output]
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Example:
Parameters
retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on
wait_exponential_jitter (bool) – Whether to add jitter to the wait time
between retries
stop_after_attempt (int) – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
Return type
Runnable[Input, Output]
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
Parameters
input_type (Optional[Type[Input]]) –
output_type (Optional[Type[Output]]) –
Return type
Runnable[Input, Output]
property InputType: Type[Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
e4d62f905678-32
|
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
name: Optional[str] = None¶
The name of the runnable. Used for debugging and tracing.
property output_schema: Type[BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html
|
cca9f5678a05-0
|
langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction¶
class langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction(name: str, args: Dict)[source]¶
Action returned by AutoGPTOutputParser.
Create new instance of AutoGPTAction(name, args)
Attributes
args
Alias for field number 1
name
Alias for field number 0
Methods
__init__()
count(value, /)
Return number of occurrences of value.
index(value[, start, stop])
Return first index of value.
Parameters
name (str) –
args (Dict) –
__init__()¶
count(value, /)¶
Return number of occurrences of value.
index(value, start=0, stop=9223372036854775807, /)¶
Return first index of value.
Raises ValueError if the value is not present.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction.html
|
12be6442e244-0
|
langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerator¶
class langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerator(llm_chain: LLMChain, stop: Optional[List] = None)[source]¶
Generates a response based on the input.
Methods
__init__(llm_chain[, stop])
generate(inputs[, callbacks])
Given input, decided what to do.
Parameters
llm_chain (LLMChain) –
stop (Optional[List]) –
__init__(llm_chain: LLMChain, stop: Optional[List] = None)[source]¶
Parameters
llm_chain (LLMChain) –
stop (Optional[List]) –
generate(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str[source]¶
Given input, decided what to do.
Parameters
inputs (dict) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
kwargs (Any) –
Return type
str
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerator.html
|
26407d756250-0
|
langchain_experimental.autonomous_agents.autogpt.prompt_generator.PromptGenerator¶
class langchain_experimental.autonomous_agents.autogpt.prompt_generator.PromptGenerator[source]¶
Generator of custom prompt strings.
Does this based on constraints, commands, resources, and performance evaluations.
Initialize the PromptGenerator object.
Starts with empty lists of constraints, commands, resources,
and performance evaluations.
Methods
__init__()
Initialize the PromptGenerator object.
add_constraint(constraint)
Add a constraint to the constraints list.
add_performance_evaluation(evaluation)
Add a performance evaluation item to the performance_evaluation list.
add_resource(resource)
Add a resource to the resources list.
add_tool(tool)
generate_prompt_string()
Generate a prompt string.
__init__() → None[source]¶
Initialize the PromptGenerator object.
Starts with empty lists of constraints, commands, resources,
and performance evaluations.
Return type
None
add_constraint(constraint: str) → None[source]¶
Add a constraint to the constraints list.
Parameters
constraint (str) – The constraint to be added.
Return type
None
add_performance_evaluation(evaluation: str) → None[source]¶
Add a performance evaluation item to the performance_evaluation list.
Parameters
evaluation (str) – The evaluation item to be added.
Return type
None
add_resource(resource: str) → None[source]¶
Add a resource to the resources list.
Parameters
resource (str) – The resource to be added.
Return type
None
add_tool(tool: BaseTool) → None[source]¶
Parameters
tool (BaseTool) –
Return type
None
generate_prompt_string() → str[source]¶
Generate a prompt string.
Returns
The generated prompt string.
Return type
str
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt_generator.PromptGenerator.html
|
4abde21fcff2-0
|
langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain¶
class langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain[source]¶
Bases: LLMChain
Chain generating tasks.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
[DEPRECATED] Use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param llm: Union[Runnable[LanguageModelInput, str], Runnable[LanguageModelInput, BaseMessage]] [Required]¶
Language model to call.
param llm_kwargs: dict [Optional]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param output_parser: BaseLLMOutputParser [Optional]¶
Output parser to use.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-1
|
param output_parser: BaseLLMOutputParser [Optional]¶
Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise.
param prompt: BasePromptTemplate [Required]¶
Prompt object to use.
param return_final_only: bool = True¶
Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to the global verbose value,
accessible via langchain.globals.get_verbose().
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
[Deprecated] Execute the chain.
Parameters
inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs (bool) – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-2
|
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the chain. Defaults to None
include_run_info (bool) – Whether to include run info in the response. Defaults
to False.
run_name (Optional[str]) –
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
Return type
Dict[str, Any]
Notes
Deprecated since version 0.1.0: Use invoke instead.
async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
Parameters
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
Return type
List[Dict[str, str]]
async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-3
|
Call apply and then parse the results.
Parameters
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
Return type
Sequence[Union[str, List[str], Dict[str, str]]]
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-4
|
Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶
[Deprecated] Asynchronously execute the chain.
Parameters
inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs (bool) – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the chain. Defaults to None
include_run_info (bool) – Whether to include run info in the response. Defaults
to False.
run_name (Optional[str]) –
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-5
|
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
Return type
Dict[str, Any]
Notes
Deprecated since version 0.1.0: Use ainvoke instead.
async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
Parameters
input_list (List[Dict[str, Any]]) –
run_manager (Optional[AsyncCallbackManagerForChainRun]) –
Return type
LLMResult
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
Parameters
input (Dict[str, Any]) –
config (Optional[RunnableConfig]) –
kwargs (Any) –
Return type
Dict[str, Any]
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
Parameters
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
Return type
List[Dict[str, str]]
apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
Parameters
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-6
|
Call apply and then parse the results.
Parameters
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
Return type
Sequence[Union[str, List[str], Dict[str, str]]]
async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass to LLMChain
**kwargs (Any) – Keys to pass to prompt template.
Returns
Completion from LLM.
Return type
str
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶
Call apredict and then parse the results.
Parameters
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
kwargs (Any) –
Return type
Union[str, List[str], Dict[str, str]]
async aprep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Prepare chain inputs, including adding inputs from memory.
Parameters
inputs (Union[Dict[str, Any], Any]) – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
Return type
Dict[str, str]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-7
|
Return type
Dict[str, str]
async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
Parameters
input_list (List[Dict[str, Any]]) –
run_manager (Optional[AsyncCallbackManagerForChainRun]) –
Return type
Tuple[List[PromptValue], Optional[List[str]]]
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
[Deprecated] Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args (Any) – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs (Any) – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
metadata (Optional[Dict[str, Any]]) –
**kwargs –
Returns
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-8
|
metadata (Optional[Dict[str, Any]]) –
**kwargs –
Returns
The chain output.
Return type
Any
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
Notes
Deprecated since version 0.1.0: Use ainvoke instead.
assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶
Assigns new fields to the dict output of this runnable.
Returns a new runnable.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
print(chain_with_assign.input_schema.schema())
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-9
|
print(chain_with_assign.input_schema.schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.schema()) #
{'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
Parameters
kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
Return type
RunnableSerializable[Any, Any]
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶
[Beta] Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the runnable, including StreamEvents from intermediate
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-10
|
about the progress of the runnable, including StreamEvents from intermediate
results.
A StreamEvent is a dictionary with the following schema:
event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name: str - The name of the runnable that generated the event.
run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event.
A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.
tags: Optional[List[str]] - The tags of the runnable that generatedthe event.
metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event.
data: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
{“generations”: […], “llm_output”: None, …}
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-11
|
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_stream
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_chunk
[retriever name]
{documents: […]}
on_retriever_end
[retriever name]
{“query”: “hello”}
{documents: […]}
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
Here are declarations associated with the events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-12
|
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
event async for event in chain.astream_events("hello", version="v1")
]
# will produce the following events (run_id has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
version (Literal['v1']) – The version of the schema to use.
Currently only version 1 is available.
No default will be assigned until the API is stabilized.
include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.
include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.
include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.
exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.
exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-13
|
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the runnable.
These will be passed to astream_log as this implementation
of astream_events is built on top of astream_log.
Returns
An async stream of StreamEvents.
Return type
AsyncIterator[StreamEvent]
Notes
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input (Any) – The input to the runnable.
config (Optional[RunnableConfig]) – The config to use for the runnable.
diff (bool) – Whether to yield diffs between each step, or the current state.
with_streamed_output_list (bool) – Whether to yield the streamed_output list.
include_names (Optional[Sequence[str]]) – Only include logs with these names.
include_types (Optional[Sequence[str]]) – Only include logs with these types.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-14
|
include_types (Optional[Sequence[str]]) – Only include logs with these types.
include_tags (Optional[Sequence[str]]) – Only include logs with these tags.
exclude_names (Optional[Sequence[str]]) – Exclude logs with these names.
exclude_types (Optional[Sequence[str]]) – Exclude logs with these types.
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
kwargs (Any) –
Return type
Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (AsyncIterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
AsyncIterator[Output]
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
List[Output]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-15
|
kwargs (Optional[Any]) –
Return type
List[Output]
batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶
Run invoke in parallel on a list of inputs,
yielding results as they complete.
Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
Return type
Iterator[Tuple[int, Union[Output, Exception]]]
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
Useful when a runnable in a chain requires an argument that is not
in the output of the previous runnable or included in the user input.
Example:
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
llm = ChatOllama(model='llama2')
# Without bind.
chain = (
llm
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind.
chain = (
llm.bind(stop=["three"])
| StrOutputParser()
)
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
Parameters
kwargs (Any) –
Return type
Runnable[Input, Output]
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-16
|
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include (Optional[Sequence[str]]) – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
Return type
Type[BaseModel]
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
Configure alternatives for runnables that can be set at runtime.
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI()
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenaAI
print(
model.with_config(
configurable={"llm": "openai"}
).invoke("which organization created you?").content
)
Parameters
which (ConfigurableField) –
default_key (str) –
prefix_keys (bool) –
kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) –
Return type
RunnableSerializable[Input, Output]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-17
|
Return type
RunnableSerializable[Input, Output]
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
Configure particular runnable fields at runtime.
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print(
"max_tokens_20: ",
model.invoke("tell me something about chess").content
)
# max_tokens = 200
print("max_tokens_200: ", model.with_config(
configurable={"output_token_number": 200}
).invoke("tell me something about chess").content
)
Parameters
kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) –
Return type
RunnableSerializable[Input, Output]
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
Return type
Model
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-18
|
values (Any) –
Return type
Model
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
Returns
new model instance
Return type
Model
create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶
Create outputs from response.
Parameters
llm_result (LLMResult) –
Return type
List[Dict[str, Any]]
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs (Any) – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Return type
Dict
Example
chain.dict(exclude_unset=True)
# -> {"_type": "foo", "verbose": False, ...}
classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-19
|
Get the response parser.
Parameters
llm (BaseLanguageModel) –
verbose (bool) –
Return type
LLMChain
classmethod from_orm(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶
Create LLMChain from LLM and template.
Parameters
llm (BaseLanguageModel) –
template (str) –
Return type
LLMChain
generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
Parameters
input_list (List[Dict[str, Any]]) –
run_manager (Optional[CallbackManagerForChainRun]) –
Return type
LLMResult
get_graph(config: Optional[RunnableConfig] = None) → Graph¶
Return a graph representation of this runnable.
Parameters
config (Optional[RunnableConfig]) –
Return type
Graph
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
Return type
Type[BaseModel]
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-20
|
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
Return type
List[str]
get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶
Get the name of the runnable.
Parameters
suffix (Optional[str]) –
name (Optional[str]) –
Return type
str
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config (Optional[RunnableConfig]) – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
Return type
Type[BaseModel]
get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶
Parameters
config (Optional[RunnableConfig]) –
Return type
List[BasePromptTemplate]
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶
Transform a single input into an output. Override to implement.
Parameters
input (Dict[str, Any]) – The input to the runnable.
config (Optional[RunnableConfig]) – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-21
|
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
kwargs (Any) –
Returns
The output of the runnable.
Return type
Dict[str, Any]
classmethod is_lc_serializable() → bool¶
Is this class serializable?
Return type
bool
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
Return type
unicode
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
Return type
List[str]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-22
|
to the object.
Return type
List[str]
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
Example
from langchain_core.runnables import RunnableLambda
def _lambda(x: int) -> int:
return x + 1
runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
Return type
Runnable[List[Input], List[Output]]
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
classmethod parse_obj(obj: Any) → Model¶
Parameters
obj (Any) –
Return type
Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
Return type
Model
pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶
Pick keys from the dict output of this runnable.
Pick single key:import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-23
|
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick list of keys:from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(
str=as_str,
json=as_json,
bytes=RunnableLambda(as_bytes)
)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
Parameters
keys (Union[str, List[str]]) –
Return type
RunnableSerializable[Any, Any]
pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-24
|
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
Equivalent to RunnableSequence(self, *others) or self | others[0] | …
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
Parameters
others (Union[Runnable[Any, Other], Callable[[Any], Other]]) –
name (Optional[str]) –
Return type
RunnableSerializable[Input, Other]
predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass to LLMChain
**kwargs (Any) – Keys to pass to prompt template.
Returns
Completion from LLM.
Return type
str
Example
completion = llm.predict(adjective="funny")
predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-25
|
Call predict and then parse the results.
Parameters
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
kwargs (Any) –
Return type
Union[str, List[str], Dict[str, Any]]
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Prepare chain inputs, including adding inputs from memory.
Parameters
inputs (Union[Dict[str, Any], Any]) – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
Return type
Dict[str, str]
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs (Dict[str, str]) – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs (Dict[str, str]) – Dictionary of initial chain outputs.
return_only_outputs (bool) – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
Return type
Dict[str, str]
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
Parameters
input_list (List[Dict[str, Any]]) –
run_manager (Optional[CallbackManagerForChainRun]) –
Return type
Tuple[List[PromptValue], Optional[List[str]]]
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-26
|
Return type
Tuple[List[PromptValue], Optional[List[str]]]
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
[Deprecated] Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args (Any) – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs (Any) – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
metadata (Optional[Dict[str, Any]]) –
**kwargs –
Returns
The chain output.
Return type
Any
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-27
|
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
Notes
Deprecated since version 0.1.0: Use invoke instead.
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path (Union[Path, str]) – Path to file to save the chain to.
Return type
None
Example
chain.save(file_path="path/chain.yaml")
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
Parameters
by_alias (bool) –
ref_template (unicode) –
Return type
DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
Return type
unicode
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
Parameters
input (Input) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
Serialize the runnable to JSON.
Return type
Union[SerializedConstructor, SerializedNotImplemented]
to_json_not_implemented() → SerializedNotImplemented¶
Return type
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-28
|
to_json_not_implemented() → SerializedNotImplemented¶
Return type
SerializedNotImplemented
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
Parameters
input (Iterator[Input]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
Return type
Iterator[Output]
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Parameters
localns (Any) –
Return type
None
classmethod validate(value: Any) → Model¶
Parameters
value (Any) –
Return type
Model
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
Parameters
config (Optional[RunnableConfig]) –
kwargs (Any) –
Return type
Runnable[Input, Output]
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-29
|
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print(''.join(runnable.stream({}))) #foo bar
Parameters
fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle.
exception_key (Optional[str]) – If string is specified then handled exceptions will be passed
to fallbacks as part of the input under the specified key. If None,
exceptions will not be passed to fallbacks. If used, the base runnable
and its fallbacks must accept a dictionary as input.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
Return type
RunnableWithFallbacksT[Input, Output]
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
Example:
Parameters
on_start (Optional[Listener]) –
on_end (Optional[Listener]) –
on_error (Optional[Listener]) –
Return type
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-30
|
on_error (Optional[Listener]) –
Return type
Runnable[Input, Output]
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Example:
Parameters
retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on
wait_exponential_jitter (bool) – Whether to add jitter to the wait time
between retries
stop_after_attempt (int) – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
Return type
Runnable[Input, Output]
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
Parameters
input_type (Optional[Type[Input]]) –
output_type (Optional[Type[Output]]) –
Return type
Runnable[Input, Output]
property InputType: Type[Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
4abde21fcff2-31
|
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
name: Optional[str] = None¶
The name of the runnable. Used for debugging and tracing.
property output_schema: Type[BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.