id
stringlengths
14
16
text
stringlengths
20
3.3k
source
stringlengths
60
181
49cb8b56a3fa-14
The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenaAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-15
Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-16
values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. Parameters kwargs (Any) – Return type Dict classmethod from_model_id(model_id: str, tokenizer_config: Optional[dict] = None, adapter_file: Optional[str] = None, lazy: bool = False, pipeline_kwargs: Optional[dict] = None, **kwargs: Any) → MLXPipeline[source]¶ Construct the pipeline object from model_id and task. Parameters model_id (str) – tokenizer_config (Optional[dict]) – adapter_file (Optional[str]) – lazy (bool) – pipeline_kwargs (Optional[dict]) – kwargs (Any) – Return type MLXPipeline classmethod from_orm(obj: Any) → Model¶ Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-17
MLXPipeline classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-18
tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-19
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_num_tokens(text: str) → int¶ Get the number of tokens present in the text.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-20
Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text (str) – The string input to tokenize. Returns The integer number of tokens in the text. Return type int get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages (List[BaseMessage]) – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. Return type int get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text (str) – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. Return type List[int]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-21
Return type List[int] invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. stop (Optional[List[str]]) – kwargs (Any) – Returns The output of the runnable. Return type str classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-22
Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-23
Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-24
) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-25
# -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path (Union[Path, str]) – Path to file to save the LLM to. Return type None Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-26
ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type Iterator[str] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-27
Parameters value (Any) – Return type Model with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-28
fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[Listener]) – on_end (Optional[Listener]) – on_error (Optional[Listener]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-29
Return type Runnable[Input, Output] with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) → Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]¶ [Beta] Implement this if there is a way of steering the model to generate responses that match a given schema. Notes Parameters schema (Union[Dict, Type[BaseModel]]) – kwargs (Any) – Return type Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
49cb8b56a3fa-30
For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.mlx_pipeline.MLXPipeline.html
a8cf86da388d-0
langchain_community.llms.moonshot.MoonshotCommon¶ class langchain_community.llms.moonshot.MoonshotCommon[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param base_url: str = 'https://api.moonshot.cn/v1'¶ param max_tokens = 1024¶ Maximum number of tokens to generate. param model_name: str = 'moonshot-v1-8k' (alias 'model')¶ Model name. Available models listed here: https://platform.moonshot.cn/pricing param moonshot_api_key: Optional[SecretStr] = None (alias 'api_key')¶ Moonshot API key. Get it here: https://platform.moonshot.cn/console/api-keys Constraints type = string writeOnly = True format = password param temperature = 0.3¶ Temperature parameter (higher values make the model more creative). classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.moonshot.MoonshotCommon.html
a8cf86da388d-1
Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – Return type DictStrAny classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.moonshot.MoonshotCommon.html
a8cf86da388d-2
Parameters obj (Any) – Return type Model json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.moonshot.MoonshotCommon.html
a8cf86da388d-3
Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model property lc_secrets: dict¶ A map of constructor argument names to secret ids. For example,{“moonshot_api_key”: “MOONSHOT_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.moonshot.MoonshotCommon.html
1de7f978c9c1-0
langchain_community.llms.xinference.Xinference¶ class langchain_community.llms.xinference.Xinference[source]¶ Bases: LLM Xinference large-scale model inference service. To use, you should have the xinference library installed: pip install "xinference[all]" Check out: https://github.com/xorbitsai/inference To run, you need to start a Xinference supervisor on one server and Xinference workers on the other servers Example To start a local instance of Xinference, run $ xinference You can also deploy Xinference in a distributed cluster. Here are the steps: Starting the supervisor: $ xinference-supervisor Starting the worker: $ xinference-worker Then, launch a model using command line interface (CLI). Example: $ xinference launch -n orca -s 3 -q q4_0 It will return a model UID. Then, you can use Xinference with LangChain. Example: from langchain_community.llms import Xinference llm = Xinference( server_url="http://0.0.0.0:9997", model_uid = {model_uid} # replace model_uid with the model UID return from launching the model ) llm( prompt="Q: where can we visit in the capital of France? A:", generate_config={"max_tokens": 1024, "stream": True}, ) To view all the supported builtin models, run: $ xinference list --all Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Union[BaseCache, bool, None] = None¶ Whether to cache the response.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-1
Whether to cache the response. If true, will use the global cache. If false, will not use a cache If None, will use the global cache if it’s set, otherwise no cache. If instance of BaseCache, will use the provided cache. Caching is not currently supported for streaming methods of models. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param client: Any = None¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_kwargs: Dict[str, Any] [Required]¶ Keyword arguments to be passed to xinference.LLM param model_uid: Optional[str] = None¶ UID of the launched model param server_url: Optional[str] = None¶ URL of the xinference server param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ [Deprecated] Check Cache and run the LLM on the given prompt and input. Notes Deprecated since version 0.1.7: Use invoke instead. Parameters prompt (str) – stop (Optional[List[str]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-2
metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type str async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-3
Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-4
tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-5
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type str async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters messages (List[BaseMessage]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-6
Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-7
Return type RunnableSerializable[Any, Any] async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type AsyncIterator[str] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-8
A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} {“generations”: […], “llm_output”: None, …} on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_stream some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-9
on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"},
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-10
}, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-11
An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-12
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-13
kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-14
The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenaAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-15
Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-16
values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. Parameters kwargs (Any) – Return type Dict classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-17
Parameters obj (Any) – Return type Model generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-18
tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-19
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_num_tokens(text: str) → int¶ Get the number of tokens present in the text.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-20
Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text (str) – The string input to tokenize. Returns The integer number of tokens in the text. Return type int get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages (List[BaseMessage]) – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. Return type int get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text (str) – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. Return type List[int]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-21
Return type List[int] invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. stop (Optional[List[str]]) – kwargs (Any) – Returns The output of the runnable. Return type str classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-22
Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-23
Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-24
) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-25
# -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path (Union[Path, str]) – Path to file to save the LLM to. Return type None Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-26
ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type Iterator[str] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-27
Parameters value (Any) – Return type Model with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-28
fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[Listener]) – on_end (Optional[Listener]) – on_error (Optional[Listener]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-29
Return type Runnable[Input, Output] with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) → Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]¶ [Beta] Implement this if there is a way of steering the model to generate responses that match a given schema. Notes Parameters schema (Union[Dict, Type[BaseModel]]) – kwargs (Any) – Return type Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
1de7f978c9c1-30
For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model. Examples using Xinference¶ Xorbits Inference (Xinference)
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.xinference.Xinference.html
be6ccf0a7b90-0
langchain_community.llms.volcengine_maas.VolcEngineMaasLLM¶ class langchain_community.llms.volcengine_maas.VolcEngineMaasLLM[source]¶ Bases: LLM, VolcEngineMaasBase volc engine maas hosts a plethora of models. You can utilize these models through this class. To use, you should have the volcengine python package installed. and set access key and secret key by environment variable or direct pass those to this class. access key, secret key are required parameters which you could get help https://www.volcengine.com/docs/6291/65568 In order to use them, it is necessary to install the ‘volcengine’ Python package. The access key and secret key must be set either via environment variables or passed directly to this class. access key and secret key are mandatory parameters for which assistance can be sought at https://www.volcengine.com/docs/6291/65568. Example from langchain_community.llms import VolcEngineMaasLLM model = VolcEngineMaasLLM(model="skylark-lite-public", volc_engine_maas_ak="your_ak", volc_engine_maas_sk="your_sk") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Union[BaseCache, bool, None] = None¶ Whether to cache the response. If true, will use the global cache. If false, will not use a cache If None, will use the global cache if it’s set, otherwise no cache. If instance of BaseCache, will use the provided cache. Caching is not currently supported for streaming methods of models.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-1
Caching is not currently supported for streaming methods of models. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param client: Any = None¶ param connect_timeout: Optional[int] = 60¶ Timeout for connect to volc engine maas endpoint. Default is 60 seconds. param endpoint: Optional[str] = 'maas-api.ml-platform-cn-beijing.volces.com'¶ Endpoint of the VolcEngineMaas LLM. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model: str = 'skylark-lite-public'¶ Model name. you could check this model details here https://www.volcengine.com/docs/82379/1133187 and you could choose other models by change this field param model_kwargs: Dict[str, Any] [Optional]¶ model special arguments, you could check detail on model page param model_version: Optional[str] = None¶ Model version. Only used in moonshot large language model. you could check details here https://www.volcengine.com/docs/82379/1158281 param read_timeout: Optional[int] = 60¶ Timeout for read response from volc engine maas endpoint. Default is 60 seconds. param region: Optional[str] = 'Region'¶ Region of the VolcEngineMaas LLM. param streaming: bool = False¶ Whether to stream the results. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: Optional[float] = 0.95¶ A non-negative float that tunes the degree of randomness in generation. param top_p: Optional[float] = 0.8¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-2
param top_p: Optional[float] = 0.8¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. param volc_engine_maas_ak: Optional[SecretStr] = None¶ access key for volc engine Constraints type = string writeOnly = True format = password param volc_engine_maas_sk: Optional[SecretStr] = None¶ secret key for volc engine Constraints type = string writeOnly = True format = password __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ [Deprecated] Check Cache and run the LLM on the given prompt and input. Notes Deprecated since version 0.1.7: Use invoke instead. Parameters prompt (str) – stop (Optional[List[str]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type str async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-3
The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-4
Asynchronously pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-5
Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-6
Subclasses should override this method if they can run asynchronously. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type str async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.")
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-7
prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-8
stop (Optional[List[str]]) – kwargs (Any) – Return type AsyncIterator[str] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-9
on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} {“generations”: […], “llm_output”: None, …} on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_stream some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-10
format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-11
Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-12
jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-13
kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str] batch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-14
Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-15
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenaAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config(
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-16
# max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-17
self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. Parameters kwargs (Any) – Return type Dict classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-18
functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-19
first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-20
Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text (str) – The string input to tokenize. Returns The integer number of tokens in the text. Return type int get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages (List[BaseMessage]) – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. Return type int get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text (str) – The string input to tokenize. Returns
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-21
Parameters text (str) – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. Return type List[int] invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Transform a single input into an output. Override to implement. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. stop (Optional[List[str]]) – kwargs (Any) – Returns The output of the runnable. Return type str classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-22
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) –
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-23
encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) )
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-24
json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-25
# -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use invoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path (Union[Path, str]) – Path to file to save the LLM to. Return type None Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-26
ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type Iterator[str] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-27
Parameters value (Any) – Return type Model with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-28
fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[Listener]) – on_end (Optional[Listener]) – on_error (Optional[Listener]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-29
Return type Runnable[Input, Output] with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) → Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]¶ [Beta] Implement this if there is a way of steering the model to generate responses that match a given schema. Notes Parameters schema (Union[Dict, Type[BaseModel]]) – kwargs (Any) – Return type Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Type[str]¶ Get the input type for this runnable. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
be6ccf0a7b90-30
For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/llms/langchain_community.llms.volcengine_maas.VolcEngineMaasLLM.html
99da7f1f7aab-0
langchain_nvidia_trt.llms.StreamingResponseGenerator¶ class langchain_nvidia_trt.llms.StreamingResponseGenerator(llm: TritonTensorRTLLM, request_id: str, force_batch: bool, stop_words: Sequence[str])[source]¶ A Generator that provides the inference results from an LLM. Instantiate the generator class. Methods __init__(llm, request_id, force_batch, ...) Instantiate the generator class. empty() Return True if the queue is empty, False otherwise (not reliable!). full() Return True if the queue is full, False otherwise (not reliable!). get([block, timeout]) Remove and return an item from the queue. get_nowait() Remove and return an item from the queue without blocking. join() Blocks until all items in the Queue have been gotten and processed. put(item[, block, timeout]) Put an item into the queue. put_nowait(item) Put an item into the queue without blocking. qsize() Return the approximate size of the queue (not reliable!). task_done() Indicate that a formerly enqueued task is complete. Parameters llm (TritonTensorRTLLM) – request_id (str) – force_batch (bool) – stop_words (Sequence[str]) – __init__(llm: TritonTensorRTLLM, request_id: str, force_batch: bool, stop_words: Sequence[str]) → None[source]¶ Instantiate the generator class. Parameters llm (TritonTensorRTLLM) – request_id (str) – force_batch (bool) – stop_words (Sequence[str]) – Return type None empty()¶
https://api.python.langchain.com/en/latest/llms/langchain_nvidia_trt.llms.StreamingResponseGenerator.html
99da7f1f7aab-1
stop_words (Sequence[str]) – Return type None empty()¶ Return True if the queue is empty, False otherwise (not reliable!). This method is likely to be removed at some point. Use qsize() == 0 as a direct substitute, but be aware that either approach risks a race condition where a queue can grow before the result of empty() or qsize() can be used. To create code that needs to wait for all queued tasks to be completed, the preferred technique is to use the join() method. full()¶ Return True if the queue is full, False otherwise (not reliable!). This method is likely to be removed at some point. Use qsize() >= n as a direct substitute, but be aware that either approach risks a race condition where a queue can shrink before the result of full() or qsize() can be used. get(block=True, timeout=None)¶ Remove and return an item from the queue. If optional args ‘block’ is true and ‘timeout’ is None (the default), block if necessary until an item is available. If ‘timeout’ is a non-negative number, it blocks at most ‘timeout’ seconds and raises the Empty exception if no item was available within that time. Otherwise (‘block’ is false), return an item if one is immediately available, else raise the Empty exception (‘timeout’ is ignored in that case). get_nowait()¶ Remove and return an item from the queue without blocking. Only get an item if one is immediately available. Otherwise raise the Empty exception. join()¶ Blocks until all items in the Queue have been gotten and processed. The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever a consumer thread calls task_done()
https://api.python.langchain.com/en/latest/llms/langchain_nvidia_trt.llms.StreamingResponseGenerator.html
99da7f1f7aab-2
queue. The count goes down whenever a consumer thread calls task_done() to indicate the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks. put(item, block=True, timeout=None)¶ Put an item into the queue. If optional args ‘block’ is true and ‘timeout’ is None (the default), block if necessary until a free slot is available. If ‘timeout’ is a non-negative number, it blocks at most ‘timeout’ seconds and raises the Full exception if no free slot was available within that time. Otherwise (‘block’ is false), put an item on the queue if a free slot is immediately available, else raise the Full exception (‘timeout’ is ignored in that case). put_nowait(item)¶ Put an item into the queue without blocking. Only enqueue the item if a free slot is immediately available. Otherwise raise the Full exception. qsize()¶ Return the approximate size of the queue (not reliable!). task_done()¶ Indicate that a formerly enqueued task is complete. Used by Queue consumer threads. For each get() used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete. If a join() is currently blocking, it will resume when all items have been processed (meaning that a task_done() call was received for every item that had been put() into the queue). Raises a ValueError if called more times than there were items placed in the queue.
https://api.python.langchain.com/en/latest/llms/langchain_nvidia_trt.llms.StreamingResponseGenerator.html
4ada54afb26a-0
langchain_experimental.llms.anthropic_functions.TagParser¶ class langchain_experimental.llms.anthropic_functions.TagParser[source]¶ Parser for the tool tags. A heavy-handed solution, but it’s fast for prototyping. Might be re-implemented later to restrict scope to the limited grammar, and more efficiency. Uses an HTML parser to parse a limited grammar that allows for syntax of the form: INPUT -> JUNK? VALUE* JUNK -> JUNK_CHARACTER+ JUNK_CHARACTER -> whitespace | , VALUE -> <IDENTIFIER>DATA</IDENTIFIER> | OBJECT OBJECT -> <IDENTIFIER>VALUE+</IDENTIFIER> IDENTIFIER -> [a-Z][a-Z0-9_]* DATA -> .* Interprets the data to allow repetition of tags and recursion to support representation of complex types. ^ Just another approximately wrong grammar specification. Attributes CDATA_CONTENT_ELEMENTS Methods __init__() A heavy-handed solution, but it's fast for prototyping. check_for_whole_start_tag(i) clear_cdata_mode() close() Handle any buffered data. feed(data) Feed data to the parser. get_starttag_text() Return full source of start tag: '<...>'. getpos() Return current line number and offset. goahead(end) handle_charref(name) handle_comment(data) handle_data(data) Hook when handling data. handle_decl(decl) handle_endtag(tag) Hook when a tag is closed. handle_entityref(name) handle_pi(data) handle_startendtag(tag, attrs) handle_starttag(tag, attrs) Hook when a new tag is encountered. parse_bogus_comment(i[, report]) parse_comment(i[, report]) parse_declaration(i) parse_endtag(i)
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.anthropic_functions.TagParser.html
4ada54afb26a-1
parse_comment(i[, report]) parse_declaration(i) parse_endtag(i) parse_html_declaration(i) parse_marked_section(i[, report]) parse_pi(i) parse_starttag(i) reset() Reset this instance. set_cdata_mode(elem) unknown_decl(data) updatepos(i, j) __init__() → None[source]¶ A heavy-handed solution, but it’s fast for prototyping. Might be re-implemented later to restrict scope to the limited grammar, and more efficiency. Uses an HTML parser to parse a limited grammar that allows for syntax of the form: INPUT -> JUNK? VALUE* JUNK -> JUNK_CHARACTER+ JUNK_CHARACTER -> whitespace | , VALUE -> <IDENTIFIER>DATA</IDENTIFIER> | OBJECT OBJECT -> <IDENTIFIER>VALUE+</IDENTIFIER> IDENTIFIER -> [a-Z][a-Z0-9_]* DATA -> .* Interprets the data to allow repetition of tags and recursion to support representation of complex types. ^ Just another approximately wrong grammar specification. Return type None check_for_whole_start_tag(i)¶ clear_cdata_mode()¶ close()¶ Handle any buffered data. feed(data)¶ Feed data to the parser. Call this as often as you want, with as little or as much text as you want (may include ‘n’). get_starttag_text()¶ Return full source of start tag: ‘<…>’. getpos()¶ Return current line number and offset. goahead(end)¶ handle_charref(name)¶ handle_comment(data)¶ handle_data(data: str) → None[source]¶ Hook when handling data. Parameters data (str) – Return type None handle_decl(decl)¶
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.anthropic_functions.TagParser.html
4ada54afb26a-2
data (str) – Return type None handle_decl(decl)¶ handle_endtag(tag: str) → None[source]¶ Hook when a tag is closed. Parameters tag (str) – Return type None handle_entityref(name)¶ handle_pi(data)¶ handle_startendtag(tag, attrs)¶ handle_starttag(tag: str, attrs: Any) → None[source]¶ Hook when a new tag is encountered. Parameters tag (str) – attrs (Any) – Return type None parse_bogus_comment(i, report=1)¶ parse_comment(i, report=1)¶ parse_declaration(i)¶ parse_endtag(i)¶ parse_html_declaration(i)¶ parse_marked_section(i, report=1)¶ parse_pi(i)¶ parse_starttag(i)¶ reset()¶ Reset this instance. Loses all unprocessed data. set_cdata_mode(elem)¶ unknown_decl(data)¶ updatepos(i, j)¶
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.anthropic_functions.TagParser.html
be44b8defb38-0
langchain_experimental.llms.rellm_decoder.RELLM¶ class langchain_experimental.llms.rellm_decoder.RELLM[source]¶ Bases: HuggingFacePipeline RELLM wrapped LLM using HuggingFace Pipeline API. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param batch_size: int = 4¶ Batch size to use when passing multiple documents to generate. param cache: Union[BaseCache, bool, None] = None¶ Whether to cache the response. If true, will use the global cache. If false, will not use a cache If None, will use the global cache if it’s set, otherwise no cache. If instance of BaseCache, will use the provided cache. Caching is not currently supported for streaming methods of models. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param max_new_tokens: int = 200¶ Maximum number of new tokens to generate. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_id: str = 'gpt2'¶ Model name to use. param model_kwargs: Optional[dict] = None¶ Keyword arguments passed to the model. param pipeline_kwargs: Optional[dict] = None¶ Keyword arguments passed to the pipeline. param regex: RegexPattern [Required]¶ The structured format to complete. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text.
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-1
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ [Deprecated] Check Cache and run the LLM on the given prompt and input. Notes Deprecated since version 0.1.7: Use invoke instead. Parameters prompt (str) – stop (Optional[List[str]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type str async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Any) – Return type List[str]
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-2
kwargs (Any) – Return type List[str] async abatch_as_completed(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts to a model and return generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts (List[str]) – List of string prompts.
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-3
Parameters prompts (List[str]) – List of string prompts. stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. tags (Optional[Union[List[str], List[List[str]]]]) – metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – run_name (Optional[Union[str, List[str]]]) – run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – **kwargs – Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-4
Parameters prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. Return type LLMResult async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type str async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-5
[Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters text (str) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type str async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ [Deprecated] Notes Deprecated since version 0.1.7: Use ainvoke instead. Parameters messages (List[BaseMessage]) – stop (Optional[Sequence[str]]) – kwargs (Any) – Return type BaseMessage assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}}
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-6
{'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Union[PromptValue, str, Sequence[Union[BaseMessage, Tuple[str, str], str, Dict[str, Any]]]]) – config (Optional[RunnableConfig]) – stop (Optional[List[str]]) – kwargs (Any) – Return type AsyncIterator[str]
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-7
kwargs (Any) – Return type AsyncIterator[str] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”)
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-8
on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} {“generations”: […], “llm_output”: None, …} on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_stream some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_chunk [retriever name] {documents: […]} on_retriever_end [retriever name] {“query”: “hello”} {documents: […]} on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-9
format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v1") ] # will produce the following events (run_id has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1']) – The version of the schema to use. Currently only version 1 is available.
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html
be44b8defb38-10
Currently only version 1 is available. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.RELLM.html