library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
forward
|
def forward(self, x):
return x
|
def forward(self, x, y):
return self.b(self.a(x + y))
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(100, 100)
|
def __init__(self) -> None:
super().__init__()
self.a = nn.Linear(2, 2)
self.b = nn.Linear(2, 2)
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_memory.py
|
forward
|
def forward(self, x):
if self.with_checkpoint:
return self.head(checkpoint(self.blocks, self.stem(x)))
else:
return self.head(self.blocks(self.stem(x)))
|
def forward(self, x):
if self.with_checkpoint:
return self.head(checkpoint(self.blocks, self.stem(x), use_reentrant=True))
else:
return self.head(self.blocks(self.stem(x)))
|
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.utils.checkpoint import checkpoint
class Model(nn.Module):
|
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.utils.checkpoint import checkpoint
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_meta.py
|
_reset_params_if_meta
|
def _reset_params_if_meta(is_meta, model):
# For torchdistX init, we don't need to call reset_params, as
# deferred_init(model).materialize() is equivalent to model().
if is_meta:
model.reset_parameters()
class MyLinear(nn.Linear):
"""
Linear layer with deterministic reset_parameters for testing.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def reset_parameters(self, *args, **kwargs):
with torch.no_grad():
self.weight.fill_(1)
class MyModel(nn.Module):
def __init__(self, device):
super().__init__()
self.lin1 = MyLinear(2, 2, bias=False, device=device)
self.lin2 = MyLinear(2, 2, bias=False, device=device)
def forward(self, x):
return self.lin2(self.lin1(x))
def reset_parameters(self, *args, **kwargs):
for m in [self.lin1, self.lin2]:
if not isinstance(m, FSDP):
m.reset_parameters()
class NestedModel(nn.Module):
def __init__(self, device):
super().__init__()
self.lin1 = MyLinear(2, 2, bias=False, device=device)
self.lin1 = wrap(self.lin1)
self.lin2 = MyLinear(2, 2, bias=False, device=device)
self.l3 = MyModel(device=device)
self.l3 = wrap(self.l3)
def forward(self, x):
return self.l3(self.lin2(self.lin1(x)))
def reset_parameters(self):
for m in [self.lin1, self.lin2, self.l3]:
if not isinstance(m, FSDP):
m.reset_parameters()
|
def _reset_params_if_meta(is_meta: bool, model: nn.Module):
# For torchdistX init, we don't need to call reset_params, as
# deferred_init(model).materialize() is equivalent to model().
if is_meta:
for module in model.modules():
# Assume that a module has `reset_parameters()` iff it has directly
# managed parameters or buffers
if hasattr(module, "reset_parameters"):
module.reset_parameters()
class MyLinear(nn.Linear):
"""
Linear layer with deterministic reset_parameters for testing.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def reset_parameters(self, *args, **kwargs):
torch.manual_seed(42)
with torch.no_grad():
# Use an initialization method that depends on shape
torch.nn.init.xavier_uniform_(self.weight, 1.0)
class MyBuffer(nn.Module):
def __init__(self, device: torch.device):
super().__init__()
self.buf = torch.nn.Buffer(torch.empty((3, 3), device=device))
def reset_parameters(self, *args, **kwargs):
torch.manual_seed(42)
# Use an initialization method that depends on shape
torch.nn.init.xavier_uniform_(self.buf, 0.5)
class MyModel(nn.Module):
def __init__(self, device: torch.device):
super().__init__()
self.lin1 = MyLinear(2, 2, bias=False, device=device)
self.lin2 = MyLinear(2, 2, bias=False, device=device)
self.buf_mod = MyBuffer(device)
def forward(self, x):
return self.lin2(self.lin1(x))
class NestedModel(nn.Module):
def __init__(self, device):
super().__init__()
self.lin1 = MyLinear(2, 2, bias=False, device=device)
self.lin1 = wrap(self.lin1)
self.lin2 = MyLinear(2, 2, bias=False, device=device)
self.l3 = MyModel(device=device)
self.l3 = wrap(self.l3)
def forward(self, x):
return self.l3(self.lin2(self.lin1(x)))
|
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
|
import itertools
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_meta.py
|
reset_parameters
|
def reset_parameters(self, *args, **kwargs):
with torch.no_grad():
self.weight.fill_(1)
|
def reset_parameters(self, *args, **kwargs):
torch.manual_seed(42)
with torch.no_grad():
# Use an initialization method that depends on shape
torch.nn.init.xavier_uniform_(self.weight, 1.0)
|
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
class MyLinear(nn.Linear):
|
import itertools
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
class MyLinear(nn.Linear):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_meta.py
|
reset_parameters
|
def reset_parameters(self, *args, **kwargs):
with torch.no_grad():
self.weight.fill_(1)
|
def reset_parameters(self, *args, **kwargs):
torch.manual_seed(42)
with torch.no_grad():
# Use an initialization method that depends on shape
torch.nn.init.xavier_uniform_(self.weight, 1.0)
|
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
class MyLinear(nn.Linear):
|
import itertools
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
class MyLinear(nn.Linear):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_meta.py
|
reset_parameters
|
def reset_parameters(self, *args, **kwargs):
with torch.no_grad():
self.weight.fill_(1)
|
def reset_parameters(self, *args, **kwargs):
torch.manual_seed(42)
with torch.no_grad():
# Use an initialization method that depends on shape
torch.nn.init.xavier_uniform_(self.weight, 1.0)
|
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
class MyLinear(nn.Linear):
|
import itertools
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
class MyLinear(nn.Linear):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_meta.py
|
reset_parameters
|
def reset_parameters(self, *args, **kwargs):
with torch.no_grad():
self.weight.fill_(1)
|
def reset_parameters(self, *args, **kwargs):
torch.manual_seed(42)
with torch.no_grad():
# Use an initialization method that depends on shape
torch.nn.init.xavier_uniform_(self.weight, 1.0)
|
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
class MyLinear(nn.Linear):
|
import itertools
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
class MyLinear(nn.Linear):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_meta.py
|
_init_with_reset_params
|
def _init_with_reset_params(module):
"""
to_empty + reset_parameters() init function example for modules
initailized with device="meta"
"""
is_meta = any(t.is_meta for t in module.parameters())
if is_meta:
module.to_empty(device=torch.cuda.current_device())
with torch.no_grad():
module.reset_parameters()
|
def _init_with_reset_params(module: nn.Module):
"""
to_empty + reset_parameters() init function example for modules
initialized with device="meta"
"""
has_meta_states = any(
t.is_meta
for t in itertools.chain(
module.parameters(recurse=False), module.buffers(recurse=False)
)
)
if has_meta_states:
device = torch.device("cuda", torch.cuda.current_device())
module.to_empty(device=device, recurse=False)
module.reset_parameters()
|
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
|
import itertools
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_meta.py
|
_init_with_torchdistX
|
def _init_with_torchdistX(module):
"""
torchdistX-based deferred module initialization function example
using ``materialize_module``.
"""
assert _TORCHDISTX_AVAIL
def check_fn(k):
return not isinstance(k, FSDP)
deferred_init.materialize_module(module, check_fn=check_fn)
class TestFSDPWithMetaDevice(FSDPTest):
@property
def world_size(self):
return 2
@property
def process_group(self):
return dist.distributed_c10d._get_default_group()
def _compare_fsdp(self, fsdp1, fsdp2):
with FSDP.summon_full_params(fsdp1):
with FSDP.summon_full_params(fsdp2):
for p1, p2 in zip(fsdp1.parameters(), fsdp2.parameters()):
self.assertTrue(torch.allclose(p1, p2), f"{p1} vs {p2}")
def _test_simple_model_with_meta_device(self, meta_module_fn, init_fn=None):
# Create model on meta device and wrap with FSDP.
model = meta_module_fn()
is_meta = next(model.parameters()).is_meta
fsdp_meta = FSDP(
model,
auto_wrap_policy=always_wrap,
param_init_fn=init_fn,
)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
# Test to make sure it is the same model parameters as regular FSDP
# approach.
regular = MyModel(device="cuda")
_reset_params_if_meta(is_meta, regular)
fsdp_regular = FSDP(regular, auto_wrap_policy=always_wrap)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
self._compare_fsdp(fsdp_meta, fsdp_regular)
inp = torch.randn(10, 2, device="cuda")
fsdp_meta(inp).sum().backward()
fsdp_regular(inp).sum().backward()
meta_opt.step()
regular_opt.step()
self._compare_fsdp(fsdp_meta, fsdp_regular)
# Test that meta init works if all submodules are contained in only a
# single FSDP unit.
model = meta_module_fn()
fsdp_meta = FSDP(model, param_init_fn=init_fn)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
regular = MyModel(device="cuda")
_reset_params_if_meta(is_meta, regular)
fsdp_regular = FSDP(regular, auto_wrap_policy=always_wrap)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
# Run a forward + backward pass + optimizer step
fsdp_meta(inp).sum().backward()
fsdp_regular(inp).sum().backward()
meta_opt.step()
regular_opt.step()
self._compare_fsdp(fsdp_meta, fsdp_regular)
@skip_if_lt_x_gpu(2)
def test_simple_model_with_meta_device_reset_params(self):
def meta_module_fn():
return MyModel(device="meta")
self._test_simple_model_with_meta_device(
meta_module_fn, _init_with_reset_params
)
@skip_if_lt_x_gpu(2)
def test_simple_model_with_meta_device_default_init(self):
def meta_module_fn():
return MyModel(device="meta")
self._test_simple_model_with_meta_device(meta_module_fn)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
def test_simple_model_with_torchdistX_default_init(self):
def meta_module_fn():
return deferred_init.deferred_init(MyModel, device="cuda")
self._test_simple_model_with_meta_device(meta_module_fn)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
def test_simple_model_with_torchdistX_init_fn(self):
def meta_module_fn():
return deferred_init.deferred_init(MyModel, device="cuda")
self._test_simple_model_with_meta_device(
meta_module_fn, init_fn=_init_with_torchdistX
)
def _test_nested_model_with_meta_device(
self, auto_wrap, meta_module_fn, init_fn=None
):
if auto_wrap:
module = meta_module_fn()
is_meta = next(module.parameters()).is_meta
fsdp_meta = FSDP(
module,
auto_wrap_policy=always_wrap,
param_init_fn=init_fn,
)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
module_regular = NestedModel(device="cuda")
_reset_params_if_meta(is_meta, module_regular)
fsdp_regular = FSDP(
module_regular,
auto_wrap_policy=always_wrap,
)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
else:
with enable_wrap(
wrapper_cls=FSDP,
param_init_fn=init_fn,
):
module = meta_module_fn()
is_meta = next(module.parameters()).is_meta
# Non FSDP modules will still be initialized because they bubble up
# to be part of a larger FSDP unit.
fsdp_meta = wrap(module)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
# Init and reset parameters before wrapping so that reset_params
# matches up with meta device's initialization.
module_regular = NestedModel(device="cuda")
_reset_params_if_meta(is_meta, module_regular)
with enable_wrap(wrapper_cls=FSDP):
module_regular.lin1 = wrap(module_regular.lin1)
module_regular.l3 = wrap(module_regular.l3)
fsdp_regular = wrap(module_regular)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
# Compare it before training
self._compare_fsdp(fsdp_meta, fsdp_regular)
inp = torch.randn(10, 2, device="cuda")
fsdp_meta(inp).sum().backward()
fsdp_regular(inp).sum().backward()
meta_opt.step()
regular_opt.step()
self._compare_fsdp(fsdp_meta, fsdp_regular)
@skip_if_lt_x_gpu(2)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_meta_device_reset_params(self, auto_wrap):
def meta_module_fn():
return NestedModel(device="meta")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap,
meta_module_fn=meta_module_fn,
init_fn=_init_with_reset_params,
)
@skip_if_lt_x_gpu(2)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_meta_device_default_init(self, auto_wrap):
def meta_module_fn():
return NestedModel(device="meta")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap,
meta_module_fn=meta_module_fn,
)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_torchdistX_default_init(self, auto_wrap):
def meta_module_fn():
return deferred_init.deferred_init(NestedModel, device="cuda")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap, meta_module_fn=meta_module_fn
)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_torchdistX_init_fn(self, auto_wrap):
def meta_module_fn():
return deferred_init.deferred_init(NestedModel, device="cuda")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap,
meta_module_fn=meta_module_fn,
init_fn=_init_with_torchdistX,
)
def _test_bad_arg(self, meta_module_fn):
mod = meta_module_fn()
with self.assertRaisesRegex(ValueError, "to be callable"):
FSDP(mod, param_init_fn=42)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
def test_bad_arg_torchdistx(self):
def meta_module_fn():
return deferred_init.deferred_init(NestedModel, "cuda")
self._test_bad_arg(meta_module_fn)
@skip_if_lt_x_gpu(2)
def test_bad_arg_meta(self):
def meta_module_fn():
return NestedModel(device="meta")
self._test_bad_arg(meta_module_fn)
@skip_if_lt_x_gpu(2)
def test_meta_device_with_mixed_precision(self):
"""
Tests meta device initialization with a ``param_init_fn`` when
specifying mixed precision with ``param_dtype=torch.float32``.
"""
class FakeLinear(nn.Module):
def __init__(
self, in_dim: int, out_dim: int, device: Union[torch.device, str]
) -> None:
super().__init__()
self.weight = nn.Parameter(
torch.randn((in_dim, out_dim), device=device)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x @ self.weight
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.lin1 = nn.Linear(5, 5, device="meta")
self.lin2 = FakeLinear(5, 5, device="meta")
self.relu = nn.ReLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.relu(self.lin1(x)))
def _module_init_fn(self, module: nn.Module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.1)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
def _param_init_fn(module: nn.Module) -> None:
# TODO: `module.to_empty()` is not generally correct for meta
# device initialization.
# https://github.com/pytorch/pytorch/issues/90465
module.to_empty(device=torch.device("cuda"))
module.apply(model._module_init_fn)
model = Model()
# Wrap `lin1` and the top level `model` to create nested FSDP instances
# where each instance has parameters
FSDP(
model,
auto_wrap_policy=ModuleWrapPolicy({nn.Linear}),
mixed_precision=MixedPrecision(
param_dtype=torch.float32, reduce_dtype=torch.float16
),
param_init_fn=_param_init_fn,
device_id=torch.cuda.current_device(),
)
instantiate_parametrized_tests(TestFSDPWithMetaDevice)
if __name__ == "__main__":
run_tests()
|
def _init_with_torchdistX(module: nn.Module):
"""
torchdistX-based deferred module initialization function example
using ``materialize_module``.
"""
assert _TORCHDISTX_AVAIL
def check_fn(k):
return not isinstance(k, FSDP)
deferred_init.materialize_module(module, check_fn=check_fn)
class TestFSDPWithMetaDevice(FSDPTest):
@property
def world_size(self):
return 2
@property
def process_group(self):
return dist.distributed_c10d._get_default_group()
def _compare_fsdp(self, fsdp1, fsdp2):
with FSDP.summon_full_params(fsdp1):
with FSDP.summon_full_params(fsdp2):
for p1, p2 in zip(fsdp1.parameters(), fsdp2.parameters()):
self.assertTrue(torch.allclose(p1, p2), f"{p1} vs {p2}")
def _test_simple_model_with_meta_device(self, meta_module_fn, init_fn=None):
# Create model on meta device and wrap with FSDP.
model = meta_module_fn()
is_meta = next(model.parameters()).is_meta
fsdp_meta = FSDP(
model,
auto_wrap_policy=always_wrap,
param_init_fn=init_fn,
)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
# Test to make sure it is the same model parameters as regular FSDP
# approach.
regular = MyModel(device="cuda")
_reset_params_if_meta(is_meta, regular)
fsdp_regular = FSDP(regular, auto_wrap_policy=always_wrap)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
self._compare_fsdp(fsdp_meta, fsdp_regular)
inp = torch.randn(10, 2, device="cuda")
fsdp_meta(inp).sum().backward()
fsdp_regular(inp).sum().backward()
meta_opt.step()
regular_opt.step()
self._compare_fsdp(fsdp_meta, fsdp_regular)
# Test that meta init works if all submodules are contained in only a
# single FSDP unit.
model = meta_module_fn()
fsdp_meta = FSDP(model, param_init_fn=init_fn)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
regular = MyModel(device="cuda")
_reset_params_if_meta(is_meta, regular)
fsdp_regular = FSDP(regular, auto_wrap_policy=always_wrap)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
# Run a forward + backward pass + optimizer step
fsdp_meta(inp).sum().backward()
fsdp_regular(inp).sum().backward()
meta_opt.step()
regular_opt.step()
self._compare_fsdp(fsdp_meta, fsdp_regular)
@skip_if_lt_x_gpu(2)
def test_simple_model_with_meta_device_reset_params(self):
def meta_module_fn():
return MyModel(device="meta")
self._test_simple_model_with_meta_device(
meta_module_fn, _init_with_reset_params
)
@skip_if_lt_x_gpu(2)
def test_simple_model_with_meta_device_default_init(self):
def meta_module_fn():
return MyModel(device="meta")
self._test_simple_model_with_meta_device(meta_module_fn)
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
def test_simple_model_with_torchdistX_default_init(self):
def meta_module_fn():
return deferred_init.deferred_init(MyModel, device="cuda")
self._test_simple_model_with_meta_device(meta_module_fn)
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
def test_simple_model_with_torchdistX_init_fn(self):
def meta_module_fn():
return deferred_init.deferred_init(MyModel, device="cuda")
self._test_simple_model_with_meta_device(
meta_module_fn, init_fn=_init_with_torchdistX
)
def _test_nested_model_with_meta_device(
self, auto_wrap, meta_module_fn, init_fn=None
):
if auto_wrap:
module = meta_module_fn()
is_meta = (
next(module.parameters()).is_meta or next(module.buffers()).is_meta
)
fsdp_meta = FSDP(
module,
auto_wrap_policy=always_wrap,
param_init_fn=init_fn,
)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
module_regular = NestedModel(device="cuda")
_reset_params_if_meta(is_meta, module_regular)
fsdp_regular = FSDP(
module_regular,
auto_wrap_policy=always_wrap,
)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
else:
with enable_wrap(
wrapper_cls=FSDP,
param_init_fn=init_fn,
):
module = meta_module_fn()
is_meta = next(module.parameters()).is_meta
# Non FSDP modules will still be initialized because they bubble up
# to be part of a larger FSDP unit.
fsdp_meta = wrap(module)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
# Init and reset parameters before wrapping so that reset_params
# matches up with meta device's initialization.
module_regular = NestedModel(device="cuda")
_reset_params_if_meta(is_meta, module_regular)
with enable_wrap(wrapper_cls=FSDP):
module_regular.lin1 = wrap(module_regular.lin1)
module_regular.l3 = wrap(module_regular.l3)
fsdp_regular = wrap(module_regular)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
# Compare it before training
self._compare_fsdp(fsdp_meta, fsdp_regular)
inp = torch.randn(10, 2, device="cuda")
fsdp_meta(inp).sum().backward()
fsdp_regular(inp).sum().backward()
meta_opt.step()
regular_opt.step()
self._compare_fsdp(fsdp_meta, fsdp_regular)
@skip_if_lt_x_gpu(2)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_meta_device_reset_params(self, auto_wrap):
def meta_module_fn():
return NestedModel(device="meta")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap,
meta_module_fn=meta_module_fn,
init_fn=_init_with_reset_params,
)
@skip_if_lt_x_gpu(2)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_meta_device_default_init(self, auto_wrap):
def meta_module_fn():
return NestedModel(device="meta")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap,
meta_module_fn=meta_module_fn,
)
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_torchdistX_default_init(self, auto_wrap):
def meta_module_fn():
return deferred_init.deferred_init(NestedModel, device="cuda")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap, meta_module_fn=meta_module_fn
)
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_torchdistX_init_fn(self, auto_wrap):
def meta_module_fn():
return deferred_init.deferred_init(NestedModel, device="cuda")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap,
meta_module_fn=meta_module_fn,
init_fn=_init_with_torchdistX,
)
def _test_bad_arg(self, meta_module_fn):
mod = meta_module_fn()
with self.assertRaisesRegex(ValueError, "to be callable"):
FSDP(mod, param_init_fn=42)
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _TORCHDISTX_AVAIL,
"Test requires torchdistX: https://github.com/pytorch/torchdistX",
)
def test_bad_arg_torchdistx(self):
def meta_module_fn():
return deferred_init.deferred_init(NestedModel, "cuda")
self._test_bad_arg(meta_module_fn)
@skip_if_lt_x_gpu(2)
def test_bad_arg_meta(self):
def meta_module_fn():
return NestedModel(device="meta")
self._test_bad_arg(meta_module_fn)
@skip_if_lt_x_gpu(2)
def test_meta_device_with_mixed_precision(self):
"""
Tests meta device initialization with a ``param_init_fn`` when
specifying mixed precision with ``param_dtype=torch.float32``.
"""
class FakeLinear(nn.Module):
def __init__(
self, in_dim: int, out_dim: int, device: Union[torch.device, str]
) -> None:
super().__init__()
self.weight = nn.Parameter(
torch.randn((in_dim, out_dim), device=device)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x @ self.weight
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.lin1 = nn.Linear(5, 5, device="meta")
self.lin2 = FakeLinear(5, 5, device="meta")
self.relu = nn.ReLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.relu(self.lin1(x)))
def _module_init_fn(self, module: nn.Module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.1)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
def _param_init_fn(module: nn.Module) -> None:
# TODO: `module.to_empty()` is not generally correct for meta
# device initialization.
# https://github.com/pytorch/pytorch/issues/90465
module.to_empty(device=torch.device("cuda"))
module.apply(model._module_init_fn)
model = Model()
# Wrap `lin1` and the top level `model` to create nested FSDP instances
# where each instance has parameters
FSDP(
model,
auto_wrap_policy=ModuleWrapPolicy({nn.Linear}),
mixed_precision=MixedPrecision(
param_dtype=torch.float32, reduce_dtype=torch.float16
),
param_init_fn=_param_init_fn,
device_id=torch.cuda.current_device(),
)
instantiate_parametrized_tests(TestFSDPWithMetaDevice)
if __name__ == "__main__":
run_tests()
|
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
|
import itertools
import sys
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.wrap import (
always_wrap_policy as always_wrap,
enable_wrap,
ModuleWrapPolicy,
wrap,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
_TORCHDISTX_AVAIL = True
from torchdistx import deferred_init
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_ignored_modules.py
|
test_ignored_states_auto_wrap
|
def test_ignored_states_auto_wrap(self):
transformer_policy = functools.partial(
transformer_auto_wrap_policy, transformer_layer_cls={nn.Sequential}
)
self.run_subtests(
{
"policy": [transformer_policy, ModuleWrapPolicy((nn.Sequential,))],
"ignore_bias": [True, False],
},
self._test_ignored_states_auto_wrap,
)
|
import functools
import math
import sys
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import _get_module_fsdp_state
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, transformer_auto_wrap_policy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPIgnoredModules(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
init_nested_wrapped_module
|
def init_nested_wrapped_module():
return NestedWrappedModule.init(
self.process_group,
FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_NEVER,
)
with self.assertRaisesRegex(
ValueError,
"The module has CPU parameters or buffers when `sync_module_states=True`",
):
FSDP(
init_nested_wrapped_module(),
self.process_group,
sync_module_states=True,
)
# Check that `device_id` with `sync_module_states=True` works
nested_wrapped_module = init_nested_wrapped_module()
nested_wrapped_module.buf = nn.Buffer(
torch.ones((2, 2), device="cpu") * self.rank
)
nested_wrapped_module.module[0].buf = nn.Buffer(
torch.ones((3, 2), device="cpu") * self.rank
)
nested_wrapped_module = FSDP(
nested_wrapped_module,
self.process_group,
auto_wrap_policy=ModuleWrapPolicy({nn.Linear}),
device_id=torch.cuda.current_device(),
sync_module_states=True,
)
# Each rank's buffers should be 0s since rank 0 is the source, and they
# should be on GPU since we specified `device_id`
self.assertEqual(
nested_wrapped_module.buf.device,
torch.device("cuda", torch.cuda.current_device()),
)
self.assertEqual(nested_wrapped_module.buf, torch.zeros((2, 2)))
self.assertEqual(
nested_wrapped_module.module.module[0].buf.device,
torch.device("cuda", torch.cuda.current_device()),
)
self.assertEqual(
nested_wrapped_module.module.module[0].buf, torch.zeros((3, 2))
)
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
forward
|
def forward(self, x):
return x
|
def forward(self, x, y):
return self.b(self.a(x + y))
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
forward
|
def forward(self, x):
return x
|
def forward(self, x, y):
return self.b(self.a(x + y))
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
_check_equal
|
def _check_equal(local, fsdp):
with FSDP.summon_full_params(fsdp):
for p1, p2 in zip(fsdp.parameters(), local.parameters()):
torch.testing.assert_close(p1, p2)
for sharding_strategy in [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
]:
with self.subTest(sharding_strategy=sharding_strategy):
fsdp_ctor = functools.partial(FSDP, sharding_strategy=sharding_strategy)
m = MyModule().cuda()
m_local = deepcopy(m)
local_m = m_local
prev_params = [p.clone() for p in m_local.parameters()]
m.lin1 = fsdp_ctor(m.lin1)
m = fsdp_ctor(m)
_check_equal(m_local, m)
opt = torch.optim.SGD(m.parameters(), lr=1e-3)
opt_local = torch.optim.SGD(local_m.parameters(), lr=1e-3)
for i in range(6):
t = torch.ones(4, device="cuda")
a, b = m(t)
local_a, local_b = local_m(t)
if i < 2:
# use both params in loss computation. Later,
# b will go unused and we check grads are the
# same as local training.
loss = (a @ b).sum()
loss_local = (local_a @ local_b).sum()
else:
loss = a.sum()
loss_local = local_a.sum()
loss.backward()
loss_local.backward()
_check_resharded(m)
opt.step()
opt_local.step()
_check_equal(m_local, m)
# Ensure at least some change from previous params, otherwise
# above check would be vacuously true.
self.assertTrue(
any(
not torch.equal(p1, p2)
for p1, p2 in zip(prev_params, m_local.parameters())
)
)
prev_params = [p.clone() for p in local_m.parameters()]
opt.zero_grad()
opt_local.zero_grad()
dist.barrier()
|
def _check_equal(local, fsdp):
with FSDP.summon_full_params(fsdp):
for p1, p2 in zip(fsdp.parameters(), local.parameters()):
torch.testing.assert_close(p1, p2)
fsdp_ctor = functools.partial(FSDP, sharding_strategy=sharding_strategy)
m = MyModule().cuda()
m_local = deepcopy(m)
local_m = m_local
prev_params = [p.clone() for p in m_local.parameters()]
m.lin1 = fsdp_ctor(m.lin1)
m = fsdp_ctor(m)
_check_equal(m_local, m)
opt = torch.optim.SGD(m.parameters(), lr=1e-3)
opt_local = torch.optim.SGD(local_m.parameters(), lr=1e-3)
for i in range(6):
t = torch.ones(4, device="cuda")
a, b = m(t)
local_a, local_b = local_m(t)
if i < 2:
# use both params in loss computation. Later,
# b will go unused and we check grads are the
# same as local training.
loss = (a @ b).sum()
loss_local = (local_a @ local_b).sum()
else:
loss = a.sum()
loss_local = local_a.sum()
loss.backward()
loss_local.backward()
_check_resharded(m)
opt.step()
opt_local.step()
_check_equal(m_local, m)
# Ensure at least some change from previous params, otherwise
# above check would be vacuously true.
self.assertTrue(
any(
not torch.equal(p1, p2)
for p1, p2 in zip(prev_params, m_local.parameters())
)
)
prev_params = [p.clone() for p in local_m.parameters()]
opt.zero_grad()
opt_local.zero_grad()
dist.barrier()
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(100, 100)
|
def __init__(self) -> None:
super().__init__()
self.a = nn.Linear(2, 2)
self.b = nn.Linear(2, 2)
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
forward
|
def forward(self, x):
return x
|
def forward(self, x, y):
return self.b(self.a(x + y))
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
forward
|
def forward(self, x):
return x
|
def forward(self, x, y):
return self.b(self.a(x + y))
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
_check_resharded
|
def _check_resharded(fsdp_module):
for handle in fsdp_module._handles:
param = handle.flat_param
if handle.uses_sharded_strategy:
full_param = param._full_param_padded
self.assertEqual(full_param.storage().size(), 0)
self.assertEqual(param.data_ptr(), param._local_shard.data_ptr())
|
def _check_resharded(fsdp_module):
handle = fsdp_module._handle
if not handle:
return
param = handle.flat_param
if handle.uses_sharded_strategy:
full_param = param._full_param_padded
self.assertEqual(full_param.storage().size(), 0)
self.assertEqual(param.data_ptr(), param._local_shard.data_ptr())
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
_check_equal
|
def _check_equal(local, fsdp):
with FSDP.summon_full_params(fsdp):
for p1, p2 in zip(fsdp.parameters(), local.parameters()):
torch.testing.assert_close(p1, p2)
for sharding_strategy in [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
]:
with self.subTest(sharding_strategy=sharding_strategy):
fsdp_ctor = functools.partial(FSDP, sharding_strategy=sharding_strategy)
m = MyModule().cuda()
m_local = deepcopy(m)
local_m = m_local
prev_params = [p.clone() for p in m_local.parameters()]
m.lin1 = fsdp_ctor(m.lin1)
m = fsdp_ctor(m)
_check_equal(m_local, m)
opt = torch.optim.SGD(m.parameters(), lr=1e-3)
opt_local = torch.optim.SGD(local_m.parameters(), lr=1e-3)
for i in range(6):
t = torch.ones(4, device="cuda")
a, b = m(t)
local_a, local_b = local_m(t)
if i < 2:
# use both params in loss computation. Later,
# b will go unused and we check grads are the
# same as local training.
loss = (a @ b).sum()
loss_local = (local_a @ local_b).sum()
else:
loss = a.sum()
loss_local = local_a.sum()
loss.backward()
loss_local.backward()
_check_resharded(m)
opt.step()
opt_local.step()
_check_equal(m_local, m)
# Ensure at least some change from previous params, otherwise
# above check would be vacuously true.
self.assertTrue(
any(
not torch.equal(p1, p2)
for p1, p2 in zip(prev_params, m_local.parameters())
)
)
prev_params = [p.clone() for p in local_m.parameters()]
opt.zero_grad()
opt_local.zero_grad()
dist.barrier()
|
def _check_equal(local, fsdp):
with FSDP.summon_full_params(fsdp):
for p1, p2 in zip(fsdp.parameters(), local.parameters()):
torch.testing.assert_close(p1, p2)
fsdp_ctor = functools.partial(FSDP, sharding_strategy=sharding_strategy)
m = MyModule().cuda()
m_local = deepcopy(m)
local_m = m_local
prev_params = [p.clone() for p in m_local.parameters()]
m.lin1 = fsdp_ctor(m.lin1)
m = fsdp_ctor(m)
_check_equal(m_local, m)
opt = torch.optim.SGD(m.parameters(), lr=1e-3)
opt_local = torch.optim.SGD(local_m.parameters(), lr=1e-3)
for i in range(6):
t = torch.ones(4, device="cuda")
a, b = m(t)
local_a, local_b = local_m(t)
if i < 2:
# use both params in loss computation. Later,
# b will go unused and we check grads are the
# same as local training.
loss = (a @ b).sum()
loss_local = (local_a @ local_b).sum()
else:
loss = a.sum()
loss_local = local_a.sum()
loss.backward()
loss_local.backward()
_check_resharded(m)
opt.step()
opt_local.step()
_check_equal(m_local, m)
# Ensure at least some change from previous params, otherwise
# above check would be vacuously true.
self.assertTrue(
any(
not torch.equal(p1, p2)
for p1, p2 in zip(prev_params, m_local.parameters())
)
)
prev_params = [p.clone() for p in local_m.parameters()]
opt.zero_grad()
opt_local.zero_grad()
dist.barrier()
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(100, 100)
|
def __init__(self) -> None:
super().__init__()
self.a = nn.Linear(2, 2)
self.b = nn.Linear(2, 2)
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(100, 100)
|
def __init__(self) -> None:
super().__init__()
self.a = nn.Linear(2, 2)
self.b = nn.Linear(2, 2)
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
test_homogeneous_attributes
|
def test_homogeneous_attributes(self):
"""
Tests that passing heterogeneous values for attributes designated as
homogeneous raises an error.
"""
# Manually construct this list but verify against the global list of
# homogeneous attribute names
all_attr_name_and_values = [
("_use_orig_params", False, True),
("limit_all_gathers", False, True),
]
self.assertEqual(
[
attr_name_and_values[0]
for attr_name_and_values in all_attr_name_and_values
],
HOMOGENEOUS_ATTR_NAMES,
)
self.run_subtests(
{"attr_name_and_values": all_attr_name_and_values},
self._test_homogeneous_attributes,
)
|
def test_homogeneous_attributes(self):
"""
Tests that passing heterogeneous values for attributes designated as
homogeneous raises an error.
"""
# Manually construct this list but verify against the global list of
# homogeneous attribute names
all_attr_name_and_values = [
("_use_orig_params", False, True),
("limit_all_gathers", False, True),
("_use_full_prec_in_eval", False, True),
]
self.assertEqual(
[
attr_name_and_values[0]
for attr_name_and_values in all_attr_name_and_values
],
HOMOGENEOUS_ATTR_NAMES,
)
self.run_subtests(
{"attr_name_and_values": all_attr_name_and_values},
self._test_homogeneous_attributes,
)
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPMisc(FSDPTest):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPMiscMultiThread(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
__init__
|
def __init__(self, param_dtype, buffer_name="buffer"):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
|
def __init__(self, param_dtype, buffer_name="buffer", run_checks=True):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
self.run_checks = run_checks
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
forward
|
def forward(self, tup):
# Param and input should be the mixed precision type
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _rebuild_full_param should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
def forward(self, tup):
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
if self.run_checks:
# Param and input should be the mixed precision type
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _unshard should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
never_wrap_policy
|
def never_wrap_policy(*args, **kwargs):
return False
net = BatchNormNet().cuda()
if convert_sync_bn:
net = nn.SyncBatchNorm.convert_sync_batchnorm(net)
# FSDP detects that mixed precision + batchnorm will cause issues
# and thus wrap batchnorm in a distinct FSDP unit that does not
# use mixed precision.
mp_config = MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
)
with self.assertWarnsRegex(
expected_warning=UserWarning,
expected_regex="batch norm submodules will be wrapped as separate",
):
model = FSDP(
net,
mixed_precision=mp_config,
auto_wrap_policy=never_wrap_policy,
)
bn = model.bn
self.assertTrue(isinstance(bn, FSDP))
# policy should not have wrapped any other submodules
self.assertFalse(isinstance(model.fc1, FSDP))
self.assertFalse(isinstance(model.fc2, FSDP))
no_mixed_precision = MixedPrecision()
self.assertEqual(no_mixed_precision, bn.mixed_precision)
self.assertNotEqual(no_mixed_precision, model.mixed_precision)
inp = torch.randn((1, 2), device="cuda")
# Without FSDP BN mixed precision fix, this would result in
# RuntimeError: Expected counts to have type Half but got Float
# for syncBN
model(inp).sum().backward()
|
def never_wrap_policy(*args, **kwargs):
return False
net = BatchNormNet().cuda()
if convert_sync_bn:
net = nn.SyncBatchNorm.convert_sync_batchnorm(net)
# FSDP detects that mixed precision + batchnorm will cause issues
# and thus wrap batchnorm in a distinct FSDP unit that does not
# use mixed precision.
mp_config = MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
_module_classes_to_ignore=[_BatchNorm, nn.LayerNorm],
)
with self.assertWarnsRegex(
expected_warning=UserWarning,
expected_regex="These modules will be wrapped as separate FSDP",
):
model = FSDP(
net,
mixed_precision=mp_config,
auto_wrap_policy=never_wrap_policy,
)
no_mp = MixedPrecision()
for mod in [model.ln, model.bn]:
self.assertTrue(isinstance(mod, FSDP))
self.assertEqual(no_mp, mod.mixed_precision)
# policy should not have wrapped any other submodules
for mod in [model.fc1, model.fc2, model.fc3]:
self.assertFalse(isinstance(mod, FSDP))
# Overall mixed precision is still enabled
self.assertEqual(mp_config, model.mixed_precision)
inp = torch.randn((1, 2), device="cuda")
# Without FSDP BN mixed precision fix, this would result in
# RuntimeError: Expected counts to have type Half but got Float
# for syncBN
model(inp).sum().backward()
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
forward
|
def forward(self, tup):
# Param and input should be the mixed precision type
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _rebuild_full_param should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
def forward(self, tup):
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
if self.run_checks:
# Param and input should be the mixed precision type
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _unshard should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
test_unsafe_setattr
|
def test_unsafe_setattr(self):
"""
Tests that the environment variable for using unsafe setattr gates as
expected.
"""
self.run_subtests(
{"use_orig_params": [False, True]},
self._test_unsafe_setattr,
)
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPMiscWorldSize1(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
_test_unsafe_setattr
|
instantiate_parametrized_tests(TestFSDPMisc)
if __name__ == "__main__":
run_tests()
|
def _test_unsafe_setattr(self, use_orig_params: bool):
called_setattr_override = False
class SetattrLinear(nn.Module):
def __init__(self, in_dim: int, out_dim: int, device: torch.device) -> None:
super().__init__()
self.weight = nn.Parameter(
torch.randn((in_dim, out_dim), device=device)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x @ self.weight
def __setattr__(self, name: str, value: Any) -> None:
nonlocal called_setattr_override
called_setattr_override = True
return super().__setattr__(name, value)
# Construct FSDP module without changing any environment variables and
# run forward, which triggers both unsharded and sharded view setting
module = SetattrLinear(5, 5, torch.device("cuda"))
fsdp_module = FSDP(module, use_orig_params=use_orig_params)
inp = torch.randn((8, 5), device=torch.device("cuda"))
called_setattr_override = False
fsdp_module(inp)
self.assertTrue(called_setattr_override)
# Repeat with unsafe setattr explicitly enabled
os.environ[_FSDP_USE_UNSAFE_SETATTR] = "1"
module = SetattrLinear(5, 5, torch.device("cuda"))
fsdp_module = FSDP(module, use_orig_params=use_orig_params)
called_setattr_override = False
fsdp_module(inp)
self.assertFalse(called_setattr_override)
# Repeat with unsafe setattr explicitly disabled
os.environ[_FSDP_USE_UNSAFE_SETATTR] = "0"
module = SetattrLinear(5, 5, torch.device("cuda"))
fsdp_module = FSDP(module, use_orig_params=use_orig_params)
called_setattr_override = False
fsdp_module(inp)
self.assertTrue(called_setattr_override)
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPMiscWorldSize1(FSDPTestMultiThread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
__init__
|
def __init__(self, param_dtype, buffer_name="buffer"):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
|
def __init__(self, param_dtype, buffer_name="buffer", run_checks=True):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
self.run_checks = run_checks
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
forward
|
def forward(self, tup):
# Param and input should be the mixed precision type
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _rebuild_full_param should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
def forward(self, tup):
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
if self.run_checks:
# Param and input should be the mixed precision type
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _unshard should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
_get_simple_nested_model
|
def _get_simple_nested_model(self, param_dtype, *fsdp_args, **fsdp_kwargs):
model = FSDP(
nn.Sequential(
FSDP(
LinearMixedPrecision(param_dtype, buffer_name="buffer0").cuda(),
*fsdp_args,
**fsdp_kwargs,
),
LinearMixedPrecision(param_dtype, buffer_name="buffer1").cuda(),
),
*fsdp_args,
**fsdp_kwargs,
)
return model
|
def _get_simple_nested_model(
self, param_dtype, run_checks, *fsdp_args, **fsdp_kwargs
):
model = FSDP(
nn.Sequential(
FSDP(
LinearMixedPrecision(
param_dtype, buffer_name="buffer0", run_checks=run_checks
).cuda(),
*fsdp_args,
**fsdp_kwargs,
),
LinearMixedPrecision(
param_dtype, buffer_name="buffer1", run_checks=run_checks
).cuda(),
),
*fsdp_args,
**fsdp_kwargs,
)
return model
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class TestFSDPMixedPrecision(FSDPTest):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class TestFSDPMixedPrecision(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(100, 100)
|
def __init__(self) -> None:
super().__init__()
self.a = nn.Linear(2, 2)
self.b = nn.Linear(2, 2)
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
forward
|
def forward(self, x):
return x
|
def forward(self, x, y):
return self.b(self.a(x + y))
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
forward
|
def forward(self, x):
return x
|
def forward(self, x, y):
return self.b(self.a(x + y))
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
forward
|
def forward(self, x):
return x
|
def forward(self, x, y):
return self.b(self.a(x + y))
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
_check_resharded
|
def _check_resharded(fsdp_module):
for handle in fsdp_module._handles:
param = handle.flat_param
if handle.uses_sharded_strategy:
full_param = param._full_param_padded
self.assertEqual(full_param.storage().size(), 0)
self.assertEqual(param.data_ptr(), param._local_shard.data_ptr())
|
def _check_resharded(fsdp_module):
handle = fsdp_module._handle
if not handle:
return
param = handle.flat_param
if handle.uses_sharded_strategy:
full_param = param._full_param_padded
self.assertEqual(full_param.storage().size(), 0)
self.assertEqual(param.data_ptr(), param._local_shard.data_ptr())
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
verify_eval_buffer_dtype
|
def verify_eval_buffer_dtype(module, input):
expected_dtype = (
_BUFFER_ORIG_DTYPE if use_full_prec_in_eval else torch.float16
)
for buf in module.buffers():
self.assertEqual(expected_dtype, buf.dtype)
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
_get_underlying_module
|
def _get_underlying_module(m):
return m.module if isinstance(m, FSDP) else m
hook_handles = []
hook_handles.append(
_get_underlying_module(fsdp_model[0]).register_forward_pre_hook(
verify_eval_buffer_dtype
)
)
hook_handles.append(
_get_underlying_module(fsdp_model[1]).register_forward_pre_hook(
verify_eval_buffer_dtype
)
)
fsdp_model.eval()
fsdp_model((inp, self, fsdp_model, mp_config, torch.float32))
for hook_handle in hook_handles:
hook_handle.remove()
expected_dtype = (
_BUFFER_ORIG_DTYPE if use_full_prec_in_eval else torch.float16
)
for buf in fsdp_model.buffers():
self.assertEqual(expected_dtype, buf.dtype)
# model.train() + forward again should make buffers in fp16
fsdp_model.train()
fsdp_model((inp, self, fsdp_model, mp_config, torch.float32))
for buf in fsdp_model.buffers():
self.assertEqual(torch.float16, buf.dtype)
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
__init__
|
def __init__(self, param_dtype, buffer_name="buffer"):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
|
def __init__(self, param_dtype, buffer_name="buffer", run_checks=True):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
self.run_checks = run_checks
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
forward
|
def forward(self, tup):
# Param and input should be the mixed precision type
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _rebuild_full_param should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
def forward(self, tup):
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
if self.run_checks:
# Param and input should be the mixed precision type
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _unshard should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
__init__
|
def __init__(self, param_dtype, buffer_name="buffer"):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
|
def __init__(self, param_dtype, buffer_name="buffer", run_checks=True):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
self.run_checks = run_checks
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
__init__
|
def __init__(self, param_dtype, buffer_name="buffer"):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
|
def __init__(self, param_dtype, buffer_name="buffer", run_checks=True):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
self.run_checks = run_checks
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
forward
|
def forward(self, tup):
# Param and input should be the mixed precision type
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _rebuild_full_param should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
def forward(self, tup):
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
if self.run_checks:
# Param and input should be the mixed precision type
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _unshard should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
forward
|
def forward(self, tup):
# Param and input should be the mixed precision type
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _rebuild_full_param should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
def forward(self, tup):
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
if self.run_checks:
# Param and input should be the mixed precision type
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _unshard should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
test_train_ema_eval_flow
|
def test_train_ema_eval_flow(self):
"""
Tests a train -> EMA update -> eval flow with mixed precision enabled.
"""
self.run_subtests(
{
"sharding_strategy": [
# We mainly want to test `SHARD_GRAD_OP` since it surfaced
# the original bug of not using the right EMA parameters
# for eval, but we also test the others for completeness
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.FULL_SHARD,
ShardingStrategy.NO_SHARD,
]
},
self._test_train_ema_eval_flow,
)
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class TestFSDPTrainEval(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
_test_train_ema_eval_flow
|
def _test_train_ema_eval_flow(self, sharding_strategy: ShardingStrategy):
class TransformerWithEMA(nn.Module):
def __init__(self, device: torch.device):
super().__init__()
self.module = nn.Transformer(device=device)
self.ema_module = AveragedModel(
nn.Transformer(device=device),
multi_avg_fn=torch.optim.swa_utils.get_ema_multi_avg_fn(),
use_buffers=True,
)
def forward(self, *args, **kwargs):
# Use main copy for training and EMA copy for eval
if self.training:
return self.module(*args, **kwargs)
return self.ema_module(*args, **kwargs)
device = torch.device("cuda")
model = TransformerWithEMA(device=device)
policy = ModuleWrapPolicy(
{nn.Transformer, nn.TransformerEncoderLayer, nn.TransformerDecoderLayer}
)
mixed_precision = MixedPrecision(param_dtype=torch.float16)
fsdp_model = FSDP(
model,
auto_wrap_policy=policy,
mixed_precision=mixed_precision,
sharding_strategy=sharding_strategy,
)
optim = torch.optim.Adam(fsdp_model.module.parameters(), lr=1e-2)
if self.rank == 0:
print(fsdp_model)
torch.manual_seed(1 + self.rank)
eval_src = torch.randn((8, 1, 512), device=device)
eval_tgt = torch.randn((16, 1, 512), device=device)
eval_out_sums: List[torch.Tensor] = []
# An iteration consists of training forward/backward/optimizer,
# updating the EMA copy with the main copy, and eval forward
for _ in range(3):
fsdp_model.train()
train_src = torch.randn((8, 4, 512), device=device)
train_tgt = torch.randn((16, 4, 512), device=device)
train_out = fsdp_model(train_src, train_tgt)
train_out.sum().backward()
optim.step()
optim.zero_grad()
with FSDP.summon_full_params(fsdp_model):
fsdp_model.ema_module.update_parameters(fsdp_model.module)
fsdp_model.eval()
with torch.no_grad():
eval_out = fsdp_model(eval_src, eval_tgt)
eval_out_sums.append(eval_out.sum())
# Check that the eval outputs differ from iteration to iteration as a
# proxy for eval using the correct EMA parameters
for i in range(len(eval_out_sums) - 1):
self.assertNotEqual(eval_out_sums[i], eval_out_sums[i + 1])
self.assertNotEqual(eval_out_sums[0], eval_out_sums[-1])
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class TestFSDPTrainEval(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
__init__
|
def __init__(self, param_dtype, buffer_name="buffer"):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
|
def __init__(self, param_dtype, buffer_name="buffer", run_checks=True):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
# Use a configurable buffer name to avoid all submodules sharing the
# same buffer name, which may hide prefixed vs. unprefixed name bugs
self.buffer_name = buffer_name
self.register_buffer(buffer_name, torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
self.run_checks = run_checks
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_mixed_precision.py
|
forward
|
def forward(self, tup):
# Param and input should be the mixed precision type
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _rebuild_full_param should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
def forward(self, tup):
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
if self.run_checks:
# Param and input should be the mixed precision type
expected_param_type = (
mp_config.param_dtype
if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype
if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(getattr(self, self.buffer_name).dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _unshard should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.untyped_storage().size())
else:
cls.assertFalse(hasattr(param, "_mp_shard"))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
|
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
import contextlib
import itertools
import os
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, size_based_auto_wrap_policy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.optim.swa_utils import AveragedModel
from torch.testing._internal.common_distributed import (
SaveForwardInputsModel,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
skipIfNoTorchVision = skip_but_pass_in_sandcastle_if(
not HAS_TORCHVISION, "no torchvision"
)
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
mp_only_param_and_buf = MixedPrecision(
param_dtype=torch.float16, buffer_dtype=torch.float16
)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = dist.is_nccl_available() and nccl.version() >= (2, 10)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(
product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
)
)
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler",
}
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_multiple_wrapping.py
|
__init__
|
def __init__(self):
super().__init__()
self.layers = Sequential(FSDP(Linear(5, 5)))
|
def __init__(self) -> None:
super().__init__()
self.layers = Sequential(FSDP(Linear(5, 5)))
|
import sys
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn import Linear, Module, Sequential
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class InnerModel(Module):
|
import sys
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn import Linear, Module, Sequential
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class InnerModel(Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_optim_state.py
|
test_optim_input_warning
|
def test_optim_input_warning(self):
"""Tests that passing the ``optim_input`` argument into optimizer state
checkpointing APIs issues a warning."""
def should_check_method(method_name: str):
# Check every method since they all accept `optim_input`
return method_name not in (
"sharded_optim_state_dict",
"flatten_sharded_optim_state_dict",
)
def get_warning_context():
warning_regex = "`optim_input` argument is deprecated"
return self.assertWarnsRegex(
expected_warning=UserWarning, expected_regex=warning_regex
)
self._run_on_all_optim_state_apis(
should_check_method, get_warning_context, fsdp_kwargs=None
)
|
def test_optim_input_warning(self):
"""Tests that passing the ``optim_input`` argument into optimizer state
checkpointing APIs issues a warning."""
def should_check_method(method_name: str):
# Check every method since they all accept `optim_input`
return method_name not in (
"sharded_optim_state_dict",
"flatten_sharded_optim_state_dict",
)
def get_warning_context():
warning_regex = "`optim_input` argument is deprecated"
return self.assertWarnsRegex(
expected_warning=FutureWarning, expected_regex=warning_regex
)
self._run_on_all_optim_state_apis(
should_check_method, get_warning_context, fsdp_kwargs=None
)
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
class TestFSDPOptimState(FSDPTest):
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
class TestFSDPOptimState(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_optim_state.py
|
get_warning_context
|
def get_warning_context():
warning_regex = "`optim_input` argument is deprecated"
return self.assertWarnsRegex(
expected_warning=UserWarning, expected_regex=warning_regex
)
self._run_on_all_optim_state_apis(
should_check_method, get_warning_context, fsdp_kwargs=None
)
|
def get_warning_context():
warning_regex = "`optim_input` argument is deprecated"
return self.assertWarnsRegex(
expected_warning=FutureWarning, expected_regex=warning_regex
)
self._run_on_all_optim_state_apis(
should_check_method, get_warning_context, fsdp_kwargs=None
)
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_optim_state.py
|
test_with_empty_optimizer_state
|
def test_with_empty_optimizer_state(self):
class TestDummyModel(torch.nn.Module):
def __init__(self):
super().__init__()
torch.manual_seed(0)
self.net1 = nn.Sequential(nn.Linear(8, 16), nn.ReLU())
self.net2 = nn.Sequential(nn.Linear(16, 32), nn.ReLU())
self.net3 = nn.Linear(32, 64)
self.net4 = nn.Sequential(nn.ReLU(), nn.Linear(64, 8))
def forward(self, x):
return self.net4(self.net3(self.net2(self.net1(x))))
model = FSDP(TestDummyModel().cuda())
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
state_dict = optim.state_dict()
gathered_state_dict = FSDP.optim_state_dict(model, optim)
self.assertEqual(gathered_state_dict["state"], state_dict["state"])
|
def test_with_empty_optimizer_state(self):
model = FSDP(TestDummyModel().cuda())
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
state_dict = optim.state_dict()
gathered_state_dict = FSDP.optim_state_dict(model, optim)
self.assertEqual(gathered_state_dict["state"], state_dict["state"])
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
class TestFSDPOptimState(FSDPTest):
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
class TestFSDPOptimState(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_optim_state.py
|
test_with_empty_optimizer_state
|
def test_with_empty_optimizer_state(self):
class TestDummyModel(torch.nn.Module):
def __init__(self):
super().__init__()
torch.manual_seed(0)
self.net1 = nn.Sequential(nn.Linear(8, 16), nn.ReLU())
self.net2 = nn.Sequential(nn.Linear(16, 32), nn.ReLU())
self.net3 = nn.Linear(32, 64)
self.net4 = nn.Sequential(nn.ReLU(), nn.Linear(64, 8))
def forward(self, x):
return self.net4(self.net3(self.net2(self.net1(x))))
model = FSDP(TestDummyModel().cuda())
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
state_dict = optim.state_dict()
gathered_state_dict = FSDP.optim_state_dict(model, optim)
self.assertEqual(gathered_state_dict["state"], state_dict["state"])
|
def test_with_empty_optimizer_state(self):
model = FSDP(TestDummyModel().cuda())
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
state_dict = optim.state_dict()
gathered_state_dict = FSDP.optim_state_dict(model, optim)
self.assertEqual(gathered_state_dict["state"], state_dict["state"])
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
class TestFSDPOptimState(FSDPTest):
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
class TestFSDPOptimState(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_optim_state.py
|
step
|
def step():
loss = model(model.get_input())
loss.backward(loss)
optim.step()
step()
original_osd = deepcopy(optim.state_dict())
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
self._check_same_state(
FSDP.optim_state_dict(model, optim), osd, check_same_param_keys=True
)
step()
osd_to_load = FSDP.optim_state_dict_to_load(
model, optim, osd, load_directly=True
)
self._check_same_state(
optim.state_dict(), original_osd, check_same_param_keys=True
)
# Test the default setting.
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
for state in osd["state"].values():
for s in state.values():
self.assertFalse(isinstance(s, ShardedTensor))
self.assertFalse(s.is_cuda)
# Test sharded state_dict without offload_to_cpu
with FSDP.state_dict_type(
model,
StateDictType.SHARDED_STATE_DICT,
ShardedStateDictConfig(),
ShardedOptimStateDictConfig(offload_to_cpu=False),
):
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
for state in osd["state"].values():
for s in state.values():
if s.dim() == 0:
continue
self.assertTrue(isinstance(s, ShardedTensor))
if s._local_shards[0]:
self.assertTrue(s._local_shards[0].tensor.is_cuda)
# Test full state_dict with rank0_only
with FSDP.state_dict_type(
model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(
offload_to_cpu=True,
rank0_only=True,
),
):
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
if dist.get_rank() > 0:
self.assertEqual(osd, {})
else:
for state in osd["state"].values():
for s in state.values():
if s.dim() == 0:
continue
self.assertFalse(s.is_cuda)
self.assertFalse(isinstance(s, ShardedTensor))
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_optim_state.py
|
_run_test
|
def _run_test(use_orig_params, optimizer_has_tensor_state):
model = FSDP(TestDummyModel().cuda(), use_orig_params=use_orig_params)
optimizer_cls = (
torch.optim.Adam if optimizer_has_tensor_state else torch.optim.SGD
)
optim = optimizer_cls(model.parameters(), lr=1e-2)
def step():
loss = model(model.get_input())
loss.backward(loss)
optim.step()
step()
original_osd = deepcopy(optim.state_dict())
for state in original_osd["state"].values():
# Add customized value
state["value1"] = 2.74
state["value2"] = None
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
osd_to_load = FSDP.optim_state_dict_to_load(model, optim, osd)
for state in osd_to_load["state"].values():
self.assertEqual(state["value1"], 2.74)
self.assertEqual(state["value2"], None)
self.run_subtests(
{
"use_orig_params": [False, True],
"optimizer_has_tensor_state": [False, True],
},
_run_test,
)
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_optim_state.py
|
step
|
def step():
loss = model(model.get_input())
loss.backward(loss)
optim.step()
step()
original_osd = deepcopy(optim.state_dict())
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
self._check_same_state(
FSDP.optim_state_dict(model, optim), osd, check_same_param_keys=True
)
step()
osd_to_load = FSDP.optim_state_dict_to_load(
model, optim, osd, load_directly=True
)
self._check_same_state(
optim.state_dict(), original_osd, check_same_param_keys=True
)
# Test the default setting.
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
for state in osd["state"].values():
for s in state.values():
self.assertFalse(isinstance(s, ShardedTensor))
self.assertFalse(s.is_cuda)
# Test sharded state_dict without offload_to_cpu
with FSDP.state_dict_type(
model,
StateDictType.SHARDED_STATE_DICT,
ShardedStateDictConfig(),
ShardedOptimStateDictConfig(offload_to_cpu=False),
):
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
for state in osd["state"].values():
for s in state.values():
if s.dim() == 0:
continue
self.assertTrue(isinstance(s, ShardedTensor))
if s._local_shards[0]:
self.assertTrue(s._local_shards[0].tensor.is_cuda)
# Test full state_dict with rank0_only
with FSDP.state_dict_type(
model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(
offload_to_cpu=True,
rank0_only=True,
),
):
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
if dist.get_rank() > 0:
self.assertEqual(osd, {})
else:
for state in osd["state"].values():
for s in state.values():
if s.dim() == 0:
continue
self.assertFalse(s.is_cuda)
self.assertFalse(isinstance(s, ShardedTensor))
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_optim_state.py
|
step
|
def step():
loss = model(model.get_input())
loss.backward(loss)
optim.step()
step()
original_osd = deepcopy(optim.state_dict())
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
self._check_same_state(
FSDP.optim_state_dict(model, optim), osd, check_same_param_keys=True
)
step()
osd_to_load = FSDP.optim_state_dict_to_load(
model, optim, osd, load_directly=True
)
self._check_same_state(
optim.state_dict(), original_osd, check_same_param_keys=True
)
# Test the default setting.
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
for state in osd["state"].values():
for s in state.values():
self.assertFalse(isinstance(s, ShardedTensor))
self.assertFalse(s.is_cuda)
# Test sharded state_dict without offload_to_cpu
with FSDP.state_dict_type(
model,
StateDictType.SHARDED_STATE_DICT,
ShardedStateDictConfig(),
ShardedOptimStateDictConfig(offload_to_cpu=False),
):
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
for state in osd["state"].values():
for s in state.values():
if s.dim() == 0:
continue
self.assertTrue(isinstance(s, ShardedTensor))
if s._local_shards[0]:
self.assertTrue(s._local_shards[0].tensor.is_cuda)
# Test full state_dict with rank0_only
with FSDP.state_dict_type(
model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(),
FullOptimStateDictConfig(
offload_to_cpu=True,
rank0_only=True,
),
):
osd = FSDP.optim_state_dict(model, optim, optim_state_dict=original_osd)
if dist.get_rank() > 0:
self.assertEqual(osd, {})
else:
for state in osd["state"].values():
for s in state.values():
if s.dim() == 0:
continue
self.assertFalse(s.is_cuda)
self.assertFalse(isinstance(s, ShardedTensor))
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_optim_state.py
|
test_no_grad
|
instantiate_parametrized_tests(TestFSDPOptimState)
if __name__ == "__main__":
run_tests()
|
def test_no_grad(self):
model = TestDummyModel(no_grad=True).cuda()
fsdp_model = FSDP(deepcopy(model), use_orig_params=True)
fsdp_optim = torch.optim.Adam(fsdp_model.parameters(), lr=1e-2)
for i in range(5):
if i % 2 == 1:
fsdp_model.net1[0].weight.requires_grad = True
fsdp_model.net1[0].bias.requires_grad = True
else:
fsdp_model.net1[0].weight.requires_grad = False
fsdp_model.net1[0].bias.requires_grad = False
batch = fsdp_model.get_input()
loss = fsdp_model(batch).sum()
loss.backward()
fsdp_optim.step()
orig_state_dict = deepcopy(fsdp_optim.state_dict())
optim_state_dict = FSDP.optim_state_dict(fsdp_model, fsdp_optim)
FSDP.optim_state_dict_to_load(
fsdp_model,
fsdp_optim,
FSDP.optim_state_dict(fsdp_model, fsdp_optim),
load_directly=True,
)
self._check_same_state(
fsdp_optim.state_dict(),
orig_state_dict,
check_same_param_keys=True,
)
|
import bisect
import sys
from copy import deepcopy
from enum import auto, Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import _gather_state_dict
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_WRAPPED_MODULE,
apply_activation_checkpointing,
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig,
FullStateDictConfig,
OptimStateKeyType,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictSettings,
StateDictType,
)
from torch.distributed.optim import _NamedOptimizer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
STATE_DICT_TYPES = [StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT]
class TestFSDPOptimState(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_overlap.py
|
_create_model
|
def _create_model(compute_cycles, has_params: bool):
model = FSDP(
nn.Sequential(
FSDP(Layer(compute_cycles, has_params)),
FSDP(Layer(compute_cycles, has_params)),
FSDP(Layer(compute_cycles, has_params)),
FSDP(Layer(compute_cycles, has_params)),
)
).cuda()
return model
class Min10:
def __init__(self):
self.data = []
def add(self, new_data):
if len(self.data) < 10:
self.data.append(new_data)
else:
self.data = sorted(self.data)
if new_data < self.data[-1]:
self.data[-1] = new_data
def avg(self):
return mean(self.data)
class TestForwardOverlapWorldSizeOne(FSDPTest):
@property
def world_size(self):
return 1
def _dist_train(self):
rank = self.rank
world_size = self.world_size
# Save the original torch.distributed.all_gather_into_tensor function since we will
# patch it to include an artificial delay.
orig_all_gather = torch.distributed.all_gather_into_tensor
def run(compute_cycles, all_gather_cycles):
has_params = all_gather_cycles > 0
model = _create_model(compute_cycles, has_params)
# Get the input and sets the input's requires_grad to True because
# we have a fake compute in the forward pass.
batch = torch.rand(1).cuda()
batch.requires_grad = True
# Run one dummy iteration to trigger the execution order validation
# all-gathers
out = model(batch)
out.backward()
model.zero_grad(set_to_none=True)
# We run 20 iterations but only collect timing data from the minimal 10
# data points because nondeterministic system events can disturb the timing.
cpu_iter = Min10()
cpu_wait = Min10()
gpu_compute = Min10()
gpu_total = Min10()
for _ in range(20):
# Get two events for measuring the overall time.
e1 = Event(enable_timing=True)
e2 = Event(enable_timing=True)
cpu_start = time.process_time()
all_gather_called = False
def _delayed_all_gather(*args, **kwargs):
nonlocal all_gather_called
all_gather_called = True
torch.cuda._sleep(all_gather_cycles)
assert orig_all_gather
return orig_all_gather(*args, **kwargs)
# forward pass
#
# Even though both e1 & e2 are on the compute stream, since
# compute depends on all_gather, e2-e1 includes all_gather time.
e1.record()
with patch(
"torch.distributed.all_gather_into_tensor", _delayed_all_gather
):
out = model(batch)
if has_params and world_size > 1:
self.assertTrue(all_gather_called)
else:
self.assertFalse(all_gather_called)
e2.record()
# backward pass
out.backward()
model.zero_grad(set_to_none=True)
cpu_iter_time = time.process_time() - cpu_start
# wait for gpu
out.item()
cpu_wait_for_gpu_time = time.process_time() - cpu_start - cpu_iter_time
# get sum of the compute time
times = []
for mod in model.modules():
if not isinstance(mod, Layer):
continue
times.append(mod.get_time())
# get gpu compute + all_gather time
overall_gpu_time = e1.elapsed_time(e2)
cpu_iter.add(cpu_iter_time)
cpu_wait.add(cpu_wait_for_gpu_time)
gpu_compute.add(sum(times))
gpu_total.add(overall_gpu_time)
del model
return {
"cpu_iter": cpu_iter.avg(),
"cpu_wait": cpu_wait.avg(),
"gpu_compute": gpu_compute.avg(),
"gpu_total": gpu_total.avg(),
}
sleep_cycles = int(100 * get_cycles_per_ms())
e1 = run(0, 0) # no compute, no all-gather
e2 = run(0, sleep_cycles) # no compute, only all-gather
e3 = run(sleep_cycles, 0) # only compute, no all-gather
e4 = run(sleep_cycles, sleep_cycles) # both compute and all-gather
debug_string = f"\nrank{rank}:\n e1: {e1}\n e2: {e2}\n e3: {e3}\n e4: {e4}"
print(debug_string)
# Check the cpu/gpu timing. CPU should run ahead of GPU. Therefore, cpu-gpu
# wait should be long, except when there is no real work on GPU.
#
# If the assertions fail below, we likely have a cpu-gpu wait in the forward/backward pass.
# e4["cpu_iter"] may not be short as cpu may take some time to queue both compute and all-gather.
short = [
e1["cpu_iter"],
e2["cpu_iter"],
e3["cpu_iter"],
e1["cpu_wait"],
]
long = [e3["cpu_wait"], e4["cpu_wait"]]
if world_size == 1:
short.append(e2["cpu_wait"]) # all gather should not be happening.
else:
long.append(
e2["cpu_wait"]
) # all gather should happen and prolong the cpu-gpu wait.
for s in short:
for l in long:
# 10X longer is a safe margin, since the GPU work timing is around 100X more
# of that of the CPU.
self.assertTrue(s * 10 < l)
# Check the GPU timing.
short = [e1["gpu_compute"], e1["gpu_total"], e2["gpu_compute"]]
long = [e3["gpu_compute"], e3["gpu_total"], e4["gpu_compute"], e4["gpu_total"]]
if world_size == 1:
short.append(e2["gpu_total"]) # all gather should not be happening.
else:
long.append(
e2["gpu_total"]
) # all gather should happen and prolong the cpu-gpu wait.
for s in short:
for l in long:
# 10X longer is a safe margin, since the time is around 100X longer
# when there is work on GPU vs. no work.
self.assertTrue(s * 10 < l)
# Check the GPU overlapping when there is all-gather.
if world_size > 1:
compute_only = e3["gpu_compute"]
all_gather_only = e2["gpu_total"]
both = e4["gpu_total"]
self.assertTrue(compute_only + all_gather_only > 1.1 * both)
@skip_if_lt_x_gpu(2)
def test_forward_overlap(self):
self._dist_train()
class TestForwardOverlapWorldSizeTwo(TestForwardOverlapWorldSizeOne):
@property
def world_size(self):
return 2
if __name__ == "__main__":
run_tests()
|
def _create_model(compute_cycles, has_params: bool):
# Use `limit_all_gathers=False` since the timing being tested relies on the
# CPU running ahead of the GPU
model = FSDP(
nn.Sequential(
FSDP(Layer(compute_cycles, has_params), limit_all_gathers=False),
FSDP(Layer(compute_cycles, has_params), limit_all_gathers=False),
FSDP(Layer(compute_cycles, has_params), limit_all_gathers=False),
FSDP(Layer(compute_cycles, has_params), limit_all_gathers=False),
),
limit_all_gathers=False,
).cuda()
return model
class Min10:
def __init__(self) -> None:
self.data = []
def add(self, new_data):
if len(self.data) < 10:
self.data.append(new_data)
else:
self.data = sorted(self.data)
if new_data < self.data[-1]:
self.data[-1] = new_data
def avg(self):
return mean(self.data)
class TestForwardOverlapWorldSizeOne(FSDPTest):
@property
def world_size(self):
return 1
def _dist_train(self):
rank = self.rank
world_size = self.world_size
# Save the original torch.distributed.all_gather_into_tensor function since we will
# patch it to include an artificial delay.
orig_all_gather = torch.distributed.all_gather_into_tensor
def run(compute_cycles, all_gather_cycles):
has_params = all_gather_cycles > 0
model = _create_model(compute_cycles, has_params)
# Get the input and sets the input's requires_grad to True because
# we have a fake compute in the forward pass.
batch = torch.rand(1).cuda()
batch.requires_grad = True
# Run one dummy iteration to trigger the execution order validation
# all-gathers
out = model(batch)
out.backward()
model.zero_grad(set_to_none=True)
# We run 20 iterations but only collect timing data from the minimal 10
# data points because nondeterministic system events can disturb the timing.
cpu_iter = Min10()
cpu_wait = Min10()
gpu_compute = Min10()
gpu_total = Min10()
for _ in range(20):
# Get two events for measuring the overall time.
e1 = Event(enable_timing=True)
e2 = Event(enable_timing=True)
cpu_start = time.process_time()
all_gather_called = False
def _delayed_all_gather(*args, **kwargs):
nonlocal all_gather_called
all_gather_called = True
torch.cuda._sleep(all_gather_cycles)
assert orig_all_gather
return orig_all_gather(*args, **kwargs)
# forward pass
#
# Even though both e1 & e2 are on the compute stream, since
# compute depends on all_gather, e2-e1 includes all_gather time.
e1.record()
with patch(
"torch.distributed.all_gather_into_tensor", _delayed_all_gather
):
out = model(batch)
if has_params and world_size > 1:
self.assertTrue(all_gather_called)
else:
self.assertFalse(all_gather_called)
e2.record()
# backward pass
out.backward()
model.zero_grad(set_to_none=True)
cpu_iter_time = time.process_time() - cpu_start
# wait for gpu
out.item()
cpu_wait_for_gpu_time = time.process_time() - cpu_start - cpu_iter_time
# get sum of the compute time
times = []
for mod in model.modules():
if not isinstance(mod, Layer):
continue
times.append(mod.get_time())
# get gpu compute + all_gather time
overall_gpu_time = e1.elapsed_time(e2)
cpu_iter.add(cpu_iter_time)
cpu_wait.add(cpu_wait_for_gpu_time)
gpu_compute.add(sum(times))
gpu_total.add(overall_gpu_time)
del model
return {
"cpu_iter": cpu_iter.avg(),
"cpu_wait": cpu_wait.avg(),
"gpu_compute": gpu_compute.avg(),
"gpu_total": gpu_total.avg(),
}
sleep_cycles = int(100 * get_cycles_per_ms())
e1 = run(0, 0) # no compute, no all-gather
e2 = run(0, sleep_cycles) # no compute, only all-gather
e3 = run(sleep_cycles, 0) # only compute, no all-gather
e4 = run(sleep_cycles, sleep_cycles) # both compute and all-gather
debug_string = f"\nrank{rank}:\n e1: {e1}\n e2: {e2}\n e3: {e3}\n e4: {e4}"
print(debug_string)
# Check the cpu/gpu timing. CPU should run ahead of GPU. Therefore, cpu-gpu
# wait should be long, except when there is no real work on GPU.
#
# If the assertions fail below, we likely have a cpu-gpu wait in the forward/backward pass.
# e4["cpu_iter"] may not be short as cpu may take some time to queue both compute and all-gather.
short = [
e1["cpu_iter"],
e2["cpu_iter"],
e3["cpu_iter"],
e1["cpu_wait"],
]
long = [e3["cpu_wait"], e4["cpu_wait"]]
if world_size == 1:
short.append(e2["cpu_wait"]) # all gather should not be happening.
else:
long.append(
e2["cpu_wait"]
) # all gather should happen and prolong the cpu-gpu wait.
for s in short:
for l in long:
# 10X longer is a safe margin, since the GPU work timing is around 100X more
# of that of the CPU.
self.assertTrue(s * 10 < l)
# Check the GPU timing.
short = [e1["gpu_compute"], e1["gpu_total"], e2["gpu_compute"]]
long = [e3["gpu_compute"], e3["gpu_total"], e4["gpu_compute"], e4["gpu_total"]]
if world_size == 1:
short.append(e2["gpu_total"]) # all gather should not be happening.
else:
long.append(
e2["gpu_total"]
) # all gather should happen and prolong the cpu-gpu wait.
for s in short:
for l in long:
# 10X longer is a safe margin, since the time is around 100X longer
# when there is work on GPU vs. no work.
self.assertTrue(s * 10 < l)
# Check the GPU overlapping when there is all-gather.
if world_size > 1:
compute_only = e3["gpu_compute"]
all_gather_only = e2["gpu_total"]
both = e4["gpu_total"]
self.assertTrue(compute_only + all_gather_only > 1.1 * both)
@skip_if_lt_x_gpu(2)
def test_forward_overlap(self):
self._dist_train()
class TestForwardOverlapWorldSizeTwo(TestForwardOverlapWorldSizeOne):
@property
def world_size(self):
return 2
if __name__ == "__main__":
run_tests()
|
import sys
import time
from statistics import mean
from unittest.mock import patch
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.cuda import Event
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
get_cycles_per_ms,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import sys
import time
from statistics import mean
from unittest.mock import patch
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.cuda import Event
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
get_cycles_per_ms,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_state_dict.py
|
__init__
|
def __init__(self, wrap_fsdp, register_buffers=False, ignore_inner=False):
super().__init__()
self.inner = Linear(*INNER_SHAPE)
if register_buffers:
self.inner.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
self.inner.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
if wrap_fsdp:
self.inner = FSDP(
self.inner, ignored_modules=([self.inner] if ignore_inner else [])
)
self.outer = Linear(*OUTER_SHAPE)
if register_buffers:
self.outer.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
self.outer.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
|
def __init__(
self,
wrap_fsdp,
register_buffers=False,
ignore_inner=False,
mixed_precision=False,
process_group=None,
):
super().__init__()
self.inner = Linear(*INNER_SHAPE)
if register_buffers:
self.inner.buffer = nn.Buffer(torch.randn(BUFFER_SHAPE))
self.inner.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
if wrap_fsdp:
self.inner = FSDP(
self.inner,
ignored_modules=([self.inner] if ignore_inner else []),
mixed_precision=MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
)
if mixed_precision
else None,
process_group=process_group,
)
self.outer = Linear(*OUTER_SHAPE)
if register_buffers:
self.outer.buffer = nn.Buffer(torch.randn(BUFFER_SHAPE))
self.outer.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
|
import io
import itertools
import sys
from contextlib import suppress
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class Model(Module):
|
import io
import itertools
import sys
from contextlib import nullcontext
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardedTensor,
)
from torch.distributed._state_dict_utils import (
_all_gather_sharded_tensor,
_gather_state_dict,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._common_utils import FSDP_PREFIX
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class Model(Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_state_dict.py
|
world_size
|
def world_size(self):
return 2
|
def world_size(self):
return min(torch.cuda.device_count(), 2)
|
import io
import itertools
import sys
from contextlib import suppress
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class TestFSDPStateDict(FSDPTest):
|
import io
import itertools
import sys
from contextlib import nullcontext
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardedTensor,
)
from torch.distributed._state_dict_utils import (
_all_gather_sharded_tensor,
_gather_state_dict,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._common_utils import FSDP_PREFIX
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class TestFSDPStateDict(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_state_dict.py
|
__init__
|
def __init__(self, wrap_fsdp, register_buffers=False, ignore_inner=False):
super().__init__()
self.inner = Linear(*INNER_SHAPE)
if register_buffers:
self.inner.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
self.inner.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
if wrap_fsdp:
self.inner = FSDP(
self.inner, ignored_modules=([self.inner] if ignore_inner else [])
)
self.outer = Linear(*OUTER_SHAPE)
if register_buffers:
self.outer.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
self.outer.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
|
def __init__(
self,
wrap_fsdp,
register_buffers=False,
ignore_inner=False,
mixed_precision=False,
process_group=None,
):
super().__init__()
self.inner = Linear(*INNER_SHAPE)
if register_buffers:
self.inner.buffer = nn.Buffer(torch.randn(BUFFER_SHAPE))
self.inner.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
if wrap_fsdp:
self.inner = FSDP(
self.inner,
ignored_modules=([self.inner] if ignore_inner else []),
mixed_precision=MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
)
if mixed_precision
else None,
process_group=process_group,
)
self.outer = Linear(*OUTER_SHAPE)
if register_buffers:
self.outer.buffer = nn.Buffer(torch.randn(BUFFER_SHAPE))
self.outer.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
|
import io
import itertools
import sys
from contextlib import suppress
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class Model(Module):
|
import io
import itertools
import sys
from contextlib import nullcontext
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardedTensor,
)
from torch.distributed._state_dict_utils import (
_all_gather_sharded_tensor,
_gather_state_dict,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._common_utils import FSDP_PREFIX
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class Model(Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_state_dict.py
|
_create_module
|
def _create_module(wrap_fsdp=True):
LINEAR_SKIP = "linear_skip"
ctx = enable_wrap(wrapper_cls=FSDP) if wrap_fsdp else suppress()
with ctx:
module = SkipModel(double_nest=double_nest)
# Full name of linear_skip param tensors in SkipModel, as would be
# stored in checkpoint.
linear_skip_tensor_names = [
k
for k in dict(module.named_parameters()).keys()
if LINEAR_SKIP in k
]
# skip SkipModule
linear_skip = getattr(module, LINEAR_SKIP)
delattr(module, LINEAR_SKIP)
# Wrap FSDP
fsdp = wrap(module)
# reattach
setattr(module, LINEAR_SKIP, linear_skip)
return fsdp, linear_skip_tensor_names
fsdp, linear_skip_tensor_names = _create_module()
# Run a forward pass
inp = torch.randn((1, 10), device=torch.cuda.current_device())
loss = fsdp(inp)
loss.sum().backward()
with FSDP.state_dict_type(fsdp, STATE_DICT_MAPPING[state_dict_type]):
state_dict = fsdp.state_dict()
if self.rank == 0 and state_dict_type != "local_state_dict":
sd_keys = list(state_dict.keys())
expected = list(SkipModel(double_nest=False).state_dict().keys())
self.assertEqual(sorted(sd_keys), sorted(expected))
# TODO: parameters in linear_skip_tensor_names should not be handled
# by FSDP.state_dict(). Have a check once this is implemented in
# FSDP.state_dict().
# Check that it can be loaded into FSDP.
new_fsdp, _ = _create_module()
_zero_model(new_fsdp)
for (p1, p2) in zip(fsdp.parameters(), new_fsdp.parameters()):
self.assertNotEqual(p1, p2)
with FSDP.state_dict_type(new_fsdp, STATE_DICT_MAPPING[state_dict_type]):
if state_dict_type != "local_state_dict":
# FlatParameter has not supported deepcopy yet.
state_dict = deepcopy(state_dict)
new_fsdp.load_state_dict(state_dict, strict=True)
for (p1, p2) in zip(fsdp.parameters(), new_fsdp.parameters()):
self.assertEqual(p1, p2)
# Test that the checkpoint can be loaded into a local model.
local, _ = _create_module(wrap_fsdp=False)
for param in local.parameters():
with torch.no_grad():
param.zero_()
with fsdp.summon_full_params(fsdp):
for (p1, p2) in zip(fsdp.parameters(), local.parameters()):
self.assertNotEqual(p1, p2)
if state_dict_type == "local_state_dict":
return
state_dict = _gather_state_dict(state_dict)
with fsdp.summon_full_params(fsdp):
if self.rank == 0:
local.load_state_dict(state_dict, strict=True)
for (p1, p2) in zip(fsdp.parameters(), local.parameters()):
self.assertEqual(p1, p2)
|
def _create_module(wrap_fsdp=True):
LINEAR_SKIP = "linear_skip"
ctx = enable_wrap(wrapper_cls=FSDP) if wrap_fsdp else nullcontext()
with ctx:
module = SkipModel(double_nest=double_nest)
# Full name of linear_skip param tensors in SkipModel, as would be
# stored in checkpoint.
linear_skip_tensor_names = [
k
for k in dict(module.named_parameters()).keys()
if LINEAR_SKIP in k
]
# skip SkipModule
linear_skip = getattr(module, LINEAR_SKIP)
delattr(module, LINEAR_SKIP)
# Wrap FSDP
fsdp = wrap(module)
# reattach
setattr(module, LINEAR_SKIP, linear_skip)
return fsdp, linear_skip_tensor_names
fsdp, linear_skip_tensor_names = _create_module()
# Run a forward pass
inp = torch.randn((1, 10), device=torch.cuda.current_device())
loss = fsdp(inp)
loss.sum().backward()
with FSDP.state_dict_type(fsdp, STATE_DICT_MAPPING[state_dict_type]):
state_dict = fsdp.state_dict()
if self.rank == 0 and state_dict_type != "local_state_dict":
sd_keys = list(state_dict.keys())
expected = list(SkipModel(double_nest=False).state_dict().keys())
self.assertEqual(sorted(sd_keys), sorted(expected))
# TODO: parameters in linear_skip_tensor_names should not be handled
# by FSDP.state_dict(). Have a check once this is implemented in
# FSDP.state_dict().
# Check that it can be loaded into FSDP.
new_fsdp, _ = _create_module()
_zero_model(new_fsdp)
for p1, p2 in zip(fsdp.parameters(), new_fsdp.parameters()):
self.assertNotEqual(p1, p2)
with FSDP.state_dict_type(new_fsdp, STATE_DICT_MAPPING[state_dict_type]):
if state_dict_type != "local_state_dict":
# FlatParameter has not supported deepcopy yet.
state_dict = deepcopy(state_dict)
new_fsdp.load_state_dict(state_dict, strict=True)
for p1, p2 in zip(fsdp.parameters(), new_fsdp.parameters()):
self.assertEqual(p1, p2)
# Test that the checkpoint can be loaded into a local model.
local, _ = _create_module(wrap_fsdp=False)
for param in local.parameters():
with torch.no_grad():
param.zero_()
with fsdp.summon_full_params(fsdp):
for p1, p2 in zip(fsdp.parameters(), local.parameters()):
self.assertNotEqual(p1, p2)
if state_dict_type == "local_state_dict":
return
state_dict = _gather_state_dict(state_dict)
with fsdp.summon_full_params(fsdp):
if self.rank == 0:
local.load_state_dict(state_dict, strict=True)
for p1, p2 in zip(fsdp.parameters(), local.parameters()):
self.assertEqual(p1, p2)
|
import io
import itertools
import sys
from contextlib import suppress
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
|
import io
import itertools
import sys
from contextlib import nullcontext
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardedTensor,
)
from torch.distributed._state_dict_utils import (
_all_gather_sharded_tensor,
_gather_state_dict,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._common_utils import FSDP_PREFIX
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_use_orig_params.py
|
test_multi_tensor_apply_size0_tensors_cuda
|
instantiate_parametrized_tests(TestFSDPUseOrigParamsMultipleParamGroups)
instantiate_parametrized_tests(TestFSDPUseOrigParamsUnshardReshard)
instantiate_parametrized_tests(TestFSDPUseOrigParamsParamAccess)
instantiate_parametrized_tests(TestFSDPUseOrigParamsFQNs)
instantiate_parametrized_tests(TestFSDPUseOrigParamsNoSync)
if __name__ == "__main__":
run_tests()
|
def test_multi_tensor_apply_size0_tensors_cuda(self):
size0_tensors = [
torch.empty(0, device="cuda") for _ in range(NUM_SIZE0_TENSORS)
]
# Check that this does not segfault
torch._foreach_mul_(size0_tensors, 0.1)
|
import copy
import functools
import itertools
import os
import sys
import unittest
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import (
_FSDP_SKIP_WRITEBACK_CHECK,
_FSDP_USE_FULL_PREC_IN_EVAL,
)
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.utils._triton import has_triton
NUM_SIZE0_TENSORS = 1000
class TestMultiTensorApply(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_hsdp_dtensor_state_dict.py
|
forward
|
def forward(self, x):
return self.net4(self.net3(self.net2(self.net1(x))))
|
import io
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Replicate, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
ShardingStrategy,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class DenseModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_hsdp_dtensor_state_dict.py
|
get_input
|
def get_input(self):
return torch.rand(4, 8, device="cuda")
# TODO: Consolidate DeviceMesh based FSDP and HSDP test cases.
|
import io
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Replicate, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
ShardingStrategy,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class DenseModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_hsdp_dtensor_state_dict.py
|
test_root_module_is_not_FSDP
|
def test_root_module_is_not_FSDP(self):
class FakeMPModel(torch.nn.Module):
def __init__(self, device_mesh):
super().__init__()
torch.manual_seed(0)
self.dense = FSDP(
DenseModel().cuda(),
use_orig_params=True,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
device_mesh=device_mesh,
)
if dist.get_rank() == 0:
self.sparse0 = nn.Sequential(nn.Linear(8, 8), nn.ReLU())
else:
self.sparse1 = nn.Sequential(nn.Linear(8, 8), nn.ReLU())
def forward(self, x):
if dist.get_rank() == 0:
sparse = self.sparse0(x)
else:
sparse = self.sparse1(x)
dist.all_reduce(sparse)
return self.dense(sparse)
mesh_2d = init_device_mesh(self.device_type, (2, self.world_size // 2))
model = FakeMPModel(device_mesh=mesh_2d).cuda()
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
batch = torch.rand(5, 8, device=torch.device("cuda"))
model(batch).sum().backward()
optim.step()
osd = optim.state_dict()
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
osd = FSDP.optim_state_dict(model, optim, osd)
for param, state in osd["state"].items():
if "dense" in param:
self.assertIsInstance(state["exp_avg"], DTensor)
self.assertIsInstance(state["exp_avg_sq"], DTensor)
self.assertEqual(state["exp_avg"].placements, (Replicate(), Shard(0)))
self.assertEqual(
state["exp_avg_sq"].placements, (Replicate(), Shard(0))
)
else:
self.assertIsInstance(state["exp_avg"], torch.Tensor)
self.assertIsInstance(state["exp_avg_sq"], torch.Tensor)
|
import io
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Replicate, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
ShardingStrategy,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class TestHSDPWithDeviceMeshAndDTensor(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_tp_integration.py
|
__init__
|
def __init__(self):
super().__init__()
self.net1 = torch.nn.Linear(5, 8)
self.relu = torch.nn.ReLU()
self.net2 = torch.nn.Linear(8, 4)
self.net3 = torch.nn.Linear(4, 12)
|
def __init__(self) -> None:
super().__init__()
self.net1 = torch.nn.Linear(5, 8)
self.relu = torch.nn.ReLU()
self.net2 = torch.nn.Linear(8, 4)
self.net3 = torch.nn.Linear(4, 12)
|
import copy
import sys
from collections import OrderedDict
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import torch
import torch.distributed._shard.sharding_spec as shard_spec
from torch import distributed as dist
from torch.distributed._shard import shard_module
from torch.distributed._shard.sharded_tensor.api import Shard, ShardedTensor
from torch.distributed._shard.sharding_plan import ShardingPlan
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
from torch.distributed.fsdp._common_utils import _set_fsdp_flattened
from torch.distributed.fsdp._fsdp_extensions import _set_fsdp_extensions, FSDPExtensions
from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
FullyShardedDataParallel as FSDP,
StateDictType,
)
from torch.distributed.remote_device import _remote_device
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class SimpleModel(torch.nn.Module):
|
import copy
import sys
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
DTensor,
init_device_mesh,
Replicate,
Shard,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
MLPModule,
RMSNormPython,
)
class SimpleModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_tp_integration.py
|
prepare_input_fn
|
def prepare_input_fn(mod, inputs, device_mesh):
shard_tensor = DTensor.from_local(inputs[0], device_mesh, [Shard(0)])
return shard_tensor
|
import copy
import sys
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
DTensor,
init_device_mesh,
Replicate,
Shard,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
MLPModule,
RMSNormPython,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_tp_integration.py
|
prepare_output_fn
|
class TestTPFSDPIntegration(FSDPTest):
def _get_params_and_sharding_info(
self,
model: SimpleModel,
sharded_param_names: List[str],
tensor_parallel_size: int,
) -> Tuple[Dict[str, int], Dict[str, Tuple[torch.Size, int]]]:
""" """
assert (
type(model) is SimpleModel
), "Expects a `SimpleModel` since the sharding cases on the model definition"
param_name_to_numel = OrderedDict()
param_name_to_sharding_info = OrderedDict()
for param_name, param in model.named_parameters():
if param_name not in sharded_param_names:
param_name_to_numel[param_name] = param.numel()
else:
param_name_to_numel[param_name] = param.numel() // tensor_parallel_size
param_name_to_sharding_info[param_name] = (
param.size(),
0 if "net1" in param_name else 1,
)
return param_name_to_numel, param_name_to_sharding_info
|
def prepare_output_fn(mod, outputs, device_mesh):
return outputs.to_local()
return distribute_module(
module, device_mesh, input_fn=prepare_input_fn, output_fn=prepare_output_fn
)
|
import copy
import sys
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
DTensor,
init_device_mesh,
Replicate,
Shard,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
MLPModule,
RMSNormPython,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_tp_integration.py
|
_get_sub_pgs
|
def _get_sub_pgs(self, tensor_parallel_size: int):
"""
Generates TP and FSDP subprocess groups. ``tensor_parallel_size`` gives
the TP process group size.
For example, if the global world size is 8 and the tensor parallel size
is 2, then this creates:
- 4 TP subprocess groups: [0, 1], [2, 3], [4, 5], [6, 7]
- 2 FSDP subprocess groups: [0, 2, 4, 6], [1, 3, 5, 7]
"""
tp_ranks: List[List[int]] = []
fsdp_ranks: List[List[int]] = []
for rank in range(self.world_size):
tp_idx = rank // tensor_parallel_size
if len(tp_ranks) <= tp_idx:
tp_ranks.append([])
tp_ranks[tp_idx].append(rank)
fsdp_idx = rank % tensor_parallel_size
if len(fsdp_ranks) <= fsdp_idx:
fsdp_ranks.append([])
fsdp_ranks[fsdp_idx].append(rank)
tp_pgs = [dist.new_group(ranks) for ranks in tp_ranks]
fsdp_pgs = [dist.new_group(ranks) for ranks in fsdp_ranks]
tp_pg = tp_pgs[self.rank // tensor_parallel_size]
fsdp_pg = fsdp_pgs[self.rank % tensor_parallel_size]
return tp_pg, fsdp_pg
|
def _get_sub_pgs(self, tensor_parallel_size: int):
"""
Generates TP and FSDP subprocess groups. ``tensor_parallel_size`` gives
the TP process group size.
For example, if the global world size is 8 and the tensor parallel size
is 2, then this creates:
- 4 TP subprocess groups: [0, 1], [2, 3], [4, 5], [6, 7]
- 2 FSDP subprocess groups: [0, 2, 4, 6], [1, 3, 5, 7]
"""
# 2-D mesh is [dp, tp]
twod_mesh = DeviceMesh(
device_type="cuda",
mesh=torch.arange(0, self.world_size).view(-1, tensor_parallel_size),
)
fsdp_pg = twod_mesh.get_group(mesh_dim=0)
tp_pg = twod_mesh.get_group(mesh_dim=1)
return twod_mesh, fsdp_pg, tp_pg
|
import copy
import sys
from collections import OrderedDict
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import torch
import torch.distributed._shard.sharding_spec as shard_spec
from torch import distributed as dist
from torch.distributed._shard import shard_module
from torch.distributed._shard.sharded_tensor.api import Shard, ShardedTensor
from torch.distributed._shard.sharding_plan import ShardingPlan
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
from torch.distributed.fsdp._common_utils import _set_fsdp_flattened
from torch.distributed.fsdp._fsdp_extensions import _set_fsdp_extensions, FSDPExtensions
from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
FullyShardedDataParallel as FSDP,
StateDictType,
)
from torch.distributed.remote_device import _remote_device
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestTPFSDPIntegration(FSDPTest):
|
import copy
import sys
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
DTensor,
init_device_mesh,
Replicate,
Shard,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
MLPModule,
RMSNormPython,
)
class TestTPFSDPIntegration(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_tp_integration.py
|
test_fsdp_tp_checkpoint_integration
|
def test_fsdp_tp_checkpoint_integration(self):
"""Tests checkpointing for TP + FSDP integration."""
tensor_parallel_size = 2
torch.manual_seed(0)
model = SimpleModel().cuda(self.rank)
tp_pg, fsdp_pg = self._get_sub_pgs(tensor_parallel_size)
# Shard with TP and then wrap with FSDP
sharding_specs = self._get_chunk_sharding_spec(tp_pg.size(), tp_pg)
sharding_plan = SimpleModel.module_sharding_plan(sharding_specs)
shard_module(model, sharding_plan, process_group=tp_pg)
tp_fsdp_model = FSDP(model, process_group=fsdp_pg)
# Check that we produce a nested ST from model state dict
with FSDP.state_dict_type(tp_fsdp_model, StateDictType.SHARDED_STATE_DICT):
state_dict = tp_fsdp_model.state_dict()
# TODO once 2D is out, validate the nesting
self.assertTrue(_is_nested_tensor(state_dict["net1.weight"]))
self.assertFalse(_is_nested_tensor(state_dict["net1.bias"]))
tp_fsdp_model.load_state_dict(state_dict)
tp_fsdp_optim = torch.optim.Adam(tp_fsdp_model.parameters(), lr=0.0001)
input_seed = self.rank
torch.manual_seed(input_seed + 1)
inp_size = [2, 3, 5]
inp = torch.rand(*inp_size).cuda(self.rank)
tp_fsdp_model(inp).sum().backward()
tp_fsdp_optim.step()
# Check that we produce a nested ST from optim state dict
optim_state = FSDP.sharded_optim_state_dict(tp_fsdp_model, tp_fsdp_optim)
# TODO once 2D is out, validate the nesting
self.assertTrue(
_is_nested_tensor(optim_state["state"]["net1.weight"]["exp_avg"])
)
self.assertFalse(
_is_nested_tensor(optim_state["state"]["net1.bias"]["exp_avg"])
)
|
import copy
import sys
from collections import OrderedDict
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import torch
import torch.distributed._shard.sharding_spec as shard_spec
from torch import distributed as dist
from torch.distributed._shard import shard_module
from torch.distributed._shard.sharded_tensor.api import Shard, ShardedTensor
from torch.distributed._shard.sharding_plan import ShardingPlan
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
from torch.distributed.fsdp._common_utils import _set_fsdp_flattened
from torch.distributed.fsdp._fsdp_extensions import _set_fsdp_extensions, FSDPExtensions
from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
FullyShardedDataParallel as FSDP,
StateDictType,
)
from torch.distributed.remote_device import _remote_device
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestTPFSDPIntegration(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/fsdp/test_fsdp_state_dict.py
|
__init__
|
def __init__(self, wrap_fsdp, register_buffers=False, ignore_inner=False):
super().__init__()
self.inner = Linear(*INNER_SHAPE)
if register_buffers:
self.inner.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
self.inner.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
if wrap_fsdp:
self.inner = FSDP(
self.inner, ignored_modules=([self.inner] if ignore_inner else [])
)
self.outer = Linear(*OUTER_SHAPE)
if register_buffers:
self.outer.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
self.outer.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
|
def __init__(
self,
wrap_fsdp,
register_buffers=False,
ignore_inner=False,
mixed_precision=False,
process_group=None,
):
super().__init__()
self.inner = Linear(*INNER_SHAPE)
if register_buffers:
self.inner.buffer = nn.Buffer(torch.randn(BUFFER_SHAPE))
self.inner.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
if wrap_fsdp:
self.inner = FSDP(
self.inner,
ignored_modules=([self.inner] if ignore_inner else []),
mixed_precision=MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
)
if mixed_precision
else None,
process_group=process_group,
)
self.outer = Linear(*OUTER_SHAPE)
if register_buffers:
self.outer.buffer = nn.Buffer(torch.randn(BUFFER_SHAPE))
self.outer.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
|
import io
import itertools
import sys
from contextlib import suppress
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class Model(Module):
|
import io
import itertools
import sys
from contextlib import nullcontext
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardedTensor,
)
from torch.distributed._state_dict_utils import (
_all_gather_sharded_tensor,
_gather_state_dict,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._common_utils import FSDP_PREFIX
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class Model(Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_state_dict.py
|
test_world_size_one
|
def test_world_size_one(self):
my_pg = None
for i in range(self.world_size):
pg = dist.new_group(ranks=[i])
if i == self.rank:
my_pg = pg
model = TransformerWithSharedParams.init(
my_pg,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
)
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
state_dict = model.state_dict()
model.load_state_dict(state_dict)
dist.barrier()
|
import io
import itertools
import sys
from contextlib import nullcontext
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardedTensor,
)
from torch.distributed._state_dict_utils import (
_all_gather_sharded_tensor,
_gather_state_dict,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._common_utils import FSDP_PREFIX
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class TestFSDPStateDict(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_state_dict.py
|
world_size
|
def world_size(self):
return 2
|
def world_size(self):
return min(torch.cuda.device_count(), 2)
|
import io
import itertools
import sys
from contextlib import suppress
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class TestFSDPStateDict(FSDPTest):
|
import io
import itertools
import sys
from contextlib import nullcontext
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardedTensor,
)
from torch.distributed._state_dict_utils import (
_all_gather_sharded_tensor,
_gather_state_dict,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._common_utils import FSDP_PREFIX
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class TestFSDPStateDict(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_state_dict.py
|
test_local_state_dict_reshard
|
instantiate_parametrized_tests(TestFSDPStateDict)
if __name__ == "__main__":
run_tests()
|
def test_local_state_dict_reshard(self):
"""
This test demonstrates the ability to do resharding when using
local_state_dict. Although we do not recommend users to use
local_state_dict, there are still some corner cases that
using local_state_dict is a better solution.
"""
model = FSDP(Model(wrap_fsdp=True)).cuda()
optim = torch.optim.SGD(model.parameters(), lr=0.1)
batch = torch.randn(4, 4, device=torch.cuda.current_device())
output = model(batch)
loss = output.sum()
loss.backward()
optim.step()
with FSDP.state_dict_type(model, StateDictType.LOCAL_STATE_DICT):
state_dict = model.state_dict()
rank = dist.get_rank()
new_pg = dist.new_group(ranks=[0, 1])
resharded_state_dict = {}
# Mimic resharding from 4 GPUs to 2 GPUs
for key, value in state_dict.items():
if isinstance(value, ShardedTensor):
full_flat_param = _all_gather_sharded_tensor(value)
if rank < 2:
full_numel = full_flat_param.size()
chunks = full_flat_param.chunk(2)
flat_param = chunks[rank]
shard_offset = 0 if rank == 0 else chunks[0].numel()
local_shards = [
Shard.from_tensor_and_offsets(flat_param, [shard_offset], rank)
]
sharded_tensor = init_from_local_shards(
local_shards, full_numel, process_group=new_pg
)
resharded_state_dict[key] = sharded_tensor
else:
if rank < 2:
resharded_state_dict[key] = value
if rank < 2:
model2 = FSDP(
Model(wrap_fsdp=True, process_group=new_pg), process_group=new_pg
).cuda()
with FSDP.state_dict_type(model2, StateDictType.LOCAL_STATE_DICT):
model2.load_state_dict(resharded_state_dict)
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT):
full_state_dict1 = model.state_dict()
if rank < 2:
with FSDP.state_dict_type(model2, StateDictType.FULL_STATE_DICT):
full_state_dict2 = model2.state_dict()
self.assertEqual(full_state_dict1, full_state_dict2)
|
import io
import itertools
import sys
from contextlib import nullcontext
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardedTensor,
)
from torch.distributed._state_dict_utils import (
_all_gather_sharded_tensor,
_gather_state_dict,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch.distributed.fsdp import (
CPUOffload,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
LocalStateDictConfig,
MixedPrecision,
ShardedStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._common_utils import FSDP_PREFIX
from torch.distributed.fsdp._unshard_param_utils import FLAT_PARAM
from torch.distributed.fsdp.wrap import enable_wrap, ModuleWrapPolicy, wrap
from torch.nn import Linear, Module, TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
_broadcast_state_dict,
_get_state_dict,
_zero_model,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
get_full_params,
SkipModel,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = "non_fsdp_lin"
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class TestFSDPStateDict4GPUs(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_unshard_params.py
|
__init__
|
def __init__(self):
super().__init__()
self.a = nn.Parameter(torch.zeros(5))
|
def __init__(self) -> None:
super().__init__()
self.a = nn.Parameter(torch.zeros(5))
|
import contextlib
import itertools
import math
import sys
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.flat_param import FlatParameter
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class MyModule(nn.Module):
|
import contextlib
import itertools
import math
import sys
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import FlatParameter
from torch.distributed.fsdp.fully_sharded_data_parallel import FLAT_PARAM
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class MyModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_hsdp_dtensor_state_dict.py
|
__init__
|
def __init__(self) -> None:
super().__init__()
torch.manual_seed(0)
self.net1 = nn.Sequential(nn.Linear(8, 16), nn.ReLU())
self.net2 = nn.Sequential(nn.Linear(16, 32), nn.ReLU())
self.net3 = nn.Sequential(nn.Linear(32, 64), nn.ReLU())
self.net4 = nn.Sequential(nn.ReLU(), nn.Linear(64, 8))
|
import io
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Replicate, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
ShardingStrategy,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class DenseModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_hsdp_dtensor_state_dict.py
|
forward
|
def forward(self, x):
return self.net4(self.net3(self.net2(self.net1(x))))
|
import io
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Replicate, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
ShardingStrategy,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class DenseModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_shard_utils.py
|
_create_local_chunk
|
def _create_local_chunk(self, tensor):
chunk = tensor.chunk(2)[self.rank]
offsets = [0] if self.rank == 0 else [tensor.shape[0] - chunk.shape[0]]
shard = Shard.from_tensor_and_offsets(chunk, offsets, self.rank)
return init_from_local_shards([shard], tensor.numel())
|
import torch
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardMetadata,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
)
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._shard_utils import (
_create_chunk_sharded_tensor,
_offsets_to_split_sizes,
_reshard_flatten_tensor,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import TestCase
class TestShardUtilsDistributed(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/fsdp/test_shard_utils.py
|
_create_enumerate_spec
|
def _create_enumerate_spec(self, tensor):
# Since placement is not used, always set placement to rank0 to mimic
# the actual usage.
metadata = [
ShardMetadata([0], [101], placement="rank0/cuda:0"),
ShardMetadata([101], [900], placement="rank0/cuda:0"),
]
return EnumerableShardingSpec(metadata)
|
import torch
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardMetadata,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
)
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._shard_utils import (
_create_chunk_sharded_tensor,
_offsets_to_split_sizes,
_reshard_flatten_tensor,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import TestCase
class TestShardUtilsDistributed(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/fsdp/test_shard_utils.py
|
_create_chunk_spec
|
def _create_chunk_spec(self):
return ChunkShardingSpec(dim=0, placements=["rank0/cuda:0"])
|
import torch
from torch.distributed._shard.sharded_tensor import (
init_from_local_shards,
Shard,
ShardMetadata,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
)
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._shard_utils import (
_create_chunk_sharded_tensor,
_offsets_to_split_sizes,
_reshard_flatten_tensor,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import TestCase
class TestShardUtilsDistributed(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/fsdp/test_fsdp_use_orig_params.py
|
test_diff_hyperparams_cpu_offload
|
def test_diff_hyperparams_cpu_offload(self, sharding_strategy_str: str):
"""
Tests FSDP parity with DDP when using multiple parameter groups with
different hyperparameter settings with CPU offloading enabled. This is
separate from :meth:`test_diff_hyperparams` because CPU offloading has
some issues with subtesting for some specific subtesting configs (e.g.,
with ``offload_params=False`` followed by ``True`` but not vice versa).
"""
sharding_strategy = self._get_sharding_strategy_from_str(sharding_strategy_str)
self._test_diff_hyperparams(
cuda_init_mode=CUDAInitMode.CUDA_BEFORE,
init_optim_before_wrap=False,
optim_class=torch.optim.Adam,
multi_tensor=False,
set_to_none=False,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
cpu_offload=CPUOffload(offload_params=True),
sharding_strategy=sharding_strategy,
)
|
def test_diff_hyperparams_cpu_offload(self, sharding_strategy_str: str):
"""
Tests FSDP parity with DDP when using multiple parameter groups with
different hyperparameter settings with CPU offloading enabled. This is
separate from :meth:`test_diff_hyperparams` because CPU offloading has
some issues with subtesting for some specific subtesting configs (e.g.,
with ``offload_params=False`` followed by ``True`` but not vice versa).
"""
sharding_strategy = self._get_sharding_strategy_from_str(sharding_strategy_str)
for skip_writeback_check in (False, True):
self._test_diff_hyperparams(
cuda_init_mode=CUDAInitMode.CUDA_BEFORE,
init_optim_before_wrap=False,
optim_class=torch.optim.Adam,
multi_tensor=False,
set_to_none=False,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
cpu_offload=CPUOffload(offload_params=True),
sharding_strategy=sharding_strategy,
skip_writeback_check=skip_writeback_check,
)
|
import copy
import functools
import itertools
import sys
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPUseOrigParamsMultipleParamGroups(FSDPTest):
|
import copy
import functools
import itertools
import os
import sys
import unittest
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import (
_FSDP_SKIP_WRITEBACK_CHECK,
_FSDP_USE_FULL_PREC_IN_EVAL,
)
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.utils._triton import has_triton
class TestFSDPUseOrigParamsMultipleParamGroups(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_use_orig_params.py
|
_test_multiple_optimizers
|
def _test_multiple_optimizers(self, sharding_strategy: ShardingStrategy):
ddp_model = self._get_ddp_transformer(find_unused_params=True)
ddp_param_groups = self._get_param_groups(ddp_model)
assert len(ddp_param_groups) == 3, f"{len(ddp_param_groups)}"
(
fsdp_model,
_,
) = self._get_fsdp_transformer_and_optim( # ignore returned optimizer
cuda_init_mode=CUDAInitMode.CUDA_BEFORE,
init_optim_before_wrap=False,
optim_class=torch.optim.Adam, # ignored
multi_tensor=False, # ignored
sharding_strategy=sharding_strategy,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
cpu_offload=None,
)
fsdp_param_groups = self._get_param_groups(fsdp_model)
assert len(fsdp_param_groups) == 3, f"{len(fsdp_param_groups)}"
ddp_optims = []
fsdp_optims = []
# For the transformer model, every parameter is either a weight or a
# bias, so we only use the first two parameter groups. Moreover, we use
# Adam and AdamW in particular since they both use bias correction
# dependent on the step, which is incremented even if a parameter has a
# zero gradient but not if the gradient is `None`. This is to test that
# we are differentiating between a zero and `None` gradient correctly.
optim_ctors = [
functools.partial(torch.optim.Adam, lr=5e-3),
functools.partial(torch.optim.AdamW, lr=1e-2),
]
for optim_ctor, ddp_param_group, fsdp_param_group in zip(
optim_ctors,
ddp_param_groups[:2],
fsdp_param_groups[:2],
):
ddp_optims.append(optim_ctor(ddp_param_group["params"]))
fsdp_optims.append(optim_ctor(fsdp_param_group["params"]))
device = torch.device("cuda")
# Check that there exists a `FlatParameter` that has both a weight and
# a bias in this rank's shard
has_both = False
for fsdp_module in FSDP.fsdp_modules(fsdp_model):
for handle in fsdp_module._handles:
flat_param = handle.flat_param
assert flat_param._params is not None
has_weight = False
has_bias = False
for param, fqn in zip(flat_param._params, flat_param._fqns):
if "weight" in fqn and param.numel() > 0:
has_weight = True
elif "bias" in fqn and param.numel() > 0:
has_bias = True
has_both |= has_weight and has_bias
assert has_both, (
f"Rank {self.rank} does not have a `FlatParameter` with both a "
"weight and a bias in its shard, meaning that this test is vacuous"
)
# Run one iteration to generate gradients
def run_iter():
iter_losses = []
for model, optims in ((ddp_model, ddp_optims), (fsdp_model, fsdp_optims)):
module = model.module
inp = module.get_input(device)
output = model(*inp)
loss = module.get_loss(inp, output).to(device)
iter_losses.append(loss)
module.run_backward(loss)
for optim in optims:
optim.step()
torch.testing.assert_close(iter_losses[0], iter_losses[1])
iter_losses.clear()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
run_iter()
# Only set the weights' gradients to None
ddp_optims[0].zero_grad(set_to_none=True)
fsdp_optims[0].zero_grad(set_to_none=True)
inp = ddp_model.module.get_input(device)
ddp_output = ddp_model(*inp)
fsdp_output = fsdp_model(*inp)
# Check that FSDP correctly exposes gradients even after forward
# (namely, `None` for weights and non-`None` for biases)
for (ddp_n, ddp_p), (fsdp_n, fsdp_p) in zip(
ddp_model.module.named_parameters(),
fsdp_model.named_parameters(),
):
self.assertEqual(ddp_n, clean_tensor_name(fsdp_n))
if fsdp_p.numel() == 0:
# Not in this rank's shard
self.assertTrue(fsdp_p.grad is None)
continue
if ddp_p.grad is None:
self.assertTrue(fsdp_p.grad is None)
else:
self.assertEqual(ddp_p.flatten(), fsdp_p.flatten())
self.assertEqual(ddp_p.grad.flatten(), fsdp_p.grad.flatten())
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
# Finish the iteration (backward pass and optimizer step)
ddp_loss = ddp_model.module.get_loss(inp, ddp_output).to(device)
fsdp_loss = fsdp_model.module.get_loss(inp, fsdp_output).to(device)
ddp_model.module.run_backward(ddp_loss)
fsdp_model.module.run_backward(fsdp_loss)
for optim in itertools.chain(ddp_optims, fsdp_optims):
optim.step()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
# Run one more iteration to confirm bias corrections are correct
run_iter()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
|
def _test_multiple_optimizers(self, sharding_strategy: ShardingStrategy):
ddp_model = self._get_ddp_transformer(find_unused_params=True)
ddp_param_groups = self._get_param_groups(ddp_model)
assert len(ddp_param_groups) == 3, f"{len(ddp_param_groups)}"
(
fsdp_model,
_,
) = self._get_fsdp_transformer_and_optim( # ignore returned optimizer
cuda_init_mode=CUDAInitMode.CUDA_BEFORE,
init_optim_before_wrap=False,
optim_class=torch.optim.Adam, # ignored
multi_tensor=False, # ignored
sharding_strategy=sharding_strategy,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
cpu_offload=None,
)
fsdp_param_groups = self._get_param_groups(fsdp_model)
assert len(fsdp_param_groups) == 3, f"{len(fsdp_param_groups)}"
ddp_optims = []
fsdp_optims = []
# For the transformer model, every parameter is either a weight or a
# bias, so we only use the first two parameter groups. Moreover, we use
# Adam and AdamW in particular since they both use bias correction
# dependent on the step, which is incremented even if a parameter has a
# zero gradient but not if the gradient is `None`. This is to test that
# we are differentiating between a zero and `None` gradient correctly.
optim_ctors = [
functools.partial(torch.optim.Adam, lr=5e-3),
functools.partial(torch.optim.AdamW, lr=1e-2),
]
for optim_ctor, ddp_param_group, fsdp_param_group in zip(
optim_ctors,
ddp_param_groups[:2],
fsdp_param_groups[:2],
):
ddp_optims.append(optim_ctor(ddp_param_group["params"]))
fsdp_optims.append(optim_ctor(fsdp_param_group["params"]))
device = torch.device("cuda")
# Check that there exists a `FlatParameter` that has both a weight and
# a bias in this rank's shard
has_both = False
for fsdp_module in FSDP.fsdp_modules(fsdp_model):
handle = fsdp_module._handle
if not handle:
continue
flat_param = handle.flat_param
assert flat_param._params is not None
has_weight = False
has_bias = False
for param, fqn in zip(flat_param._params, flat_param._fqns):
if "weight" in fqn and param.numel() > 0:
has_weight = True
elif "bias" in fqn and param.numel() > 0:
has_bias = True
has_both |= has_weight and has_bias
assert has_both, (
f"Rank {self.rank} does not have a `FlatParameter` with both a "
"weight and a bias in its shard, meaning that this test is vacuous"
)
# Run one iteration to generate gradients
def run_iter():
iter_losses = []
for model, optims in ((ddp_model, ddp_optims), (fsdp_model, fsdp_optims)):
module = model.module
inp = module.get_input(device)
output = model(*inp)
loss = module.get_loss(inp, output).to(device)
iter_losses.append(loss)
module.run_backward(loss)
for optim in optims:
optim.step()
torch.testing.assert_close(iter_losses[0], iter_losses[1])
iter_losses.clear()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
run_iter()
# Only set the weights' gradients to None
ddp_optims[0].zero_grad(set_to_none=True)
fsdp_optims[0].zero_grad(set_to_none=True)
inp = ddp_model.module.get_input(device)
ddp_output = ddp_model(*inp)
fsdp_output = fsdp_model(*inp)
# Check that FSDP correctly exposes gradients even after forward
# (namely, `None` for weights and non-`None` for biases)
if sharding_strategy in NO_RESHARD_AFTER_FORWARD_STRATEGIES:
# Skip the check since we do not expose the gradients after forward
# for these strategies
return
for (ddp_n, ddp_p), (fsdp_n, fsdp_p) in zip(
ddp_model.module.named_parameters(),
fsdp_model.named_parameters(),
):
self.assertEqual(ddp_n, clean_tensor_name(fsdp_n))
if fsdp_p.numel() == 0:
# Not in this rank's shard
self.assertTrue(fsdp_p.grad is None)
continue
if ddp_p.grad is None:
self.assertTrue(fsdp_p.grad is None)
else:
self.assertEqual(ddp_p.flatten(), fsdp_p.flatten())
self.assertEqual(ddp_p.grad.flatten(), fsdp_p.grad.flatten())
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
# Finish the iteration (backward pass and optimizer step)
ddp_loss = ddp_model.module.get_loss(inp, ddp_output).to(device)
fsdp_loss = fsdp_model.module.get_loss(inp, fsdp_output).to(device)
ddp_model.module.run_backward(ddp_loss)
fsdp_model.module.run_backward(fsdp_loss)
for optim in itertools.chain(ddp_optims, fsdp_optims):
optim.step()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
# Run one more iteration to confirm bias corrections are correct
run_iter()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
|
import copy
import functools
import itertools
import sys
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPUseOrigParamsMultipleParamGroups(FSDPTest):
|
import copy
import functools
import itertools
import os
import sys
import unittest
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import (
_FSDP_SKIP_WRITEBACK_CHECK,
_FSDP_USE_FULL_PREC_IN_EVAL,
)
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.utils._triton import has_triton
class TestFSDPUseOrigParamsMultipleParamGroups(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_use_orig_params.py
|
run_iter
|
def run_iter():
iter_losses = []
for model, optims in ((ddp_model, ddp_optims), (fsdp_model, fsdp_optims)):
module = model.module
inp = module.get_input(device)
output = model(*inp)
loss = module.get_loss(inp, output).to(device)
iter_losses.append(loss)
module.run_backward(loss)
for optim in optims:
optim.step()
torch.testing.assert_close(iter_losses[0], iter_losses[1])
iter_losses.clear()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
run_iter()
# Only set the weights' gradients to None
ddp_optims[0].zero_grad(set_to_none=True)
fsdp_optims[0].zero_grad(set_to_none=True)
inp = ddp_model.module.get_input(device)
ddp_output = ddp_model(*inp)
fsdp_output = fsdp_model(*inp)
# Check that FSDP correctly exposes gradients even after forward
# (namely, `None` for weights and non-`None` for biases)
for (ddp_n, ddp_p), (fsdp_n, fsdp_p) in zip(
ddp_model.module.named_parameters(),
fsdp_model.named_parameters(),
):
self.assertEqual(ddp_n, clean_tensor_name(fsdp_n))
if fsdp_p.numel() == 0:
# Not in this rank's shard
self.assertTrue(fsdp_p.grad is None)
continue
if ddp_p.grad is None:
self.assertTrue(fsdp_p.grad is None)
else:
self.assertEqual(ddp_p.flatten(), fsdp_p.flatten())
self.assertEqual(ddp_p.grad.flatten(), fsdp_p.grad.flatten())
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
# Finish the iteration (backward pass and optimizer step)
ddp_loss = ddp_model.module.get_loss(inp, ddp_output).to(device)
fsdp_loss = fsdp_model.module.get_loss(inp, fsdp_output).to(device)
ddp_model.module.run_backward(ddp_loss)
fsdp_model.module.run_backward(fsdp_loss)
for optim in itertools.chain(ddp_optims, fsdp_optims):
optim.step()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
# Run one more iteration to confirm bias corrections are correct
run_iter()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
|
def run_iter():
iter_losses = []
for model, optims in ((ddp_model, ddp_optims), (fsdp_model, fsdp_optims)):
module = model.module
inp = module.get_input(device)
output = model(*inp)
loss = module.get_loss(inp, output).to(device)
iter_losses.append(loss)
module.run_backward(loss)
for optim in optims:
optim.step()
torch.testing.assert_close(iter_losses[0], iter_losses[1])
iter_losses.clear()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
run_iter()
# Only set the weights' gradients to None
ddp_optims[0].zero_grad(set_to_none=True)
fsdp_optims[0].zero_grad(set_to_none=True)
inp = ddp_model.module.get_input(device)
ddp_output = ddp_model(*inp)
fsdp_output = fsdp_model(*inp)
# Check that FSDP correctly exposes gradients even after forward
# (namely, `None` for weights and non-`None` for biases)
if sharding_strategy in NO_RESHARD_AFTER_FORWARD_STRATEGIES:
# Skip the check since we do not expose the gradients after forward
# for these strategies
return
for (ddp_n, ddp_p), (fsdp_n, fsdp_p) in zip(
ddp_model.module.named_parameters(),
fsdp_model.named_parameters(),
):
self.assertEqual(ddp_n, clean_tensor_name(fsdp_n))
if fsdp_p.numel() == 0:
# Not in this rank's shard
self.assertTrue(fsdp_p.grad is None)
continue
if ddp_p.grad is None:
self.assertTrue(fsdp_p.grad is None)
else:
self.assertEqual(ddp_p.flatten(), fsdp_p.flatten())
self.assertEqual(ddp_p.grad.flatten(), fsdp_p.grad.flatten())
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
# Finish the iteration (backward pass and optimizer step)
ddp_loss = ddp_model.module.get_loss(inp, ddp_output).to(device)
fsdp_loss = fsdp_model.module.get_loss(inp, fsdp_output).to(device)
ddp_model.module.run_backward(ddp_loss)
fsdp_model.module.run_backward(fsdp_loss)
for optim in itertools.chain(ddp_optims, fsdp_optims):
optim.step()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
# Run one more iteration to confirm bias corrections are correct
run_iter()
self._check_ddp_fsdp_param_parity(ddp_model, fsdp_model)
|
import copy
import functools
import itertools
import sys
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import copy
import functools
import itertools
import os
import sys
import unittest
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import (
_FSDP_SKIP_WRITEBACK_CHECK,
_FSDP_USE_FULL_PREC_IN_EVAL,
)
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_unshard_params.py
|
test_unshard_params_respects_reshard
|
def test_unshard_params_respects_reshard(self):
"""
Tests that unsharding parameters respects the expected reshard behavior
between forward and backward as well as after backward.
"""
self.run_subtests(
{
"rank0_only": [False, True],
"offload_to_cpu": [False, True],
"mixed_precision": [MixedPrecision(param_dtype=torch.float16), None],
"use_orig_params": [False, True],
},
self._test_unshard_params_respects_reshard,
)
|
def test_unshard_params_respects_reshard(self):
"""
Tests that unsharding parameters respects the expected reshard behavior
between forward and backward as well as after backward.
For mixed precision, we should *not* respect the reshard behavior
because the ``summon_full_params()`` forces full precision, which uses
a different all-gather tensor than the one already in memory and will
not persist any modifications correctly.
"""
self.run_subtests(
{
"rank0_only": [False, True],
"offload_to_cpu": [False, True],
"mixed_precision": [MixedPrecision(param_dtype=torch.float16), None],
"use_orig_params": [False, True],
},
self._test_unshard_params_respects_reshard,
)
|
import contextlib
import itertools
import math
import sys
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.flat_param import FlatParameter
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestUnshardParams(TestUnshardParamsBase):
|
import contextlib
import itertools
import math
import sys
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import FlatParameter
from torch.distributed.fsdp.fully_sharded_data_parallel import FLAT_PARAM
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestUnshardParams(TestUnshardParamsBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_unshard_params.py
|
_get_unsharded_storage_size
|
def _get_unsharded_storage_size(flat_param: FlatParameter):
return flat_param._full_param_padded.storage().size()
# Validate the expected behavior: the root does not reshard after
# forward; the non-root reshards after forward; and both reshard after
# backward
output = model(torch.zeros(5, device=self.device))
self.assertEqual(
expected_outer_flat_param_unsharded_numel,
_get_unsharded_storage_size(outer_flat_param),
)
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
output.sum().backward()
self.assertEqual(0, _get_unsharded_storage_size(outer_flat_param))
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
# Check that with parameter unsharding in between forward and backward
# as well as after backward, the reshard behavior matches
output = model(torch.zeros(5, device=self.device))
with FSDP.summon_full_params(
model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
pass
self.assertEqual(
expected_outer_flat_param_unsharded_numel,
_get_unsharded_storage_size(outer_flat_param),
)
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
output.sum().backward()
with FSDP.summon_full_params(
model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
pass
self.assertEqual(0, _get_unsharded_storage_size(outer_flat_param))
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
|
def _get_unsharded_storage_size(flat_param: FlatParameter):
return flat_param._full_param_padded.storage().size()
# Validate the expected behavior: the root does not reshard after
# forward; the non-root reshards after forward; and both reshard after
# backward
output = model(torch.zeros(5, device=self.device))
self.assertEqual(
expected_outer_flat_param_unsharded_numel,
_get_unsharded_storage_size(outer_flat_param),
)
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
output.sum().backward()
self.assertEqual(0, _get_unsharded_storage_size(outer_flat_param))
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
# Check that with parameter unsharding in between forward and backward
# as well as after backward, the reshard behavior matches
output = model(torch.zeros(5, device=self.device))
with FSDP.summon_full_params(
model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
pass
if mixed_precision is not None:
# After forcing full precision, we must invalidate the existing
# unsharded low-precision flat parameter since it will not persist
# changes from the `summon_full_params()` context, so we cannot
# respect the reshard behavior
expected_outer_flat_param_unsharded_numel = 0
self.assertEqual(
expected_outer_flat_param_unsharded_numel,
_get_unsharded_storage_size(outer_flat_param),
)
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
output.sum().backward()
with FSDP.summon_full_params(
model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
pass
self.assertEqual(0, _get_unsharded_storage_size(outer_flat_param))
self.assertEqual(0, _get_unsharded_storage_size(inner_flat_param))
|
import contextlib
import itertools
import math
import sys
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.flat_param import FlatParameter
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
|
import contextlib
import itertools
import math
import sys
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import FlatParameter
from torch.distributed.fsdp.fully_sharded_data_parallel import FLAT_PARAM
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_unshard_params.py
|
_get_error_context
|
def _get_error_context(is_supported: bool):
return (
contextlib.suppress()
if is_supported
else self.assertRaises(NotImplementedError)
) # some configs are not implemented yet
|
def _get_error_context(is_supported: bool):
return (
contextlib.nullcontext()
if is_supported
else self.assertRaises(NotImplementedError)
) # some configs are not implemented yet
|
import contextlib
import itertools
import math
import sys
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.flat_param import FlatParameter
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
|
import contextlib
import itertools
import math
import sys
from typing import Any, Dict, List, Optional, Union
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import FlatParameter
from torch.distributed.fsdp.fully_sharded_data_parallel import FLAT_PARAM
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_use_orig_params.py
|
__init__
|
def __init__(self):
super().__init__()
torch.manual_seed(42)
# 5 * 5 = 25 numel -> pad to 26 -> 13 on each rank
self.lin1 = nn.Linear(5, 5, bias=False)
# 5 * 7 + 7 = 42 numel -> no pad -> 21 on each rank
# 21 of weight on rank 0; 14 of weight and 7 of bias on rank 1
self.lin2 = nn.Linear(5, 7)
|
def __init__(self) -> None:
super().__init__()
torch.manual_seed(42)
# 5 * 5 = 25 numel -> pad to 26 -> 13 on each rank
self.lin1 = nn.Linear(5, 5, bias=False)
# 5 * 7 + (1) + 7 = 43 numel -> pad to 44 -> 22 on each rank,
# where the (1) is from intra-`FlatParameter` alignment padding
# 22 of weight on rank 0; 13 of weight, 1 alignment padding,
# and 7 of bias on rank 1
self.lin2 = nn.Linear(5, 7)
|
import copy
import functools
import itertools
import sys
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
import copy
import functools
import itertools
import os
import sys
import unittest
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import (
_FSDP_SKIP_WRITEBACK_CHECK,
_FSDP_USE_FULL_PREC_IN_EVAL,
)
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.utils._triton import has_triton
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_use_orig_params.py
|
check_parameter_parity
|
def check_parameter_parity(ddp_model, fsdp_model):
assert self.rank in (
0,
1,
), f"Expects world size of 2 but got {self.world_size}"
for (n1, p1), (n2, p2) in zip(
ddp_model.module.named_parameters(),
fsdp_model.named_parameters(),
):
self.assertEqual(n1, clean_tensor_name(n2))
if sharding_strategy == ShardingStrategy.NO_SHARD:
# For `NO_SHARD`, do nothing since the original parameters
# are unflattened
pass
# Otherwise, case on the parameter (see the model definition)
elif n1 == "lin1.weight":
if self.rank == 0:
p1 = p1.flatten()[:13]
elif self.rank == 1:
p1 = p1.flatten()[13:]
elif n1 == "lin2.weight":
if self.rank == 0:
p1 = p1.flatten()[:21]
elif self.rank == 1:
p1 = p1.flatten()[21:]
elif n1 == "lin2.bias":
if self.rank == 0:
p1 = torch.empty(0, device=p1.device)
elif self.rank == 1:
p1 = p1.flatten()
torch.testing.assert_close(p1, p2)
ddp_model = DDP(Model().cuda(), device_ids=[self.rank])
fsdp_model = FSDP(
Model().cuda(),
sharding_strategy=sharding_strategy,
auto_wrap_policy=always_wrap_policy,
use_orig_params=True,
)
LR = 1e-2
ddp_optim = torch.optim.Adam(ddp_model.parameters(), lr=LR)
fsdp_optim = torch.optim.Adam(fsdp_model.parameters(), lr=LR)
device = torch.device("cuda")
inp = fsdp_model.get_input(device)
ddp_out = ddp_model(*inp)
fsdp_out = fsdp_model(*inp)
check_parameter_parity(ddp_model, fsdp_model)
ddp_loss = ddp_model.module.get_loss(inp, ddp_out)
fsdp_loss = fsdp_model.get_loss(inp, fsdp_out)
ddp_loss.backward()
fsdp_loss.backward()
ddp_optim.step()
fsdp_optim.step()
check_parameter_parity(ddp_model, fsdp_model)
inp = fsdp_model.get_input(device)
ddp_out = ddp_model(*inp)
fsdp_out = fsdp_model(*inp)
check_parameter_parity(ddp_model, fsdp_model)
|
def check_parameter_parity(
ddp_model: DDP, fsdp_model: FSDP, between_fwd_and_bwd: bool
):
assert self.rank in (
0,
1,
), f"Expects world size of 2 but got {self.world_size}"
for (n1, p1), (n2, p2) in zip(
ddp_model.module.named_parameters(),
fsdp_model.named_parameters(),
):
self.assertEqual(n1, clean_tensor_name(n2))
if sharding_strategy == ShardingStrategy.NO_SHARD:
# For `NO_SHARD`, do nothing since the original parameters
# are unflattened
pass
elif (
between_fwd_and_bwd
and sharding_strategy in NO_RESHARD_AFTER_FORWARD_STRATEGIES
):
# For no reshard after forward strategies, do nothing since
# FSDP did not use sharded views after forward
pass
# Otherwise, case on the parameter (see the model definition)
elif n1 == "lin1.weight":
if self.rank == 0:
p1 = p1.flatten()[:13]
elif self.rank == 1:
p1 = p1.flatten()[13:]
elif n1 == "lin2.weight":
if self.rank == 0:
p1 = p1.flatten()[:22]
elif self.rank == 1:
p1 = p1.flatten()[22:]
elif n1 == "lin2.bias":
if self.rank == 0:
p1 = torch.empty(0, device=p1.device)
elif self.rank == 1:
p1 = p1.flatten()
torch.testing.assert_close(p1, p2)
ddp_model = DDP(Model().cuda(), device_ids=[self.rank])
fsdp_model = FSDP(
Model().cuda(),
sharding_strategy=sharding_strategy,
auto_wrap_policy=always_wrap_policy,
use_orig_params=True,
)
LR = 1e-2
ddp_optim = torch.optim.Adam(ddp_model.parameters(), lr=LR)
fsdp_optim = torch.optim.Adam(fsdp_model.parameters(), lr=LR)
device = torch.device("cuda")
inp = fsdp_model.get_input(device)
ddp_out = ddp_model(*inp)
fsdp_out = fsdp_model(*inp)
check_parameter_parity(ddp_model, fsdp_model, True)
ddp_loss = ddp_model.module.get_loss(inp, ddp_out)
fsdp_loss = fsdp_model.get_loss(inp, fsdp_out)
ddp_loss.backward()
fsdp_loss.backward()
ddp_optim.step()
fsdp_optim.step()
check_parameter_parity(ddp_model, fsdp_model, False)
inp = fsdp_model.get_input(device)
ddp_out = ddp_model(*inp)
fsdp_out = fsdp_model(*inp)
check_parameter_parity(ddp_model, fsdp_model, True)
|
import copy
import functools
import itertools
import sys
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import copy
import functools
import itertools
import os
import sys
import unittest
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import (
_FSDP_SKIP_WRITEBACK_CHECK,
_FSDP_USE_FULL_PREC_IN_EVAL,
)
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.utils._triton import has_triton
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_use_orig_params.py
|
__init__
|
def __init__(self):
super().__init__()
torch.manual_seed(42)
# 5 * 5 = 25 numel -> pad to 26 -> 13 on each rank
self.lin1 = nn.Linear(5, 5, bias=False)
# 5 * 7 + 7 = 42 numel -> no pad -> 21 on each rank
# 21 of weight on rank 0; 14 of weight and 7 of bias on rank 1
self.lin2 = nn.Linear(5, 7)
|
def __init__(self) -> None:
super().__init__()
torch.manual_seed(42)
# 5 * 5 = 25 numel -> pad to 26 -> 13 on each rank
self.lin1 = nn.Linear(5, 5, bias=False)
# 5 * 7 + (1) + 7 = 43 numel -> pad to 44 -> 22 on each rank,
# where the (1) is from intra-`FlatParameter` alignment padding
# 22 of weight on rank 0; 13 of weight, 1 alignment padding,
# and 7 of bias on rank 1
self.lin2 = nn.Linear(5, 7)
|
import copy
import functools
import itertools
import sys
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
import copy
import functools
import itertools
import os
import sys
import unittest
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._common_utils import clean_tensor_name
from torch.distributed.fsdp._flat_param import (
_FSDP_SKIP_WRITEBACK_CHECK,
_FSDP_USE_FULL_PREC_IN_EVAL,
)
from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES
from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.utils._triton import has_triton
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/launcher/test_run.py
|
test_launch_with_env_vars
|
run_id = str(uuid.uuid4().int)
nnodes = 1
nproc_per_node = 4
world_size = nnodes * nproc_per_node
os.environ["PET_NNODES"] = str(nnodes)
os.environ["PET_NPROC_PER_NODE"] = str(nproc_per_node)
os.environ["PET_RDZV_BACKEND"] = "etcd"
os.environ["PET_RDZV_ENDPOINT"] = self._etcd_endpoint
os.environ["PET_RDZV_ID"] = run_id
os.environ["PET_MONITOR_INTERVAL"] = "1"
os.environ["PET_START_METHOD"] = "spawn"
os.environ["PET_NO_PYTHON"] = "1"
script_args = [path("bin/test_script.sh"), f"{self.test_dir}"]
with self.assertRaises(ValueError):
# --no-python cannot be used with --module
os.environ["PET_MODULE"] = "1"
launch.main(script_args)
os.environ["PET_MODULE"] = "0"
launch.main(script_args)
# make sure all the workers ran
# each worker touches a file with its global rank as the name
self.assertSetEqual(
{str(i) for i in range(world_size)}, set(os.listdir(self.test_dir))
)
|
def test_launch_with_env_vars(self):
run_id = str(uuid.uuid4().int)
nnodes = 1
nproc_per_node = 4
world_size = nnodes * nproc_per_node
os.environ["PET_NNODES"] = str(nnodes)
os.environ["PET_NPROC_PER_NODE"] = str(nproc_per_node)
os.environ["PET_RDZV_ID"] = run_id
os.environ["PET_MONITOR_INTERVAL"] = "1"
os.environ["PET_START_METHOD"] = "spawn"
os.environ["PET_NO_PYTHON"] = "1"
script_args = [path("bin/test_script.sh"), f"{self.test_dir}"]
with self.assertRaises(ValueError):
# --no-python cannot be used with --module
os.environ["PET_MODULE"] = "1"
launch.main(script_args)
os.environ["PET_MODULE"] = "0"
launch.main(script_args)
# make sure all the workers ran
# each worker touches a file with its global rank as the name
self.assertSetEqual(
{str(i) for i in range(world_size)}, set(os.listdir(self.test_dir))
)
|
import io
import multiprocessing as mp
import os
import runpy
import shutil
import subprocess
import sys
import tempfile
import uuid
from contextlib import closing, redirect_stderr, redirect_stdout
from unittest import mock
from unittest.mock import MagicMock, Mock, patch
import torch.distributed.run as launch
from torch.distributed.elastic.agent.server.api import RunResult, WorkerState
from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs
from torch.distributed.elastic.multiprocessing.errors import ChildFailedError
from torch.distributed.elastic.utils import get_socket_with_port
from torch.distributed.elastic.utils.distributed import get_free_port
from torch.testing._internal.common_utils import (
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
class ElasticLaunchTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_tp_integration.py
|
assert_local_shard_across_ranks
|
instantiate_parametrized_tests(TestTPFSDPIntegration)
if __name__ == "__main__":
run_tests()
|
def assert_local_shard_across_ranks(local_tensor, group, check_equal=True):
gathered_tensors = [
torch.empty_like(local_tensor) for _ in range(group.size())
]
dist.all_gather(gathered_tensors, local_tensor, group=group)
# on dp mesh dim local tensor does not equal
tensor_to_compare = gathered_tensors[0]
for tensor in gathered_tensors[1:]:
if check_equal:
self.assertTrue(torch.equal(tensor, tensor_to_compare))
else:
self.assertFalse(torch.equal(tensor, tensor_to_compare))
dp_group = dp_mesh.get_group()
# check on dp mesh dim param local tensor does not equal
local_param = model.param.to_local()
assert_local_shard_across_ranks(local_param, dp_group, check_equal=False)
# check on dp mesh dim buffer local tensor does not equal
local_buf = model.buf.to_local()
assert_local_shard_across_ranks(local_buf, dp_group, check_equal=False)
# wrap with fsdp sync param should sync dp mesh dim
fsdp_mod = FSDP(model, device_mesh=dp_mesh, sync_module_states=True)
with fsdp_mod.summon_full_params(fsdp_mod):
# on dp mesh dim local param does equal after sync_module_states
local_param = fsdp_mod.param.to_local()
assert_local_shard_across_ranks(local_param, dp_group, check_equal=True)
# on dp mesh dim local buf does equal after sync_module_states
local_buf = fsdp_mod.buf.to_local()
assert_local_shard_across_ranks(local_buf, dp_group, check_equal=True)
|
import copy
import sys
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed._tensor import (
DeviceMesh,
distribute_module,
DTensor,
init_device_mesh,
Replicate,
Shard,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import (
CPUOffload,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
MLPModule,
RMSNormPython,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_shard_utils.py
|
test_create_chunk_dtensor
|
def test_create_chunk_dtensor(self):
device_mesh = self.build_device_mesh()
for size in ((1,), (1, 6), (12,), (12, 6), (25,), (25, 6)):
tensor = self._create_tensor(*size)
tensor_chunks = torch.chunk(tensor, self.world_size, dim=0)
dtensor = _create_chunk_dtensor(tensor, self.rank, device_mesh)
local_tensor = dtensor.to_local()
if local_tensor.numel() != 0:
self.assertEqual(local_tensor, tensor_chunks[self.rank])
else:
self.assertEqual(self.rank >= len(tensor_chunks), True)
|
import torch
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._shard_utils import (
_create_chunk_dtensor,
_create_chunk_sharded_tensor,
)
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class TestShardUtilsDistributedDTensor(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_utils.py
|
test_apply_to_tensors
|
def test_apply_to_tensors(self, devices):
if "cuda" in devices and (
not torch.cuda.is_available() or torch.cuda.device_count() < 1
):
raise unittest.SkipTest("Skipped due to lack of GPU")
expected = 0
def get_a_tensor():
"""Return a random tensor on random device."""
dev = random.choice(devices)
shape = random.choice(((1), (2, 3), (4, 5, 6), (7, 8, 9, 10)))
t = torch.rand(shape).to(dev)
nonlocal expected
expected += t.numel()
return t
@dataclass
class SomeDataClass:
some_key: str
some_float: float
some_tensor: List[torch.Tensor]
# create a mixed bag of data.
data = [1, "str"]
data.append({"key1": get_a_tensor(), "key2": {1: get_a_tensor()}, "key3": 3})
data.insert(0, {"x", get_a_tensor(), get_a_tensor()})
data.append(([1], get_a_tensor(), (1), [get_a_tensor()], {1, 2}))
data.append({"abc": SomeDataClass("some_key", 1.0, [get_a_tensor()])})
od = OrderedDict()
od["k"] = "value"
data.append(od)
total = 0
def fn(t):
nonlocal total
total += t.numel()
return t
new_data = _apply_to_tensors(fn, data)
self.assertEqual(total, expected)
for i, v in enumerate(data):
self.assertEqual(type(new_data[i]), type(v))
|
def test_apply_to_tensors(self, devices):
if "cuda" in devices and (
not torch.cuda.is_available() or torch.cuda.device_count() < 1
):
raise unittest.SkipTest("Skipped due to lack of GPU")
expected = 0
def get_a_tensor():
"""Return a random tensor on random device."""
dev = random.choice(devices)
shape = random.choice(((1), (2, 3), (4, 5, 6), (7, 8, 9, 10)))
t = torch.rand(shape).to(dev)
nonlocal expected
expected += t.numel()
return t
@dataclass
class NonFrozenDataClass:
some_key: str
some_float: float
some_tensor: List[torch.Tensor]
@dataclass(frozen=True)
class FrozenDataClass:
some_key: str
some_float: float
some_tensor: List[torch.Tensor]
# create a mixed bag of data.
data = [1, "str"]
data.append({"key1": get_a_tensor(), "key2": {1: get_a_tensor()}, "key3": 3})
data.insert(0, {"x", get_a_tensor(), get_a_tensor()})
data.append(([1], get_a_tensor(), (1), [get_a_tensor()], {1, 2}))
data.append(
{"non_frozen_ds": NonFrozenDataClass("some_key", 1.0, [get_a_tensor()])}
)
data.append({"frozen_ds": FrozenDataClass("some_key", 1.0, [get_a_tensor()])})
od = OrderedDict()
od["k"] = "value"
data.append(od)
total = 0
def fn(t):
nonlocal total
total += t.numel()
return t
new_data = _apply_to_tensors(fn, data)
self.assertEqual(total, expected)
for i, v in enumerate(data):
self.assertEqual(type(new_data[i]), type(v))
|
import random
import sys
import unittest
from collections import OrderedDict
from dataclasses import dataclass
from enum import auto, Enum
from typing import List
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp._utils import _apply_to_tensors
from torch.distributed.fsdp._wrap_utils import _get_fully_sharded_module_to_states
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.utils import _replace_by_prefix
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
class TestUtils(TestCase):
|
import random
import sys
import unittest
from collections import OrderedDict
from dataclasses import dataclass
from typing import List
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.utils import _apply_to_tensors, _replace_by_prefix
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
class TestUtils(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_utils.py
|
get_a_tensor
|
def get_a_tensor():
"""Return a random tensor on random device."""
dev = random.choice(devices)
shape = random.choice(((1), (2, 3), (4, 5, 6), (7, 8, 9, 10)))
t = torch.rand(shape).to(dev)
nonlocal expected
expected += t.numel()
return t
@dataclass
class SomeDataClass:
some_key: str
some_float: float
some_tensor: List[torch.Tensor]
# create a mixed bag of data.
data = [1, "str"]
data.append({"key1": get_a_tensor(), "key2": {1: get_a_tensor()}, "key3": 3})
data.insert(0, {"x", get_a_tensor(), get_a_tensor()})
data.append(([1], get_a_tensor(), (1), [get_a_tensor()], {1, 2}))
data.append({"abc": SomeDataClass("some_key", 1.0, [get_a_tensor()])})
od = OrderedDict()
od["k"] = "value"
data.append(od)
total = 0
|
def get_a_tensor():
"""Return a random tensor on random device."""
dev = random.choice(devices)
shape = random.choice(((1), (2, 3), (4, 5, 6), (7, 8, 9, 10)))
t = torch.rand(shape).to(dev)
nonlocal expected
expected += t.numel()
return t
@dataclass
class NonFrozenDataClass:
some_key: str
some_float: float
some_tensor: List[torch.Tensor]
@dataclass(frozen=True)
class FrozenDataClass:
some_key: str
some_float: float
some_tensor: List[torch.Tensor]
# create a mixed bag of data.
data = [1, "str"]
data.append({"key1": get_a_tensor(), "key2": {1: get_a_tensor()}, "key3": 3})
data.insert(0, {"x", get_a_tensor(), get_a_tensor()})
data.append(([1], get_a_tensor(), (1), [get_a_tensor()], {1, 2}))
data.append(
{"non_frozen_ds": NonFrozenDataClass("some_key", 1.0, [get_a_tensor()])}
)
data.append({"frozen_ds": FrozenDataClass("some_key", 1.0, [get_a_tensor()])})
od = OrderedDict()
od["k"] = "value"
data.append(od)
total = 0
|
import random
import sys
import unittest
from collections import OrderedDict
from dataclasses import dataclass
from enum import auto, Enum
from typing import List
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp._utils import _apply_to_tensors
from torch.distributed.fsdp._wrap_utils import _get_fully_sharded_module_to_states
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.utils import _replace_by_prefix
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
|
import random
import sys
import unittest
from collections import OrderedDict
from dataclasses import dataclass
from typing import List
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.utils import _apply_to_tensors, _replace_by_prefix
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_utils.py
|
test_get_fully_sharded_module_to_states
|
def test_get_fully_sharded_module_to_states(self):
"""
Tests the helper function ``_get_fully_sharded_module_states()`` that
performs the pseudo-auto-wrapping for the non-wrapper path.
NOTE: This test is hard coded against ``Model``.
"""
model = self.Model(TestGetSubmoduleToStates.SharedParameterMode.PARENT_CHILD)
# Compute the mapping from fully sharded module to states according to
# a logical module wrap policy
module_classes = (nn.Sequential,)
auto_wrap_policy = ModuleWrapPolicy(set(module_classes))
fully_sharded_module_to_states = _get_fully_sharded_module_to_states(
model, auto_wrap_policy, set(), set()
)
# Check the number of submodules with states in the mapping
num_submodules_with_states = sum(
isinstance(submodule, module_classes) for submodule in model.modules()
) # explicitly show how to compute the expected number
if not isinstance(model, module_classes):
num_submodules_with_states += 1 # always include the root
assert num_submodules_with_states == 4, f"{num_submodules_with_states}"
self.assertEqual(
len(fully_sharded_module_to_states), num_submodules_with_states
)
# Check the mapping, i.e. that the dict order follows `model.modules()`
# order and that the contents are expected
fully_sharded_modules = list(fully_sharded_module_to_states.keys())
expected_fully_sharded_modules = [
module
for module in model.modules()
if isinstance(module, nn.Sequential) or module is model
]
self.assertEqual(expected_fully_sharded_modules, fully_sharded_modules)
# - Root module `model`
self.assertEqual(fully_sharded_modules[0], model)
root_states = fully_sharded_module_to_states[fully_sharded_modules[0]]
self.assertEqual(root_states.params, [model.lin.weight])
self.assertEqual(root_states.buffers, [])
# - `seq1`
self.assertEqual(fully_sharded_modules[1], model.seq1)
seq1_states = fully_sharded_module_to_states[fully_sharded_modules[1]]
self.assertEqual(
seq1_states.params, [model.seq1[0].weight, model.seq1[1].weight]
)
self.assertEqual(seq1_states.buffers, [model.seq1.seq1_buffer])
# - `seq2`
self.assertEqual(fully_sharded_modules[2], model.seq2)
seq2_states = fully_sharded_module_to_states[fully_sharded_modules[2]]
self.assertEqual(seq2_states.params, [model.seq2[1].weight])
self.assertEqual(seq2_states.buffers, [model.seq2[1].seq2_1_buffer])
# - `seq2[0]`
self.assertEqual(fully_sharded_modules[3], model.seq2[0])
seq2_0_states = fully_sharded_module_to_states[fully_sharded_modules[3]]
self.assertEqual(seq2_0_states.params, []) # shared parameter
self.assertEqual(seq2_0_states.buffers, [])
|
instantiate_parametrized_tests(TestUtils)
if __name__ == "__main__":
run_tests()
|
import random
import sys
import unittest
from collections import OrderedDict
from dataclasses import dataclass
from enum import auto, Enum
from typing import List
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp._utils import _apply_to_tensors
from torch.distributed.fsdp._wrap_utils import _get_fully_sharded_module_to_states
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.utils import _replace_by_prefix
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
class TestGetSubmoduleToStates(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
|
torch
|
test/distributed/fsdp/test_wrap.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False)
self.bn1 = nn.BatchNorm1d(10)
self.bn2 = nn.BatchNorm2d(10)
self.bn3 = nn.BatchNorm3d(10)
self.sync_bn = nn.SyncBatchNorm(10)
|
def __init__(self) -> None:
super().__init__()
self.lin = nn.Linear(10, 10, bias=False)
self.bn1 = nn.BatchNorm1d(10)
self.bn2 = nn.BatchNorm2d(10)
self.bn3 = nn.BatchNorm3d(10)
self.sync_bn = nn.SyncBatchNorm(10)
|
import functools
import os
import tempfile
import unittest
from enum import auto, Enum
from typing import Callable, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
)
from torch.distributed.fsdp.wrap import (
_FSDPPolicy,
_or_policy,
_wrap_batchnorm_individually,
always_wrap_policy,
enable_wrap,
ModuleWrapPolicy,
size_based_auto_wrap_policy,
transformer_auto_wrap_policy,
wrap,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_maybe_cuda,
CUDAInitMode,
DummyProcessGroup,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
FILE_SCHEMA,
find_free_port,
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class BatchNormNet(nn.Module):
|
import functools
import itertools
import os
import tempfile
import unittest
from enum import auto, Enum
from typing import Callable, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.fsdp._wrap_utils import _validate_frozen_params
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import (
_or_policy,
_Policy,
_wrap_module_cls_individually,
always_wrap_policy,
CustomPolicy,
enable_wrap,
ModuleWrapPolicy,
size_based_auto_wrap_policy,
transformer_auto_wrap_policy,
wrap,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_maybe_cuda,
CUDAInitMode,
DummyProcessGroup,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
FILE_SCHEMA,
find_free_port,
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_CUDA,
TestCase,
)
class BatchNormNet(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_wrap.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False)
self.bn1 = nn.BatchNorm1d(10)
self.bn2 = nn.BatchNorm2d(10)
self.bn3 = nn.BatchNorm3d(10)
self.sync_bn = nn.SyncBatchNorm(10)
|
def __init__(self) -> None:
super().__init__()
self.lin = nn.Linear(10, 10, bias=False)
self.bn1 = nn.BatchNorm1d(10)
self.bn2 = nn.BatchNorm2d(10)
self.bn3 = nn.BatchNorm3d(10)
self.sync_bn = nn.SyncBatchNorm(10)
|
import functools
import os
import tempfile
import unittest
from enum import auto, Enum
from typing import Callable, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
)
from torch.distributed.fsdp.wrap import (
_FSDPPolicy,
_or_policy,
_wrap_batchnorm_individually,
always_wrap_policy,
enable_wrap,
ModuleWrapPolicy,
size_based_auto_wrap_policy,
transformer_auto_wrap_policy,
wrap,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_maybe_cuda,
CUDAInitMode,
DummyProcessGroup,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
FILE_SCHEMA,
find_free_port,
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class BatchNormNet(nn.Module):
|
import functools
import itertools
import os
import tempfile
import unittest
from enum import auto, Enum
from typing import Callable, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.fsdp._wrap_utils import _validate_frozen_params
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
CPUOffload,
FullyShardedDataParallel as FSDP,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import (
_or_policy,
_Policy,
_wrap_module_cls_individually,
always_wrap_policy,
CustomPolicy,
enable_wrap,
ModuleWrapPolicy,
size_based_auto_wrap_policy,
transformer_auto_wrap_policy,
wrap,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_maybe_cuda,
CUDAInitMode,
DummyProcessGroup,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
FILE_SCHEMA,
find_free_port,
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_CUDA,
TestCase,
)
class BatchNormNet(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.