library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/distributed/elastic/multiprocessing/redirects_test.py
|
_redirect_large_buffer
|
def _redirect_large_buffer(self, print_fn, num_lines=500_000):
stdout_log = os.path.join(self.test_dir, "stdout.log")
with redirect_stdout(stdout_log):
for i in range(num_lines):
print_fn(i)
with open(stdout_log) as fp:
actual = {int(line.split(":")[1]) for line in fp.readlines()}
expected = set(range(num_lines))
self.assertSetEqual(expected, actual)
|
def _redirect_large_buffer(self, print_fn, num_lines=500_000):
stdout_log = os.path.join(self.test_dir, "stdout.log")
with redirect_stdout(stdout_log):
for i in range(num_lines):
print_fn(i)
with open(stdout_log) as fp:
actual = {int(line.split(":")[1]) for line in fp}
expected = set(range(num_lines))
self.assertSetEqual(expected, actual)
|
import ctypes
import os
import shutil
import sys
import tempfile
import unittest
from torch.distributed.elastic.multiprocessing.redirects import (
redirect,
redirect_stderr,
redirect_stdout,
)
libc = ctypes.CDLL("libc.so.6")
c_stderr = ctypes.c_void_p.in_dll(libc, "stderr")
class RedirectsTest(unittest.TestCase):
|
import ctypes
import os
import shutil
import sys
import tempfile
import unittest
from torch.distributed.elastic.multiprocessing.redirects import (
redirect,
redirect_stderr,
redirect_stdout,
)
libc = ctypes.CDLL("libc.so.6")
c_stderr = ctypes.c_void_p.in_dll(libc, "stderr")
class RedirectsTest(unittest.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/multiprocessing/tail_log_test.py
|
test_tail
|
def test_tail(self):
"""
writer() writes 0 - max (on number on each line) to a log file.
Run nprocs such writers and tail the log files into an IOString
and validate that all lines are accounted for.
"""
nprocs = 32
max = 1000
interval_sec = 0.0001
log_files = {
local_rank: os.path.join(self.test_dir, f"{local_rank}_stdout.log")
for local_rank in range(nprocs)
}
dst = io.StringIO()
tail = TailLog("writer", log_files, dst, interval_sec).start()
# sleep here is intentional to ensure that the log tail
# can gracefully handle and wait for non-existent log files
time.sleep(interval_sec * 10)
futs = []
for local_rank, file in log_files.items():
f = self.threadpool.submit(
write, max=max, sleep=interval_sec * local_rank, file=file
)
futs.append(f)
wait(futs, return_when=ALL_COMPLETED)
self.assertFalse(tail.stopped())
tail.stop()
dst.seek(0)
actual: Dict[int, Set[int]] = {}
for line in dst.readlines():
header, num = line.split(":")
nums = actual.setdefault(header, set())
nums.add(int(num))
self.assertEqual(nprocs, len(actual))
self.assertEqual(
{f"[writer{i}]": set(range(max)) for i in range(nprocs)}, actual
)
self.assertTrue(tail.stopped())
|
def test_tail(self):
"""
writer() writes 0 - max (on number on each line) to a log file.
Run nprocs such writers and tail the log files into an IOString
and validate that all lines are accounted for.
"""
nprocs = 32
max = 1000
interval_sec = 0.0001
log_files = {
local_rank: os.path.join(self.test_dir, f"{local_rank}_stdout.log")
for local_rank in range(nprocs)
}
dst = io.StringIO()
tail = TailLog(
name="writer", log_files=log_files, dst=dst, interval_sec=interval_sec
).start()
# sleep here is intentional to ensure that the log tail
# can gracefully handle and wait for non-existent log files
time.sleep(interval_sec * 10)
futs = []
for local_rank, file in log_files.items():
f = self.threadpool.submit(
write, max=max, sleep=interval_sec * local_rank, file=file
)
futs.append(f)
wait(futs, return_when=ALL_COMPLETED)
self.assertFalse(tail.stopped())
tail.stop()
dst.seek(0)
actual: Dict[int, Set[int]] = {}
for line in dst.readlines():
header, num = line.split(":")
nums = actual.setdefault(header, set())
nums.add(int(num))
self.assertEqual(nprocs, len(actual))
self.assertEqual(
{f"[writer{i}]": set(range(max)) for i in range(nprocs)}, actual
)
self.assertTrue(tail.stopped())
|
import io
import os
import shutil
import sys
import tempfile
import time
import unittest
from concurrent.futures import wait
from concurrent.futures._base import ALL_COMPLETED
from concurrent.futures.thread import ThreadPoolExecutor
from typing import Dict, Set
from unittest import mock
from torch.distributed.elastic.multiprocessing.tail_log import TailLog
class TailLogTest(unittest.TestCase):
|
import io
import os
import shutil
import sys
import tempfile
import time
import unittest
from concurrent.futures import wait
from concurrent.futures._base import ALL_COMPLETED
from concurrent.futures.thread import ThreadPoolExecutor
from typing import Dict, Set
from unittest import mock
from torch.distributed.elastic.multiprocessing.tail_log import TailLog
class TailLogTest(unittest.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/multiprocessing/tail_log_test.py
|
test_tail_with_custom_prefix
|
def test_tail_with_custom_prefix(self):
"""
writer() writes 0 - max (on number on each line) to a log file.
Run nprocs such writers and tail the log files into an IOString
and validate that all lines are accounted for.
"""
nprocs = 3
max = 10
interval_sec = 0.0001
log_files = {
local_rank: os.path.join(self.test_dir, f"{local_rank}_stdout.log")
for local_rank in range(nprocs)
}
dst = io.StringIO()
log_line_prefixes = {n: f"[worker{n}][{n}]:" for n in range(nprocs)}
tail = TailLog(
"writer",
log_files,
dst,
interval_sec=interval_sec,
log_line_prefixes=log_line_prefixes,
).start()
# sleep here is intentional to ensure that the log tail
# can gracefully handle and wait for non-existent log files
time.sleep(interval_sec * 10)
futs = []
for local_rank, file in log_files.items():
f = self.threadpool.submit(
write, max=max, sleep=interval_sec * local_rank, file=file
)
futs.append(f)
wait(futs, return_when=ALL_COMPLETED)
self.assertFalse(tail.stopped())
tail.stop()
dst.seek(0)
headers: Set[str] = set()
for line in dst.readlines():
header, _ = line.split(":")
headers.add(header)
self.assertEqual(nprocs, len(headers))
for i in range(nprocs):
self.assertIn(f"[worker{i}][{i}]", headers)
self.assertTrue(tail.stopped())
|
import io
import os
import shutil
import sys
import tempfile
import time
import unittest
from concurrent.futures import wait
from concurrent.futures._base import ALL_COMPLETED
from concurrent.futures.thread import ThreadPoolExecutor
from typing import Dict, Set
from unittest import mock
from torch.distributed.elastic.multiprocessing.tail_log import TailLog
class TailLogTest(unittest.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/rendezvous/dynamic_rendezvous_test.py
|
test_share_store_creates_tcp_store
|
def test_share_store_creates_tcp_store(self):
handler = self._create_handler()
shared_store_info = RendezvousStoreInfo("host", 54321)
with patch.object(RendezvousStoreInfo, "build", return_value=shared_store_info):
rdzv_info = handler.next_rendezvous()
self.assertEqual(rdzv_info.bootstrap_store_info.master_addr, "host")
self.assertEqual(rdzv_info.bootstrap_store_info.master_port, 54321)
self.assertEqual(handler._shared_tcp_store_server, self._tcp_store_mock)
rdzv_info = handler.next_rendezvous()
self.assertEqual(handler._shared_tcp_store_server, self._tcp_store_mock)
|
import copy
import os
import pickle
import socket
import threading
import time
from abc import ABC, abstractmethod
from base64 import b64encode
from datetime import datetime, timedelta
from typing import Callable, cast, Optional, Tuple
from unittest import TestCase
from unittest.mock import call, MagicMock, Mock, patch, PropertyMock
import torch.distributed as dist
from torch.distributed import HashStore, Store
from torch.distributed.elastic.rendezvous import (
RendezvousClosedError,
RendezvousError,
RendezvousInfo,
RendezvousParameters,
RendezvousStateError,
RendezvousStoreInfo,
RendezvousTimeoutError,
)
from torch.distributed.elastic.rendezvous.dynamic_rendezvous import (
_Action,
_BackendRendezvousStateHolder,
_DistributedRendezvousOpExecutor,
_NodeDesc,
_NodeDescGenerator,
_RendezvousCloseOp,
_RendezvousContext,
_RendezvousExitOp,
_RendezvousJoinOp,
_RendezvousKeepAliveOp,
_RendezvousState,
_RendezvousStateHolder,
create_handler,
DynamicRendezvousHandler,
RendezvousBackend,
RendezvousSettings,
RendezvousTimeout,
Token,
)
class DynamicRendezvousHandlerTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/rendezvous/dynamic_rendezvous_test.py
|
_ignore_exception
|
def _ignore_exception(exception_type: Exception, fn: Callable):
try:
fn()
except exception_type as e:
pass
|
import copy
import os
import pickle
import socket
import threading
import time
from abc import ABC, abstractmethod
from base64 import b64encode
from datetime import datetime, timedelta
from typing import Callable, cast, Optional, Tuple
from unittest import TestCase
from unittest.mock import call, MagicMock, Mock, patch, PropertyMock
import torch.distributed as dist
from torch.distributed import HashStore, Store
from torch.distributed.elastic.rendezvous import (
RendezvousClosedError,
RendezvousError,
RendezvousInfo,
RendezvousParameters,
RendezvousStateError,
RendezvousStoreInfo,
RendezvousTimeoutError,
)
from torch.distributed.elastic.rendezvous.dynamic_rendezvous import (
_Action,
_BackendRendezvousStateHolder,
_DistributedRendezvousOpExecutor,
_NodeDesc,
_NodeDescGenerator,
_RendezvousCloseOp,
_RendezvousContext,
_RendezvousExitOp,
_RendezvousJoinOp,
_RendezvousKeepAliveOp,
_RendezvousState,
_RendezvousStateHolder,
create_handler,
DynamicRendezvousHandler,
RendezvousBackend,
RendezvousSettings,
RendezvousTimeout,
Token,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/rendezvous/dynamic_rendezvous_test.py
|
_wait_while
|
def _wait_while():
while True:
if condition():
break
else:
time.sleep(interval)
wait_thread = threading.Thread(target=_wait_while, name=name)
wait_thread.start()
wait_thread.join(timeout=timeout)
|
import copy
import os
import pickle
import socket
import threading
import time
from abc import ABC, abstractmethod
from base64 import b64encode
from datetime import datetime, timedelta
from typing import Callable, cast, Optional, Tuple
from unittest import TestCase
from unittest.mock import call, MagicMock, Mock, patch, PropertyMock
import torch.distributed as dist
from torch.distributed import HashStore, Store
from torch.distributed.elastic.rendezvous import (
RendezvousClosedError,
RendezvousError,
RendezvousInfo,
RendezvousParameters,
RendezvousStateError,
RendezvousStoreInfo,
RendezvousTimeoutError,
)
from torch.distributed.elastic.rendezvous.dynamic_rendezvous import (
_Action,
_BackendRendezvousStateHolder,
_DistributedRendezvousOpExecutor,
_NodeDesc,
_NodeDescGenerator,
_RendezvousCloseOp,
_RendezvousContext,
_RendezvousExitOp,
_RendezvousJoinOp,
_RendezvousKeepAliveOp,
_RendezvousState,
_RendezvousStateHolder,
create_handler,
DynamicRendezvousHandler,
RendezvousBackend,
RendezvousSettings,
RendezvousTimeout,
Token,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/rendezvous/dynamic_rendezvous_test.py
|
run
|
def run(self):
if self._target is not None:
self._result = self._target(*self._args, **self._kwargs)
|
import copy
import os
import pickle
import socket
import threading
import time
from abc import ABC, abstractmethod
from base64 import b64encode
from datetime import datetime, timedelta
from typing import Callable, cast, Optional, Tuple
from unittest import TestCase
from unittest.mock import call, MagicMock, Mock, patch, PropertyMock
import torch.distributed as dist
from torch.distributed import HashStore, Store
from torch.distributed.elastic.rendezvous import (
RendezvousClosedError,
RendezvousError,
RendezvousInfo,
RendezvousParameters,
RendezvousStateError,
RendezvousStoreInfo,
RendezvousTimeoutError,
)
from torch.distributed.elastic.rendezvous.dynamic_rendezvous import (
_Action,
_BackendRendezvousStateHolder,
_DistributedRendezvousOpExecutor,
_NodeDesc,
_NodeDescGenerator,
_RendezvousCloseOp,
_RendezvousContext,
_RendezvousExitOp,
_RendezvousJoinOp,
_RendezvousKeepAliveOp,
_RendezvousState,
_RendezvousStateHolder,
create_handler,
DynamicRendezvousHandler,
RendezvousBackend,
RendezvousSettings,
RendezvousTimeout,
Token,
)
class _CapturingThread(threading.Thread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/rendezvous/dynamic_rendezvous_test.py
|
join
|
def join(self, *args):
threading.Thread.join(self, *args)
return self._result
|
import copy
import os
import pickle
import socket
import threading
import time
from abc import ABC, abstractmethod
from base64 import b64encode
from datetime import datetime, timedelta
from typing import Callable, cast, Optional, Tuple
from unittest import TestCase
from unittest.mock import call, MagicMock, Mock, patch, PropertyMock
import torch.distributed as dist
from torch.distributed import HashStore, Store
from torch.distributed.elastic.rendezvous import (
RendezvousClosedError,
RendezvousError,
RendezvousInfo,
RendezvousParameters,
RendezvousStateError,
RendezvousStoreInfo,
RendezvousTimeoutError,
)
from torch.distributed.elastic.rendezvous.dynamic_rendezvous import (
_Action,
_BackendRendezvousStateHolder,
_DistributedRendezvousOpExecutor,
_NodeDesc,
_NodeDescGenerator,
_RendezvousCloseOp,
_RendezvousContext,
_RendezvousExitOp,
_RendezvousJoinOp,
_RendezvousKeepAliveOp,
_RendezvousState,
_RendezvousStateHolder,
create_handler,
DynamicRendezvousHandler,
RendezvousBackend,
RendezvousSettings,
RendezvousTimeout,
Token,
)
class _CapturingThread(threading.Thread):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/rendezvous/dynamic_rendezvous_test.py
|
test_share_tcp_store_is_disabled
|
def test_share_tcp_store_is_disabled(self, prefix_store_class_mock):
prefix_store = Mock()
prefix_store_class_mock.return_value = prefix_store
prefix_store.set.return_value = None
prefix_store.get.return_value = b"123"
tcp_store = Mock(spec=dist.TCPStore)
# this will be injected
self._store = tcp_store
handler1 = self._create_handler(min_nodes=2, max_nodes=2)
handler2 = self._create_handler(min_nodes=2, max_nodes=2)
handler1_thread = _CapturingThread(target=handler1.next_rendezvous)
handler2_thread = _CapturingThread(target=handler2.next_rendezvous)
handler1_thread.start()
handler2_thread.start()
rdzv_info1: RendezvousInfo = handler1_thread.join()
rdzv_info2: RendezvousInfo = handler2_thread.join()
self.assertEqual(rdzv_info1.store, prefix_store)
self.assertEqual(rdzv_info2.store, prefix_store)
prefix_store_class_mock.assert_called_with(
"torch.rendezvous.dummy_run_id.0", self._store
)
self.assertEqual(rdzv_info1.bootstrap_store_info.master_port, 123)
self.assertEqual(rdzv_info2.bootstrap_store_info.master_port, 123)
|
import copy
import os
import pickle
import socket
import threading
import time
from abc import ABC, abstractmethod
from base64 import b64encode
from datetime import datetime, timedelta
from typing import Callable, cast, Optional, Tuple
from unittest import TestCase
from unittest.mock import call, MagicMock, Mock, patch, PropertyMock
import torch.distributed as dist
from torch.distributed import HashStore, Store
from torch.distributed.elastic.rendezvous import (
RendezvousClosedError,
RendezvousError,
RendezvousInfo,
RendezvousParameters,
RendezvousStateError,
RendezvousStoreInfo,
RendezvousTimeoutError,
)
from torch.distributed.elastic.rendezvous.dynamic_rendezvous import (
_Action,
_BackendRendezvousStateHolder,
_DistributedRendezvousOpExecutor,
_NodeDesc,
_NodeDescGenerator,
_RendezvousCloseOp,
_RendezvousContext,
_RendezvousExitOp,
_RendezvousJoinOp,
_RendezvousKeepAliveOp,
_RendezvousState,
_RendezvousStateHolder,
create_handler,
DynamicRendezvousHandler,
RendezvousBackend,
RendezvousSettings,
RendezvousTimeout,
Token,
)
class IntegrationTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/rendezvous/etcd_server_test.py
|
test_etcd_server_with_rendezvous
|
def test_etcd_server_with_rendezvous(self):
server = EtcdServer()
server.start()
client = etcd.Client(server.get_host(), server.get_port())
rdzv = EtcdRendezvous(
client=client,
prefix="test",
run_id=1,
num_min_workers=1,
num_max_workers=1,
timeout=60,
last_call_timeout=30,
)
rdzv_handler = EtcdRendezvousHandler(rdzv)
store, rank, world_size = rdzv_handler.next_rendezvous()
self.assertIsNotNone(store)
self.assertEqual(0, rank)
self.assertEqual(1, world_size)
|
def test_etcd_server_with_rendezvous(self):
server = EtcdServer()
server.start()
try:
client = etcd.Client(server.get_host(), server.get_port())
rdzv = EtcdRendezvous(
client=client,
prefix="test",
run_id=1,
num_min_workers=1,
num_max_workers=1,
timeout=60,
last_call_timeout=30,
)
rdzv_handler = EtcdRendezvousHandler(rdzv)
rdzv_info = rdzv_handler.next_rendezvous()
self.assertIsNotNone(rdzv_info.store)
self.assertEqual(0, rdzv_info.rank)
self.assertEqual(1, rdzv_info.world_size)
finally:
server.stop()
|
import os
import unittest
import etcd
from torch.distributed.elastic.rendezvous.etcd_rendezvous import (
EtcdRendezvous,
EtcdRendezvousHandler,
)
from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer
class EtcdServerTest(unittest.TestCase):
|
import os
import sys
import unittest
import etcd
from torch.distributed.elastic.rendezvous.etcd_rendezvous import (
EtcdRendezvous,
EtcdRendezvousHandler,
)
from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer
class EtcdServerTest(unittest.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/rendezvous/static_rendezvous_test.py
|
test_static_rdzv_multiple_calls
|
def test_static_rdzv_multiple_calls(self):
sock = get_socket_with_port()
with closing(sock):
master_port = sock.getsockname()[1]
master_addr = "localhost"
rdzv_params = RendezvousParameters(
backend="static",
endpoint=f"{master_addr}:{master_port}",
run_id="test_id",
min_nodes=1,
max_nodes=1,
rank=0,
)
rdzv_handler = create_rdzv_handler(rdzv_params)
# Call rendezvous two times
store, rank, world_size = rdzv_handler.next_rendezvous()
self.assertIsNotNone(store)
self.assertEqual(0, rank)
self.assertEqual(1, world_size)
store, rank, world_size = rdzv_handler.next_rendezvous()
self.assertIsNotNone(store)
self.assertEqual(0, rank)
self.assertEqual(1, world_size)
|
def test_static_rdzv_multiple_calls(self):
sock = get_socket_with_port()
with closing(sock):
master_port = sock.getsockname()[1]
master_addr = "localhost"
rdzv_params = RendezvousParameters(
backend="static",
endpoint=f"{master_addr}:{master_port}",
run_id="test_id",
min_nodes=1,
max_nodes=1,
rank=0,
)
rdzv_handler = create_rdzv_handler(rdzv_params)
# Call rendezvous two times
rdzv_info = rdzv_handler.next_rendezvous()
self.assertIsNotNone(rdzv_info.store)
self.assertEqual(0, rdzv_info.rank)
self.assertEqual(1, rdzv_info.world_size)
rdzv_info = rdzv_handler.next_rendezvous()
self.assertIsNotNone(rdzv_info.store)
self.assertEqual(0, rdzv_info.rank)
self.assertEqual(1, rdzv_info.world_size)
|
import unittest
from contextlib import closing
from torch.distributed.elastic.rendezvous import RendezvousParameters
from torch.distributed.elastic.rendezvous.static_tcp_rendezvous import (
create_rdzv_handler,
)
from torch.distributed.elastic.utils import get_socket_with_port
class StaticTCPRendezvousTest(unittest.TestCase):
|
import unittest
from contextlib import closing
from torch.distributed.elastic.rendezvous import RendezvousParameters
from torch.distributed.elastic.rendezvous.static_tcp_rendezvous import (
create_rdzv_handler,
)
from torch.distributed.elastic.utils import get_socket_with_port
class StaticTCPRendezvousTest(unittest.TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/test_control_plane.py
|
_new_conn
|
def _new_conn(self):
return UnixHTTPConnection(self.socket_path)
|
import json
import os
import pickle
import socket
import tempfile
from contextlib import contextmanager
from typing import Dict
from urllib3.connection import HTTPConnection
from urllib3.connectionpool import HTTPConnectionPool
from torch.distributed.elastic.control_plane import (
TORCH_WORKER_SERVER_SOCKET,
worker_main,
)
from torch.testing._internal.common_utils import requires_cuda, run_tests, TestCase
class UnixHTTPConnectionPool(HTTPConnectionPool):
import requests
from torch._C._distributed_c10d import _WorkerServer
from torch._C._distributed_c10d import _get_handler, _Request, _Response
from torch._C._distributed_c10d import _get_handler
from torch._C._distributed_c10d import _get_handler_names
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/timer/file_based_local_timer_test.py
|
func2
|
def func2(n, file_path):
if file_path is not None:
timer.configure(timer.FileTimerClient(file_path))
if n > 0:
with timer.expires(after=0.1):
func2(n - 1, None)
time.sleep(0.2)
class FileTimerTest(TestCase):
def setUp(self):
super().setUp()
self.max_interval = 0.01
self.file_path = "/tmp/test_file_path_" + str(uuid.uuid4())
self.server = timer.FileTimerServer(self.file_path, self.max_interval)
self.server.start()
def tearDown(self):
super().tearDown()
self.server.stop()
def test_exception_propagation(self):
with self.assertRaises(RuntimeError, msg="foobar"):
with timer.expires(after=1):
raise RuntimeError("foobar")
def test_no_client(self):
# no timer client configured; exception expected
timer.configure(None)
with self.assertRaises(RuntimeError):
with timer.expires(after=1):
pass
def test_client_interaction(self):
# no timer client configured but one passed in explicitly
# no exception expected
timer_client = timer.FileTimerClient(self.file_path)
timer_client.acquire = mock.MagicMock(wraps=timer_client.acquire)
timer_client.release = mock.MagicMock(wraps=timer_client.release)
with timer.expires(after=1, scope="test", client=timer_client):
pass
timer_client.acquire.assert_called_once_with("test", mock.ANY)
timer_client.release.assert_called_once_with("test")
def test_happy_path(self):
timer.configure(timer.FileTimerClient(self.file_path))
with timer.expires(after=0.5):
time.sleep(0.1)
def test_get_timer_recursive(self):
"""
If a function acquires a countdown timer with default scope,
then recursive calls to the function should re-acquire the
timer rather than creating a new one. That is only the last
recursive call's timer will take effect.
"""
timer.configure(timer.FileTimerClient(self.file_path))
# func should not time out
def func(n):
if n > 0:
with timer.expires(after=0.1):
func(n - 1)
time.sleep(0.05)
func(4)
p = mp.Process(target=func2, args=(2, self.file_path))
p.start()
p.join()
self.assertEqual(-signal.SIGKILL, p.exitcode)
def test_multiple_clients_interaction(self):
# func should not time out
def func(n, file_path):
if file_path is not None:
timer.configure(timer.FileTimerClient(file_path))
if n > 0:
with timer.expires(after=100):
func(n - 1, None)
time.sleep(0.01)
num_clients = 10
num_requests_per_client = 10
processes = []
for i in range(num_clients):
p = mp.Process(target=func, args=(num_requests_per_client, self.file_path))
processes.append(p)
p.start()
for p in processes:
p.join()
self.server.run_once() # Allows the server to process all requests
self.assertEqual(2 * num_clients * num_requests_per_client, self.server._request_count)
@staticmethod
def _run(file_path, timeout, duration):
client = timer.FileTimerClient(file_path)
timer.configure(client)
with timer.expires(after=timeout):
time.sleep(duration)
@unittest.skipIf(TEST_WITH_TSAN, "test is tsan incompatible")
def test_timer(self):
timeout = 0.1
duration = 1
p = mp.Process(target=self._run, args=(self.file_path, timeout, duration))
p.start()
p.join()
self.assertEqual(-signal.SIGKILL, p.exitcode)
|
def func2(n, file_path):
if file_path is not None:
timer.configure(timer.FileTimerClient(file_path))
if n > 0:
with timer.expires(after=0.1):
func2(n - 1, None)
time.sleep(0.2)
class FileTimerTest(TestCase):
def setUp(self):
super().setUp()
self.max_interval = 0.01
self.file_path = f"/tmp/test_file_path_{os.getpid()}_{uuid.uuid4()}"
self.server = timer.FileTimerServer(
self.file_path, "test", self.max_interval
)
self.server.start()
def tearDown(self):
super().tearDown()
self.server.stop()
def test_exception_propagation(self):
with self.assertRaises(RuntimeError, msg="foobar"):
with timer.expires(after=1):
raise RuntimeError("foobar")
def test_no_client(self):
# no timer client configured; exception expected
timer.configure(None)
with self.assertRaises(RuntimeError):
with timer.expires(after=1):
pass
def test_client_interaction(self):
# no timer client configured but one passed in explicitly
# no exception expected
timer_client = timer.FileTimerClient(self.file_path)
timer_client.acquire = mock.MagicMock(wraps=timer_client.acquire)
timer_client.release = mock.MagicMock(wraps=timer_client.release)
with timer.expires(after=1, scope="test", client=timer_client):
pass
timer_client.acquire.assert_called_once_with("test", mock.ANY)
timer_client.release.assert_called_once_with("test")
def test_happy_path(self):
timer.configure(timer.FileTimerClient(self.file_path))
with timer.expires(after=0.5):
time.sleep(0.1)
def test_get_timer_recursive(self):
"""
If a function acquires a countdown timer with default scope,
then recursive calls to the function should re-acquire the
timer rather than creating a new one. That is only the last
recursive call's timer will take effect.
"""
timer.configure(timer.FileTimerClient(self.file_path))
# func should not time out
def func(n):
if n > 0:
with timer.expires(after=0.1):
func(n - 1)
time.sleep(0.05)
func(4)
p = mp.Process(target=func2, args=(2, self.file_path))
p.start()
p.join()
self.assertEqual(-signal.SIGKILL, p.exitcode)
def test_multiple_clients_interaction(self):
# func should not time out
def func(n, file_path):
if file_path is not None:
timer.configure(timer.FileTimerClient(file_path))
if n > 0:
with timer.expires(after=100):
func(n - 1, None)
time.sleep(0.01)
num_clients = 10
num_requests_per_client = 10
processes = []
for i in range(num_clients):
p = mp.Process(
target=func, args=(num_requests_per_client, self.file_path)
)
processes.append(p)
p.start()
for p in processes:
p.join()
self.server.run_once() # Allows the server to process all requests
self.assertEqual(
2 * num_clients * num_requests_per_client, self.server._request_count
)
@mock.patch("torch.distributed.elastic.timer.FileTimerServer._reap_worker")
def test_exit_before_release(self, mock_reap):
def func1(file_path):
client = timer.FileTimerClient(file_path)
timer.configure(client)
expire = time.time() + 2
client.acquire("test_scope", expire)
time.sleep(1)
p = mp.Process(target=func1, args=(self.file_path,))
p.start()
p.join()
time.sleep(2)
self.server.run_once() # Allows the server to process all requests
mock_reap.assert_not_called()
self.assertEqual(0, len(self.server._timers))
@mock.patch("torch.distributed.elastic.timer.FileTimerServer._reap_worker")
@mock.patch(
"torch.distributed.elastic.timer.FileTimerServer.is_process_running"
)
def test_exit_before_release_reap(self, mock_pid_exists, mock_reap):
def func1(file_path):
client = timer.FileTimerClient(file_path)
timer.configure(client)
expire = time.time() + 2
client.acquire("test_scope", expire)
time.sleep(1)
mock_pid_exists.return_value = True
p = mp.Process(target=func1, args=(self.file_path,))
p.start()
p.join()
time.sleep(2)
self.server.run_once() # Allows the server to process all requests
mock_reap.assert_called()
self.assertEqual(0, len(self.server._timers))
@staticmethod
def _run(file_path, timeout, duration):
client = timer.FileTimerClient(file_path)
timer.configure(client)
with timer.expires(after=timeout):
time.sleep(duration)
@unittest.skipIf(TEST_WITH_TSAN, "test is tsan incompatible")
def test_timer(self):
timeout = 0.1
duration = 1
p = mp.Process(target=self._run, args=(self.file_path, timeout, duration))
p.start()
p.join()
self.assertEqual(-signal.SIGKILL, p.exitcode)
|
import multiprocessing as mp
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
|
import multiprocessing as mp
import os
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/timer/file_based_local_timer_test.py
|
setUp
|
def setUp(self):
super().setUp()
self.max_interval = 0.01
self.file_path = "/tmp/test_file_path_" + str(uuid.uuid4())
self.server = timer.FileTimerServer(self.file_path, self.max_interval)
self.server.start()
|
def setUp(self):
super().setUp()
self.max_interval = 0.01
self.file_path = f"/tmp/test_file_path_{os.getpid()}_{uuid.uuid4()}"
self.server = timer.FileTimerServer(
self.file_path, "test", self.max_interval
)
self.server.start()
|
import multiprocessing as mp
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class FileTimerTest(TestCase):
|
import multiprocessing as mp
import os
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class FileTimerTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_checkpoint_wrapper.py
|
test_apply_activation_checkpointing
|
def test_apply_activation_checkpointing(self):
"""
Ensures that `apply_activation_checkpointing` can be used
to swap modules for their checkpoint-wrapped counterparts given
a model.
"""
class LinearWithBatchNorm(nn.Module):
def __init__(self):
super().__init__()
self.lin = nn.Linear(10, 10)
self.bn = nn.BatchNorm1d(10)
self.nested_linear = nn.Sequential(nn.Linear(10, 10))
def forward(self, x):
return self.bn(self.nested_linear(self.lin(x)))
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.seq = nn.Sequential(
LinearWithBatchNorm(), LinearWithBatchNorm(), LinearWithBatchNorm()
)
def forward(self, x):
return self.seq(x)
def check_fn(l):
return isinstance(l, nn.Linear)
n_linear = None
for wrapper in [
partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.REENTRANT),
partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT),
offload_wrapper,
]:
model = MyModel()
if n_linear is None:
n_linear = sum(
1 if isinstance(x, nn.Linear) else 0 for x in model.modules()
)
with self.subTest(wrapper=wrapper):
apply_activation_checkpointing(
model, checkpoint_wrapper_fn=wrapper, check_fn=check_fn
)
n_linear_wrapped = sum(
1 if isinstance(x, nn.Linear) else 0 for x in model.modules()
)
n_checkpointed = sum(
1 if isinstance(x, (CheckpointWrapper, OffloadWrapper)) else 0
for x in model.modules()
)
self.assertEqual(n_checkpointed, n_linear_wrapped)
self.assertEqual(n_linear, n_linear_wrapped)
for j in range(3):
self.assertTrue(
isinstance(
model.seq[j].lin, (CheckpointWrapper, OffloadWrapper)
)
)
self.assertTrue(
isinstance(
model.seq[j].nested_linear[0],
(CheckpointWrapper, OffloadWrapper),
)
)
inp = torch.randn(4, 10, requires_grad=True)
for i in range(6):
# Kwarg input
loss = model(x=inp).sum()
self.assertTrue(loss.requires_grad)
loss.backward()
# ensure checkpointed part of model has gradients
for j in range(3):
weight_lin = model.seq[j].lin._checkpoint_wrapped_module.weight
bias_lin = model.seq[j].lin._checkpoint_wrapped_module.bias
weight_nested_lin = (
model.seq[j]
.nested_linear[0]
._checkpoint_wrapped_module.weight
)
bias_nested_lin = (
model.seq[j]
.nested_linear[0]
._checkpoint_wrapped_module.bias
)
for param in [
weight_lin,
bias_lin,
weight_nested_lin,
bias_nested_lin,
]:
self.assertTrue(param.requires_grad)
self.assertFalse(param.grad is None)
|
def test_apply_activation_checkpointing(self):
"""
Ensures that `apply_activation_checkpointing` can be used
to swap modules for their checkpoint-wrapped counterparts given
a model.
"""
class LinearWithBatchNorm(nn.Module):
def __init__(self) -> None:
super().__init__()
self.lin = nn.Linear(10, 10)
self.bn = nn.BatchNorm1d(10)
self.nested_linear = nn.Sequential(nn.Linear(10, 10))
def forward(self, x):
return self.bn(self.nested_linear(self.lin(x)))
class MyModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.seq = nn.Sequential(
LinearWithBatchNorm(), LinearWithBatchNorm(), LinearWithBatchNorm()
)
def forward(self, x):
return self.seq(x)
def check_fn(l):
return isinstance(l, nn.Linear)
n_linear = None
for i, wrapper in enumerate(
[
partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.REENTRANT),
partial(
checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT
),
offload_wrapper,
]
):
model = MyModel()
if n_linear is None:
n_linear = sum(
1 if isinstance(x, nn.Linear) else 0 for x in model.modules()
)
with self.subTest(wrapper=wrapper):
if i != 0:
apply_activation_checkpointing(
model, checkpoint_wrapper_fn=wrapper, check_fn=check_fn
)
else:
apply_activation_checkpointing(
model,
checkpoint_wrapper_fn=wrapper,
auto_wrap_policy=ModuleWrapPolicy({nn.Linear}),
)
n_linear_wrapped = sum(
1 if isinstance(x, nn.Linear) else 0 for x in model.modules()
)
n_checkpointed = sum(
1 if isinstance(x, (CheckpointWrapper, OffloadWrapper)) else 0
for x in model.modules()
)
self.assertEqual(n_checkpointed, n_linear_wrapped)
self.assertEqual(n_linear, n_linear_wrapped)
for j in range(3):
self.assertTrue(
isinstance(
model.seq[j].lin, (CheckpointWrapper, OffloadWrapper)
)
)
self.assertTrue(
isinstance(
model.seq[j].nested_linear[0],
(CheckpointWrapper, OffloadWrapper),
)
)
inp = torch.randn(4, 10, requires_grad=True)
for i in range(6):
# Kwarg input
loss = model(x=inp).sum()
self.assertTrue(loss.requires_grad)
loss.backward()
# ensure checkpointed part of model has gradients
for j in range(3):
weight_lin = model.seq[j].lin._checkpoint_wrapped_module.weight
bias_lin = model.seq[j].lin._checkpoint_wrapped_module.bias
weight_nested_lin = (
model.seq[j]
.nested_linear[0]
._checkpoint_wrapped_module.weight
)
bias_nested_lin = (
model.seq[j]
.nested_linear[0]
._checkpoint_wrapped_module.bias
)
for param in [
weight_lin,
bias_lin,
weight_nested_lin,
bias_nested_lin,
]:
self.assertTrue(param.requires_grad)
self.assertFalse(param.grad is None)
|
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class CheckpointWrapperTest(TestCase):
|
import contextlib
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class CheckpointWrapperTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_checkpoint_wrapper.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(10, 10)
|
def __init__(self) -> None:
super().__init__()
self.lin = nn.Linear(10, 10)
|
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class MyModel(nn.Module):
|
import contextlib
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_checkpoint_wrapper.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(10, 10)
|
def __init__(self) -> None:
super().__init__()
self.lin = nn.Linear(10, 10)
|
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class MyModel(nn.Module):
|
import contextlib
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_checkpoint_wrapper.py
|
check_fn
|
def check_fn(l):
return isinstance(l, nn.Linear)
n_linear = None
for wrapper in [
partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.REENTRANT),
partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT),
offload_wrapper,
]:
model = MyModel()
if n_linear is None:
n_linear = sum(
1 if isinstance(x, nn.Linear) else 0 for x in model.modules()
)
with self.subTest(wrapper=wrapper):
apply_activation_checkpointing(
model, checkpoint_wrapper_fn=wrapper, check_fn=check_fn
)
n_linear_wrapped = sum(
1 if isinstance(x, nn.Linear) else 0 for x in model.modules()
)
n_checkpointed = sum(
1 if isinstance(x, (CheckpointWrapper, OffloadWrapper)) else 0
for x in model.modules()
)
self.assertEqual(n_checkpointed, n_linear_wrapped)
self.assertEqual(n_linear, n_linear_wrapped)
for j in range(3):
self.assertTrue(
isinstance(
model.seq[j].lin, (CheckpointWrapper, OffloadWrapper)
)
)
self.assertTrue(
isinstance(
model.seq[j].nested_linear[0],
(CheckpointWrapper, OffloadWrapper),
)
)
inp = torch.randn(4, 10, requires_grad=True)
for i in range(6):
# Kwarg input
loss = model(x=inp).sum()
self.assertTrue(loss.requires_grad)
loss.backward()
# ensure checkpointed part of model has gradients
for j in range(3):
weight_lin = model.seq[j].lin._checkpoint_wrapped_module.weight
bias_lin = model.seq[j].lin._checkpoint_wrapped_module.bias
weight_nested_lin = (
model.seq[j]
.nested_linear[0]
._checkpoint_wrapped_module.weight
)
bias_nested_lin = (
model.seq[j]
.nested_linear[0]
._checkpoint_wrapped_module.bias
)
for param in [
weight_lin,
bias_lin,
weight_nested_lin,
bias_nested_lin,
]:
self.assertTrue(param.requires_grad)
self.assertFalse(param.grad is None)
|
def check_fn(l):
return isinstance(l, nn.Linear)
n_linear = None
for i, wrapper in enumerate(
[
partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.REENTRANT),
partial(
checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT
),
offload_wrapper,
]
):
model = MyModel()
if n_linear is None:
n_linear = sum(
1 if isinstance(x, nn.Linear) else 0 for x in model.modules()
)
with self.subTest(wrapper=wrapper):
if i != 0:
apply_activation_checkpointing(
model, checkpoint_wrapper_fn=wrapper, check_fn=check_fn
)
else:
apply_activation_checkpointing(
model,
checkpoint_wrapper_fn=wrapper,
auto_wrap_policy=ModuleWrapPolicy({nn.Linear}),
)
n_linear_wrapped = sum(
1 if isinstance(x, nn.Linear) else 0 for x in model.modules()
)
n_checkpointed = sum(
1 if isinstance(x, (CheckpointWrapper, OffloadWrapper)) else 0
for x in model.modules()
)
self.assertEqual(n_checkpointed, n_linear_wrapped)
self.assertEqual(n_linear, n_linear_wrapped)
for j in range(3):
self.assertTrue(
isinstance(
model.seq[j].lin, (CheckpointWrapper, OffloadWrapper)
)
)
self.assertTrue(
isinstance(
model.seq[j].nested_linear[0],
(CheckpointWrapper, OffloadWrapper),
)
)
inp = torch.randn(4, 10, requires_grad=True)
for i in range(6):
# Kwarg input
loss = model(x=inp).sum()
self.assertTrue(loss.requires_grad)
loss.backward()
# ensure checkpointed part of model has gradients
for j in range(3):
weight_lin = model.seq[j].lin._checkpoint_wrapped_module.weight
bias_lin = model.seq[j].lin._checkpoint_wrapped_module.bias
weight_nested_lin = (
model.seq[j]
.nested_linear[0]
._checkpoint_wrapped_module.weight
)
bias_nested_lin = (
model.seq[j]
.nested_linear[0]
._checkpoint_wrapped_module.bias
)
for param in [
weight_lin,
bias_lin,
weight_nested_lin,
bias_nested_lin,
]:
self.assertTrue(param.requires_grad)
self.assertFalse(param.grad is None)
|
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
|
import contextlib
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_backward_prefetch.py
|
world_size
|
def world_size(self):
return 2
|
import sys
from typing import List
from unittest.mock import patch
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import BackwardPrefetch, FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import _get_handle_fqns_from_root
from torch.distributed.fsdp._flat_param import HandleTrainingState
from torch.distributed.fsdp._runtime_utils import (
_get_handle_to_prefetch,
_get_training_state,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
NUM_ITERS = 2
DECODER_PARAM_FQNS = [
"decoder.layers.{index}.self_attn.in_proj_weight",
"decoder.layers.{index}.self_attn.in_proj_bias",
"decoder.layers.{index}.self_attn.out_proj.weight",
"decoder.layers.{index}.self_attn.out_proj.bias",
"decoder.layers.{index}.multihead_attn.in_proj_weight",
"decoder.layers.{index}.multihead_attn.in_proj_bias",
"decoder.layers.{index}.multihead_attn.out_proj.weight",
"decoder.layers.{index}.multihead_attn.out_proj.bias",
"decoder.layers.{index}.linear1.weight",
"decoder.layers.{index}.linear1.bias",
"decoder.layers.{index}.linear2.weight",
"decoder.layers.{index}.linear2.bias",
"decoder.layers.{index}.norm1.weight",
"decoder.layers.{index}.norm1.bias",
"decoder.layers.{index}.norm2.weight",
"decoder.layers.{index}.norm2.bias",
"decoder.layers.{index}.norm3.weight",
"decoder.layers.{index}.norm3.bias",
]
ENCODER_PARAM_FQNS = [
"encoder.layers.{index}.self_attn.in_proj_weight",
"encoder.layers.{index}.self_attn.in_proj_bias",
"encoder.layers.{index}.self_attn.out_proj.weight",
"encoder.layers.{index}.self_attn.out_proj.bias",
"encoder.layers.{index}.linear1.weight",
"encoder.layers.{index}.linear1.bias",
"encoder.layers.{index}.linear2.weight",
"encoder.layers.{index}.linear2.bias",
"encoder.layers.{index}.norm1.weight",
"encoder.layers.{index}.norm1.bias",
"encoder.layers.{index}.norm2.weight",
"encoder.layers.{index}.norm2.bias",
]
TOTAL_NUM_PREFETCH_FOR_PRE = 12
TOTAL_NUM_PREFETCH_FOR_POST = 11
ENCODER_BEGIN_INDEX_FOR_PRE = 6
ENCODER_BEGIN_INDEX_FOR_POST = 5
ENCODER_PREFETCH_NUM = 5
class TestBackwardPrefetch(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_backward_prefetch.py
|
patched_get_handle_to_prefetch
|
def patched_get_handle_to_prefetch(*args, **kwargs):
handle = orig_get_handle_to_prefetch(*args, **kwargs)
self.assertEqual(
len(args), 2, "expect _get_handle_to_prefetch(state, current_handle)"
)
state = args[0]
current_handle = args[1]
training_state = _get_training_state(current_handle)
if (
training_state == HandleTrainingState.BACKWARD_PRE
and state.backward_prefetch == BackwardPrefetch.BACKWARD_PRE
) or (
training_state == HandleTrainingState.BACKWARD_POST
and state.backward_prefetch == BackwardPrefetch.BACKWARD_POST
):
nonlocal all_handle_fqns
# FQNs prefixed from the root module
# state._exec_order_data.param_to_fqn
fqns = _get_handle_fqns_from_root(state, handle)
all_handle_fqns.append(fqns)
return handle
# flat params from prefetch handle should match
# DECODER_PARAM_FQNS and ENCODER_PARAM_FQNS
with patch(
"torch.distributed.fsdp._runtime_utils._get_handle_to_prefetch",
patched_get_handle_to_prefetch,
):
for _ in range(NUM_ITERS):
optim.zero_grad()
loss = model(src, tgt).sum()
loss.backward()
optim.step()
if backward_prefetch is None:
self.assertEqual(len(all_handle_fqns), 0)
continue
elif backward_prefetch == BackwardPrefetch.BACKWARD_PRE:
# state._exec_order_data.handles_post_forward_order
# equals forward order
# encoder 0...5 -> decoder 0...5 -> root
# pre-backward hook order
# root -> decoder 5...0 -> encoder 5...0
# prefetch order
# decoder 5...0 -> encoder 5...0 -> None
# None: when current_handle=encoder 0,
# _get_handle_to_prefetch returns None
# +1 is for the above None
encoder_begin_index = ENCODER_BEGIN_INDEX_FOR_PRE
self.assertEqual(
len(all_handle_fqns), TOTAL_NUM_PREFETCH_FOR_PRE + 1
)
elif backward_prefetch == BackwardPrefetch.BACKWARD_POST:
# state._exec_order_data.handles_post_forward_order
# equals forward order (same as BACKWARD_PRE)
# encoder 0...5 -> decoder 0...5 -> root
# post-backward hook (AccumulateGrad) order
# decoder 5, 4...0 -> encoder 5...0 -> root
# prefetch order
# decoder 4...0 -> encoder 5...0 -> None -> None
# 1st None: when current_handle=encoder 0,
# _get_handle_to_prefetch returns None
# 2nd None: when current_handle=root,
# get decoder 5 inside _get_handle_to_prefetch
# but not needed since decoder 5 is computed already
# +2 is for the above Nones
encoder_begin_index = ENCODER_BEGIN_INDEX_FOR_POST
self.assertEqual(
len(all_handle_fqns), TOTAL_NUM_PREFETCH_FOR_POST + 2
)
# ith_prefetch: 0, 1st, 2nd, 3rd, 4th ... ith prefetch
for ith_prefetch, fqns in enumerate(all_handle_fqns):
if ith_prefetch >= 0 and ith_prefetch < encoder_begin_index:
layer_index = encoder_begin_index - 1 - ith_prefetch
self.assertEqual(
fqns,
[x.format(index=layer_index) for x in DECODER_PARAM_FQNS],
)
elif (
ith_prefetch >= encoder_begin_index
and ith_prefetch <= encoder_begin_index + ENCODER_PREFETCH_NUM
):
layer_index = (
encoder_begin_index + ENCODER_PREFETCH_NUM - ith_prefetch
)
self.assertEqual(
fqns,
[x.format(index=layer_index) for x in ENCODER_PARAM_FQNS],
)
else:
self.assertTrue(fqns is None)
all_handle_fqns = []
|
import sys
from typing import List
from unittest.mock import patch
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import BackwardPrefetch, FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import _get_handle_fqns_from_root
from torch.distributed.fsdp._flat_param import HandleTrainingState
from torch.distributed.fsdp._runtime_utils import (
_get_handle_to_prefetch,
_get_training_state,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
NUM_ITERS = 2
DECODER_PARAM_FQNS = [
"decoder.layers.{index}.self_attn.in_proj_weight",
"decoder.layers.{index}.self_attn.in_proj_bias",
"decoder.layers.{index}.self_attn.out_proj.weight",
"decoder.layers.{index}.self_attn.out_proj.bias",
"decoder.layers.{index}.multihead_attn.in_proj_weight",
"decoder.layers.{index}.multihead_attn.in_proj_bias",
"decoder.layers.{index}.multihead_attn.out_proj.weight",
"decoder.layers.{index}.multihead_attn.out_proj.bias",
"decoder.layers.{index}.linear1.weight",
"decoder.layers.{index}.linear1.bias",
"decoder.layers.{index}.linear2.weight",
"decoder.layers.{index}.linear2.bias",
"decoder.layers.{index}.norm1.weight",
"decoder.layers.{index}.norm1.bias",
"decoder.layers.{index}.norm2.weight",
"decoder.layers.{index}.norm2.bias",
"decoder.layers.{index}.norm3.weight",
"decoder.layers.{index}.norm3.bias",
]
ENCODER_PARAM_FQNS = [
"encoder.layers.{index}.self_attn.in_proj_weight",
"encoder.layers.{index}.self_attn.in_proj_bias",
"encoder.layers.{index}.self_attn.out_proj.weight",
"encoder.layers.{index}.self_attn.out_proj.bias",
"encoder.layers.{index}.linear1.weight",
"encoder.layers.{index}.linear1.bias",
"encoder.layers.{index}.linear2.weight",
"encoder.layers.{index}.linear2.bias",
"encoder.layers.{index}.norm1.weight",
"encoder.layers.{index}.norm1.bias",
"encoder.layers.{index}.norm2.weight",
"encoder.layers.{index}.norm2.bias",
]
TOTAL_NUM_PREFETCH_FOR_PRE = 12
TOTAL_NUM_PREFETCH_FOR_POST = 11
ENCODER_BEGIN_INDEX_FOR_PRE = 6
ENCODER_BEGIN_INDEX_FOR_POST = 5
ENCODER_PREFETCH_NUM = 5
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/timer/file_based_local_timer_test.py
|
func1
|
def func1(file_path):
client = timer.FileTimerClient(file_path)
timer.configure(client)
expire = time.time() + 2
client.acquire("test_scope", expire)
time.sleep(1)
p = mp.Process(target=func1, args=(self.file_path,))
p.start()
p.join()
time.sleep(2)
self.server.run_once() # Allows the server to process all requests
mock_reap.assert_not_called()
self.assertEqual(0, len(self.server._timers))
|
import multiprocessing as mp
import os
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/timer/file_based_local_timer_test.py
|
_request_on_interval
|
def _request_on_interval(file_path, n, interval, sem):
"""
enqueues ``n`` timer requests into ``mp_queue`` one element per
interval seconds. Releases the given semaphore once before going to work.
"""
client = timer.FileTimerClient(file_path)
sem.release()
for i in range(0, n):
client.acquire("test_scope", 0)
time.sleep(interval)
class FileTimerClientTest(TestCase):
def test_send_request_without_server(self):
client = timer.FileTimerClient("test_file")
timer.configure(client)
with self.assertRaises(BrokenPipeError):
with timer.expires(after=0.1):
time.sleep(0.1)
class FileTimerServerTest(TestCase):
def setUp(self):
super().setUp()
self.file_path = "/tmp/test_file_path_" + str(uuid.uuid4())
self.max_interval = 0.01
self.server = timer.FileTimerServer(self.file_path, self.max_interval)
def tearDown(self):
super().tearDown()
self.server.stop()
def test_watchdog_call_count(self):
"""
checks that the watchdog function ran wait/interval +- 1 times
"""
self.server._run_watchdog = mock.MagicMock(wraps=self.server._run_watchdog)
self.server.start()
test_pid = -3
client = timer.FileTimerClient(self.file_path)
client._send_request(self._valid_timer(pid=test_pid, scope="test0"))
wait = 0.1
time.sleep(wait)
self.server.stop()
watchdog_call_count = self.server._run_watchdog.call_count
self.assertGreaterEqual(
watchdog_call_count, int(wait / self.max_interval) - 1
)
self.assertLessEqual(watchdog_call_count, int(wait / self.max_interval) + 1)
def test_watchdog_empty_queue(self):
"""
checks that the watchdog can run on an empty pipe
"""
self.server.start()
def _expired_timer(self, pid, scope):
expired = time.time() - 60
return timer.FileTimerRequest(worker_pid=pid, scope_id=scope, expiration_time=expired, signal=signal.SIGKILL)
def _valid_timer(self, pid, scope):
valid = time.time() + 60
return timer.FileTimerRequest(worker_pid=pid, scope_id=scope, expiration_time=valid, signal=signal.SIGKILL)
def _release_timer(self, pid, scope):
return timer.FileTimerRequest(worker_pid=pid, scope_id=scope, expiration_time=-1)
@mock.patch("os.kill")
def test_expired_timers(self, mock_os_kill):
"""
tests that a single expired timer on a process should terminate
the process and clean up all pending timers that was owned by the process
"""
self.server.start()
test_pid = -3
client = timer.FileTimerClient(self.file_path)
client._send_request(self._expired_timer(pid=test_pid, scope="test1"))
client._send_request(self._valid_timer(pid=test_pid, scope="test2"))
self.server.run_once() # Allows the server to process all requests
self.assertEqual(0, len(self.server._timers))
mock_os_kill.assert_called_once_with(test_pid, signal.SIGKILL)
@mock.patch("os.kill")
def test_send_request_release(self, mock_os_kill):
"""
tests that:
1. a timer can be acquired then released (should not terminate process)
2. a timer can be vacuously released (e.g. no-op)
"""
self.server.start()
client = timer.FileTimerClient(self.file_path)
test_pid = -3
client._send_request(self._valid_timer(pid=test_pid, scope="test1"))
client._send_request(self._release_timer(pid=test_pid, scope="test1"))
client._send_request(self._release_timer(pid=test_pid, scope="test2"))
self.assertEqual(0, len(self.server._timers))
mock_os_kill.assert_not_called()
@mock.patch("os.kill")
def test_valid_timers(self, mock_os_kill):
"""
tests that valid timers are processed correctly and the process is left alone
"""
self.server.start()
client = timer.FileTimerClient(self.file_path)
client._send_request(self._valid_timer(pid=-3, scope="test1"))
client._send_request(self._valid_timer(pid=-3, scope="test2"))
client._send_request(self._valid_timer(pid=-2, scope="test1"))
client._send_request(self._valid_timer(pid=-2, scope="test2"))
self.server.run_once() # Allows the server to process all requests
self.assertEqual(4, len(self.server._timers))
self.assertTrue((-3, "test1") in self.server._timers)
self.assertTrue((-3, "test2") in self.server._timers)
self.assertTrue((-2, "test1") in self.server._timers)
self.assertTrue((-2, "test2") in self.server._timers)
mock_os_kill.assert_not_called()
|
def _request_on_interval(file_path, n, interval, sem):
"""
enqueues ``n`` timer requests into ``mp_queue`` one element per
interval seconds. Releases the given semaphore once before going to work.
"""
client = timer.FileTimerClient(file_path)
sem.release()
for i in range(0, n):
client.acquire("test_scope", 0)
time.sleep(interval)
class FileTimerClientTest(TestCase):
def test_send_request_without_server(self):
client = timer.FileTimerClient("test_file")
timer.configure(client)
with self.assertRaises(BrokenPipeError):
with timer.expires(after=0.1):
time.sleep(0.1)
class FileTimerServerTest(TestCase):
def setUp(self):
super().setUp()
self.file_path = f"/tmp/test_file_path_{os.getpid()}_{uuid.uuid4()}"
self.max_interval = 0.01
self.server = timer.FileTimerServer(
self.file_path, "test", self.max_interval
)
def tearDown(self):
super().tearDown()
self.server.stop()
def test_watchdog_call_count(self):
"""
checks that the watchdog function ran wait/interval +- 1 times
"""
self.server._run_watchdog = mock.MagicMock(wraps=self.server._run_watchdog)
self.server.start()
test_pid = -3
client = timer.FileTimerClient(self.file_path)
client._send_request(self._valid_timer(pid=test_pid, scope="test0"))
wait = 0.1
time.sleep(wait)
self.server.stop()
watchdog_call_count = self.server._run_watchdog.call_count
self.assertGreaterEqual(
watchdog_call_count, int(wait / self.max_interval) - 1
)
self.assertLessEqual(watchdog_call_count, int(wait / self.max_interval) + 1)
def test_watchdog_empty_queue(self):
"""
checks that the watchdog can run on an empty pipe
"""
self.server.start()
def _expired_timer(self, pid, scope):
expired = time.time() - 60
return timer.FileTimerRequest(
worker_pid=pid,
scope_id=scope,
expiration_time=expired,
signal=signal.SIGKILL,
)
def _valid_timer(self, pid, scope):
valid = time.time() + 60
return timer.FileTimerRequest(
worker_pid=pid,
scope_id=scope,
expiration_time=valid,
signal=signal.SIGKILL,
)
def _release_timer(self, pid, scope):
return timer.FileTimerRequest(
worker_pid=pid, scope_id=scope, expiration_time=-1
)
@mock.patch("os.kill")
@mock.patch(
"torch.distributed.elastic.timer.file_based_local_timer.log_debug_info_for_expired_timers"
)
def test_expired_timers(self, mock_debug_info, mock_os_kill):
"""
tests that a single expired timer on a process should terminate
the process and clean up all pending timers that was owned by the process
"""
self.server.start()
test_pid = -3
client = timer.FileTimerClient(self.file_path)
client._send_request(self._expired_timer(pid=test_pid, scope="test1"))
client._send_request(self._valid_timer(pid=test_pid, scope="test2"))
self.server.run_once() # Allows the server to process all requests
self.assertEqual(0, len(self.server._timers))
mock_os_kill.assert_called_once_with(test_pid, signal.SIGKILL)
mock_debug_info.assert_called()
@mock.patch("os.kill")
def test_send_request_release(self, mock_os_kill):
"""
tests that:
1. a timer can be acquired then released (should not terminate process)
2. a timer can be vacuously released (e.g. no-op)
"""
self.server.start()
client = timer.FileTimerClient(self.file_path)
test_pid = -3
client._send_request(self._valid_timer(pid=test_pid, scope="test1"))
client._send_request(self._release_timer(pid=test_pid, scope="test1"))
client._send_request(self._release_timer(pid=test_pid, scope="test2"))
self.assertEqual(0, len(self.server._timers))
mock_os_kill.assert_not_called()
@mock.patch(
"torch.distributed.elastic.timer.FileTimerServer.is_process_running"
)
@mock.patch("os.kill")
def test_valid_timers(self, mock_os_kill, mock_pid_exists):
"""
tests that valid timers are processed correctly and the process is left alone
"""
self.server.start()
mock_pid_exists.return_value = True
client = timer.FileTimerClient(self.file_path)
client._send_request(self._valid_timer(pid=-3, scope="test1"))
client._send_request(self._valid_timer(pid=-3, scope="test2"))
client._send_request(self._valid_timer(pid=-2, scope="test1"))
client._send_request(self._valid_timer(pid=-2, scope="test2"))
self.server.run_once() # Allows the server to process all requests
self.assertEqual(4, len(self.server._timers))
self.assertTrue((-3, "test1") in self.server._timers)
self.assertTrue((-3, "test2") in self.server._timers)
self.assertTrue((-2, "test1") in self.server._timers)
self.assertTrue((-2, "test2") in self.server._timers)
mock_os_kill.assert_not_called()
|
import multiprocessing as mp
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
|
import multiprocessing as mp
import os
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/timer/file_based_local_timer_test.py
|
setUp
|
def setUp(self):
super().setUp()
self.max_interval = 0.01
self.file_path = "/tmp/test_file_path_" + str(uuid.uuid4())
self.server = timer.FileTimerServer(self.file_path, self.max_interval)
self.server.start()
|
def setUp(self):
super().setUp()
self.max_interval = 0.01
self.file_path = f"/tmp/test_file_path_{os.getpid()}_{uuid.uuid4()}"
self.server = timer.FileTimerServer(
self.file_path, "test", self.max_interval
)
self.server.start()
|
import multiprocessing as mp
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class FileTimerTest(TestCase):
|
import multiprocessing as mp
import os
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class FileTimerTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/timer/file_based_local_timer_test.py
|
test_valid_timers
|
def test_valid_timers(self, mock_os_kill):
"""
tests that valid timers are processed correctly and the process is left alone
"""
self.server.start()
client = timer.FileTimerClient(self.file_path)
client._send_request(self._valid_timer(pid=-3, scope="test1"))
client._send_request(self._valid_timer(pid=-3, scope="test2"))
client._send_request(self._valid_timer(pid=-2, scope="test1"))
client._send_request(self._valid_timer(pid=-2, scope="test2"))
self.server.run_once() # Allows the server to process all requests
self.assertEqual(4, len(self.server._timers))
self.assertTrue((-3, "test1") in self.server._timers)
self.assertTrue((-3, "test2") in self.server._timers)
self.assertTrue((-2, "test1") in self.server._timers)
self.assertTrue((-2, "test2") in self.server._timers)
mock_os_kill.assert_not_called()
|
def test_valid_timers(self, mock_os_kill, mock_pid_exists):
"""
tests that valid timers are processed correctly and the process is left alone
"""
self.server.start()
mock_pid_exists.return_value = True
client = timer.FileTimerClient(self.file_path)
client._send_request(self._valid_timer(pid=-3, scope="test1"))
client._send_request(self._valid_timer(pid=-3, scope="test2"))
client._send_request(self._valid_timer(pid=-2, scope="test1"))
client._send_request(self._valid_timer(pid=-2, scope="test2"))
self.server.run_once() # Allows the server to process all requests
self.assertEqual(4, len(self.server._timers))
self.assertTrue((-3, "test1") in self.server._timers)
self.assertTrue((-3, "test2") in self.server._timers)
self.assertTrue((-2, "test1") in self.server._timers)
self.assertTrue((-2, "test2") in self.server._timers)
mock_os_kill.assert_not_called()
|
import multiprocessing as mp
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class FileTimerServerTest(TestCase):
|
import multiprocessing as mp
import os
import signal
import time
import unittest
import unittest.mock as mock
import uuid
import torch.distributed.elastic.timer as timer
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class FileTimerServerTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/timer/local_timer_example.py
|
_stuck_function
|
def _stuck_function(rank, mp_queue):
timer.configure(timer.LocalTimerClient(mp_queue))
with timer.expires(after=1):
time.sleep(5)
# timer is not supported on macos or windowns
if not (IS_WINDOWS or IS_MACOS):
class LocalTimerExample(TestCase):
"""
Demonstrates how to use LocalTimerServer and LocalTimerClient
to enforce expiration of code-blocks.
Since torch multiprocessing's ``start_process`` method currently
does not take the multiprocessing context as parameter argument
there is no way to create the mp.Queue in the correct
context BEFORE spawning child processes. Once the ``start_process``
API is changed in torch, then re-enable ``test_torch_mp_example``
unittest. As of now this will SIGSEGV.
"""
@sandcastle_skip_if(TEST_WITH_DEV_DBG_ASAN, "test is asan incompatible")
def test_torch_mp_example(self):
# in practice set the max_interval to a larger value (e.g. 60 seconds)
mp_queue = mp.get_context("spawn").Queue()
server = timer.LocalTimerServer(mp_queue, max_interval=0.01)
server.start()
world_size = 8
# all processes should complete successfully
# since start_process does NOT take context as parameter argument yet
# this method WILL FAIL (hence the test is disabled)
torch_mp.spawn(
fn=_happy_function, args=(mp_queue,), nprocs=world_size, join=True
)
with self.assertRaises(Exception):
# torch.multiprocessing.spawn kills all sub-procs
# if one of them gets killed
torch_mp.spawn(
fn=_stuck_function, args=(mp_queue,), nprocs=world_size, join=True
)
server.stop()
@sandcastle_skip_if(TEST_WITH_DEV_DBG_ASAN, "test is asan incompatible")
def test_example_start_method_spawn(self):
self._run_example_with(start_method="spawn")
# @sandcastle_skip_if(TEST_WITH_DEV_DBG_ASAN, "test is asan incompatible")
# def test_example_start_method_forkserver(self):
# self._run_example_with(start_method="forkserver")
def _run_example_with(self, start_method):
spawn_ctx = mp.get_context(start_method)
mp_queue = spawn_ctx.Queue()
server = timer.LocalTimerServer(mp_queue, max_interval=0.01)
server.start()
world_size = 8
processes = []
for i in range(0, world_size):
if i % 2 == 0:
p = spawn_ctx.Process(target=_stuck_function, args=(i, mp_queue))
else:
p = spawn_ctx.Process(target=_happy_function, args=(i, mp_queue))
p.start()
processes.append(p)
for i in range(0, world_size):
p = processes[i]
p.join()
if i % 2 == 0:
self.assertEqual(-signal.SIGKILL, p.exitcode)
else:
self.assertEqual(0, p.exitcode)
server.stop()
if __name__ == "__main__":
run_tests()
|
def _stuck_function(rank, mp_queue):
timer.configure(timer.LocalTimerClient(mp_queue))
with timer.expires(after=1):
time.sleep(5)
# timer is not supported on macos or windows
if not (IS_WINDOWS or IS_MACOS):
class LocalTimerExample(TestCase):
"""
Demonstrates how to use LocalTimerServer and LocalTimerClient
to enforce expiration of code-blocks.
Since torch multiprocessing's ``start_process`` method currently
does not take the multiprocessing context as parameter argument
there is no way to create the mp.Queue in the correct
context BEFORE spawning child processes. Once the ``start_process``
API is changed in torch, then re-enable ``test_torch_mp_example``
unittest. As of now this will SIGSEGV.
"""
@skip_but_pass_in_sandcastle_if(
TEST_WITH_DEV_DBG_ASAN, "test is asan incompatible"
)
def test_torch_mp_example(self):
# in practice set the max_interval to a larger value (e.g. 60 seconds)
mp_queue = mp.get_context("spawn").Queue()
server = timer.LocalTimerServer(mp_queue, max_interval=0.01)
server.start()
world_size = 8
# all processes should complete successfully
# since start_process does NOT take context as parameter argument yet
# this method WILL FAIL (hence the test is disabled)
torch_mp.spawn(
fn=_happy_function, args=(mp_queue,), nprocs=world_size, join=True
)
with self.assertRaises(Exception):
# torch.multiprocessing.spawn kills all sub-procs
# if one of them gets killed
torch_mp.spawn(
fn=_stuck_function, args=(mp_queue,), nprocs=world_size, join=True
)
server.stop()
@skip_but_pass_in_sandcastle_if(
TEST_WITH_DEV_DBG_ASAN, "test is asan incompatible"
)
def test_example_start_method_spawn(self):
self._run_example_with(start_method="spawn")
# @skip_but_pass_in_sandcastle_if(TEST_WITH_DEV_DBG_ASAN, "test is asan incompatible")
# def test_example_start_method_forkserver(self):
# self._run_example_with(start_method="forkserver")
def _run_example_with(self, start_method):
spawn_ctx = mp.get_context(start_method)
mp_queue = spawn_ctx.Queue()
server = timer.LocalTimerServer(mp_queue, max_interval=0.01)
server.start()
world_size = 8
processes = []
for i in range(0, world_size):
if i % 2 == 0:
p = spawn_ctx.Process(target=_stuck_function, args=(i, mp_queue))
else:
p = spawn_ctx.Process(target=_happy_function, args=(i, mp_queue))
p.start()
processes.append(p)
for i in range(0, world_size):
p = processes[i]
p.join()
if i % 2 == 0:
self.assertEqual(-signal.SIGKILL, p.exitcode)
else:
self.assertEqual(0, p.exitcode)
server.stop()
if __name__ == "__main__":
run_tests()
|
import logging
import multiprocessing as mp
import signal
import time
import torch.distributed.elastic.timer as timer
import torch.multiprocessing as torch_mp
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
IS_WINDOWS,
IS_MACOS,
sandcastle_skip_if,
TestCase
)
|
import logging
import multiprocessing as mp
import signal
import time
import torch.distributed.elastic.timer as timer
import torch.multiprocessing as torch_mp
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/utils/distributed_test.py
|
test_create_store_with_libuv_support
|
def test_create_store_with_libuv_support(self):
world_size = 1
wait_for_workers = False
localhost = socket.gethostname()
os.environ["USE_LIBUV"] = "0"
store = create_c10d_store(
is_server=True,
server_addr=localhost,
server_port=0,
timeout=2,
world_size=world_size,
wait_for_workers=wait_for_workers,
)
self.assertFalse(store.libuvBackend)
del os.environ["USE_LIBUV"]
assert "USE_LIBUV" not in os.environ
# libuv backend is enabled by default
store = create_c10d_store(
is_server=True,
server_addr=localhost,
server_port=0,
timeout=2,
world_size=world_size,
wait_for_workers=wait_for_workers,
)
self.assertTrue(store.libuvBackend)
|
import multiprocessing as mp
import os
import socket
import sys
import unittest
from contextlib import closing
from torch.distributed import DistNetworkError, DistStoreError
from torch.distributed.elastic.utils.distributed import (
create_c10d_store,
get_socket_with_port,
)
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class DistributedUtilTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/utils/distributed_test.py
|
test_port_already_in_use_on_worker
|
def test_port_already_in_use_on_worker(self):
sock = get_socket_with_port()
with closing(sock):
port = sock.getsockname()[1]
# on the worker port conflict shouldn't matter, it should just timeout
# since we never created a server
with self.assertRaises(TimeoutError):
create_c10d_store(
is_server=False,
server_addr=socket.gethostname(),
server_port=port,
timeout=1,
)
|
def test_port_already_in_use_on_worker(self):
sock = get_socket_with_port()
with closing(sock):
port = sock.getsockname()[1]
# on the worker port conflict shouldn't matter, it should just timeout
# since we never created a server
with self.assertRaises(DistNetworkError):
create_c10d_store(
is_server=False,
server_addr=socket.gethostname(),
server_port=port,
timeout=1,
)
|
import multiprocessing as mp
import os
import socket
import sys
import unittest
from contextlib import closing
from torch.distributed.elastic.utils.distributed import (
create_c10d_store,
get_socket_with_port,
)
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase
)
class DistributedUtilTest(TestCase):
|
import multiprocessing as mp
import os
import socket
import sys
import unittest
from contextlib import closing
from torch.distributed import DistNetworkError, DistStoreError
from torch.distributed.elastic.utils.distributed import (
create_c10d_store,
get_socket_with_port,
)
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class DistributedUtilTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/utils/util_test.py
|
test_get_all_rank_0
|
def test_get_all_rank_0(self):
store = mock.MagicMock()
world_size = 3
store_util.get_all(store, 0, "test/store", world_size)
# omit empty kwargs, get only key
actual_set_call_args = [
call_args[0][0] for call_args in store.set.call_args_list
]
self.assertListEqual(["test/store0.FIN"], actual_set_call_args)
actual_get_call_args = [call_args[0] for call_args in store.get.call_args_list]
expected_get_call_args = [
("test/store0",),
("test/store1",),
("test/store2",),
("test/store0.FIN",),
("test/store1.FIN",),
("test/store2.FIN",),
]
self.assertListEqual(expected_get_call_args, actual_get_call_args)
|
def test_get_all_rank_0(self):
world_size = 3
store = MockStore()
store_util.get_all(store, 0, "test/store", world_size)
self.assertListEqual(
store.ops,
[
("multi_get", ["test/store0", "test/store1", "test/store2"]),
("add", "test/store/finished/num_members", 1),
("set", "test/store/finished/last_member", "<val_ignored>"),
("wait", ["test/store/finished/last_member"]),
],
)
|
from unittest import mock
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
class StoreUtilTest(TestCase):
|
import datetime
from multiprocessing.pool import ThreadPool
from typing import List
from unittest import mock
import torch.distributed as dist
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
class StoreUtilTest(TestCase):
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/utils/util_test.py
|
test_get_all_rank_n
|
def test_get_all_rank_n(self):
store = mock.MagicMock()
world_size = 3
store_util.get_all(store, 1, "test/store", world_size)
# omit empty kwargs, get only key
actual_set_call_args = [
call_args[0][0] for call_args in store.set.call_args_list
]
self.assertListEqual(["test/store1.FIN"], actual_set_call_args)
actual_get_call_args = [call_args[0] for call_args in store.get.call_args_list]
expected_get_call_args = [
("test/store0",),
("test/store1",),
("test/store2",),
]
self.assertListEqual(expected_get_call_args, actual_get_call_args)
|
def test_get_all_rank_n(self):
store = MockStore()
world_size = 3
store_util.get_all(store, 1, "test/store", world_size)
self.assertListEqual(
store.ops,
[
("multi_get", ["test/store0", "test/store1", "test/store2"]),
("add", "test/store/finished/num_members", 1),
("set", "test/store/finished/last_member", "<val_ignored>"),
],
)
|
from unittest import mock
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
class StoreUtilTest(TestCase):
|
import datetime
from multiprocessing.pool import ThreadPool
from typing import List
from unittest import mock
import torch.distributed as dist
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
class StoreUtilTest(TestCase):
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/utils/util_test.py
|
test_synchronize
|
def test_synchronize(self):
store_mock = mock.MagicMock()
data = "data0".encode(encoding="UTF-8")
store_util.synchronize(store_mock, data, 0, 3, key_prefix="torchelastic/test")
actual_set_call_args = store_mock.set.call_args_list
# omit empty kwargs
actual_set_call_args = [call_args[0] for call_args in actual_set_call_args]
expected_set_call_args = [
("torchelastic/test0", b"data0"),
("torchelastic/test0.FIN", b"FIN"),
]
self.assertListEqual(expected_set_call_args, actual_set_call_args)
expected_get_call_args = [
("torchelastic/test0",),
("torchelastic/test1",),
("torchelastic/test2",),
("torchelastic/test0.FIN",),
("torchelastic/test1.FIN",),
("torchelastic/test2.FIN",),
]
actual_get_call_args = store_mock.get.call_args_list
actual_get_call_args = [call_args[0] for call_args in actual_get_call_args]
self.assertListEqual(expected_get_call_args, actual_get_call_args)
|
def test_synchronize(self):
store = MockStore()
data = b"data0"
store_util.synchronize(store, data, 0, 3, key_prefix="test/store")
self.assertListEqual(
store.ops,
[
("timeout",),
("set_timeout", datetime.timedelta(seconds=300)),
("set", "test/store0", data),
("multi_get", ["test/store0", "test/store1", "test/store2"]),
("add", "test/store/finished/num_members", 1),
("set", "test/store/finished/last_member", "<val_ignored>"),
("wait", ["test/store/finished/last_member"]),
("set_timeout", datetime.timedelta(seconds=store._TEST_TIMEOUT)),
],
)
|
from unittest import mock
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
class StoreUtilTest(TestCase):
|
import datetime
from multiprocessing.pool import ThreadPool
from typing import List
from unittest import mock
import torch.distributed as dist
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
class StoreUtilTest(TestCase):
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/utils/util_test.py
|
f
|
def f(i: int):
return store_util.synchronize(
store, f"data{i}", i, N, key_prefix="test/store"
)
with ThreadPool(N) as pool:
out = pool.map(f, range(N))
self.assertListEqual(out, [[f"data{i}".encode() for i in range(N)]] * N)
|
import datetime
from multiprocessing.pool import ThreadPool
from typing import List
from unittest import mock
import torch.distributed as dist
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/utils/distributed_test.py
|
_create_c10d_store_mp
|
def _create_c10d_store_mp(is_server, server_addr, port, world_size, wait_for_workers):
store = create_c10d_store(is_server, server_addr, port, world_size, wait_for_workers=wait_for_workers, timeout=2)
if store is None:
raise AssertionError()
store.set(f"test_key/{os.getpid()}", "test_value".encode("UTF-8"))
if IS_WINDOWS or IS_MACOS:
print("tests incompatible with tsan or asan", file=sys.stderr)
sys.exit(0)
class DistributedUtilTest(TestCase):
def test_create_store_single_server(self):
store = create_c10d_store(is_server=True, server_addr=socket.gethostname())
self.assertIsNotNone(store)
def test_create_store_no_port_multi(self):
with self.assertRaises(ValueError):
create_c10d_store(
is_server=True, server_addr=socket.gethostname(), world_size=2
)
@unittest.skipIf(TEST_WITH_TSAN, "test incompatible with tsan")
def test_create_store_multi(self):
world_size = 3
wait_for_workers = False
localhost = socket.gethostname()
# start the server on the main process using an available port
store = create_c10d_store(
is_server=True,
server_addr=localhost,
server_port=0,
timeout=2,
world_size=world_size,
wait_for_workers=wait_for_workers,
)
# worker processes will use the port that was assigned to the server
server_port = store.port
worker0 = mp.Process(
target=_create_c10d_store_mp,
args=(False, localhost, server_port, world_size, wait_for_workers),
)
worker1 = mp.Process(
target=_create_c10d_store_mp,
args=(False, localhost, server_port, world_size, wait_for_workers),
)
worker0.start()
worker1.start()
worker0.join()
worker1.join()
# check test_key/pid == "test_value"
self.assertEqual(
"test_value", store.get(f"test_key/{worker0.pid}").decode("UTF-8")
)
self.assertEqual(
"test_value", store.get(f"test_key/{worker1.pid}").decode("UTF-8")
)
self.assertEqual(0, worker0.exitcode)
self.assertEqual(0, worker1.exitcode)
def test_create_store_timeout_on_server(self):
with self.assertRaises(TimeoutError):
# use any available port (port 0) since timeout is expected
create_c10d_store(
is_server=True,
server_addr=socket.gethostname(),
server_port=0,
world_size=2,
timeout=1,
)
def test_create_store_timeout_on_worker(self):
with self.assertRaises(TimeoutError):
# use any available port (port 0) since timeout is expected
create_c10d_store(
is_server=False,
server_addr=socket.gethostname(),
server_port=0,
world_size=2,
timeout=1,
)
def test_port_already_in_use_on_server(self):
# try to create the TCPStore server twice on the same port
# the second should fail due to a port conflict
# first store binds onto a free port
# try creating the second store on the port that the first store binded to
server_addr = socket.gethostname()
pick_free_port = 0
store1 = create_c10d_store(
is_server=True,
server_addr=server_addr,
server_port=pick_free_port,
timeout=1,
)
with self.assertRaises(RuntimeError):
create_c10d_store(
is_server=True, server_addr=server_addr, server_port=store1.port
)
def test_port_already_in_use_on_worker(self):
sock = get_socket_with_port()
with closing(sock):
port = sock.getsockname()[1]
# on the worker port conflict shouldn't matter, it should just timeout
# since we never created a server
with self.assertRaises(TimeoutError):
create_c10d_store(
is_server=False,
server_addr=socket.gethostname(),
server_port=port,
timeout=1,
)
if __name__ == "__main__":
run_tests()
|
def _create_c10d_store_mp(is_server, server_addr, port, world_size, wait_for_workers):
store = create_c10d_store(
is_server,
server_addr,
port,
world_size,
wait_for_workers=wait_for_workers,
timeout=2,
)
if store is None:
raise AssertionError
store.set(f"test_key/{os.getpid()}", b"test_value")
if IS_WINDOWS or IS_MACOS:
print("tests incompatible with tsan or asan", file=sys.stderr)
sys.exit(0)
class DistributedUtilTest(TestCase):
def test_create_store_single_server(self):
store = create_c10d_store(is_server=True, server_addr=socket.gethostname())
self.assertIsNotNone(store)
def test_create_store_no_port_multi(self):
with self.assertRaises(ValueError):
create_c10d_store(
is_server=True, server_addr=socket.gethostname(), world_size=2
)
@unittest.skipIf(TEST_WITH_TSAN, "test incompatible with tsan")
def test_create_store_multi(self):
world_size = 3
wait_for_workers = False
localhost = socket.gethostname()
# start the server on the main process using an available port
store = create_c10d_store(
is_server=True,
server_addr=localhost,
server_port=0,
timeout=2,
world_size=world_size,
wait_for_workers=wait_for_workers,
)
# worker processes will use the port that was assigned to the server
server_port = store.port
worker0 = mp.Process(
target=_create_c10d_store_mp,
args=(False, localhost, server_port, world_size, wait_for_workers),
)
worker1 = mp.Process(
target=_create_c10d_store_mp,
args=(False, localhost, server_port, world_size, wait_for_workers),
)
worker0.start()
worker1.start()
worker0.join()
worker1.join()
# check test_key/pid == "test_value"
self.assertEqual(
"test_value", store.get(f"test_key/{worker0.pid}").decode("UTF-8")
)
self.assertEqual(
"test_value", store.get(f"test_key/{worker1.pid}").decode("UTF-8")
)
self.assertEqual(0, worker0.exitcode)
self.assertEqual(0, worker1.exitcode)
def test_create_store_timeout_on_server(self):
with self.assertRaises(DistStoreError):
# use any available port (port 0) since timeout is expected
create_c10d_store(
is_server=True,
server_addr=socket.gethostname(),
server_port=0,
world_size=2,
timeout=1,
)
def test_create_store_timeout_on_worker(self):
with self.assertRaises(DistNetworkError):
# use any available port (port 0) since timeout is expected
create_c10d_store(
is_server=False,
server_addr=socket.gethostname(),
server_port=0,
world_size=2,
timeout=1,
)
def test_create_store_with_libuv_support(self):
world_size = 1
wait_for_workers = False
localhost = socket.gethostname()
os.environ["USE_LIBUV"] = "0"
store = create_c10d_store(
is_server=True,
server_addr=localhost,
server_port=0,
timeout=2,
world_size=world_size,
wait_for_workers=wait_for_workers,
)
self.assertFalse(store.libuvBackend)
del os.environ["USE_LIBUV"]
assert "USE_LIBUV" not in os.environ
# libuv backend is enabled by default
store = create_c10d_store(
is_server=True,
server_addr=localhost,
server_port=0,
timeout=2,
world_size=world_size,
wait_for_workers=wait_for_workers,
)
self.assertTrue(store.libuvBackend)
def test_port_already_in_use_on_server(self):
# try to create the TCPStore server twice on the same port
# the second should fail due to a port conflict
# first store binds onto a free port
# try creating the second store on the port that the first store binded to
server_addr = socket.gethostname()
pick_free_port = 0
store1 = create_c10d_store(
is_server=True,
server_addr=server_addr,
server_port=pick_free_port,
timeout=1,
)
with self.assertRaises(RuntimeError):
create_c10d_store(
is_server=True, server_addr=server_addr, server_port=store1.port
)
def test_port_already_in_use_on_worker(self):
sock = get_socket_with_port()
with closing(sock):
port = sock.getsockname()[1]
# on the worker port conflict shouldn't matter, it should just timeout
# since we never created a server
with self.assertRaises(DistNetworkError):
create_c10d_store(
is_server=False,
server_addr=socket.gethostname(),
server_port=port,
timeout=1,
)
if __name__ == "__main__":
run_tests()
|
import multiprocessing as mp
import os
import socket
import sys
import unittest
from contextlib import closing
from torch.distributed.elastic.utils.distributed import (
create_c10d_store,
get_socket_with_port,
)
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase
)
|
import multiprocessing as mp
import os
import socket
import sys
import unittest
from contextlib import closing
from torch.distributed import DistNetworkError, DistStoreError
from torch.distributed.elastic.utils.distributed import (
create_c10d_store,
get_socket_with_port,
)
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/utils/distributed_test.py
|
test_create_store_timeout_on_server
|
def test_create_store_timeout_on_server(self):
with self.assertRaises(TimeoutError):
# use any available port (port 0) since timeout is expected
create_c10d_store(
is_server=True,
server_addr=socket.gethostname(),
server_port=0,
world_size=2,
timeout=1,
)
|
def test_create_store_timeout_on_server(self):
with self.assertRaises(DistStoreError):
# use any available port (port 0) since timeout is expected
create_c10d_store(
is_server=True,
server_addr=socket.gethostname(),
server_port=0,
world_size=2,
timeout=1,
)
|
import multiprocessing as mp
import os
import socket
import sys
import unittest
from contextlib import closing
from torch.distributed.elastic.utils.distributed import (
create_c10d_store,
get_socket_with_port,
)
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase
)
class DistributedUtilTest(TestCase):
|
import multiprocessing as mp
import os
import socket
import sys
import unittest
from contextlib import closing
from torch.distributed import DistNetworkError, DistStoreError
from torch.distributed.elastic.utils.distributed import (
create_c10d_store,
get_socket_with_port,
)
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class DistributedUtilTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/elastic/utils/distributed_test.py
|
test_create_store_timeout_on_worker
|
def test_create_store_timeout_on_worker(self):
with self.assertRaises(TimeoutError):
# use any available port (port 0) since timeout is expected
create_c10d_store(
is_server=False,
server_addr=socket.gethostname(),
server_port=0,
world_size=2,
timeout=1,
)
|
def test_create_store_timeout_on_worker(self):
with self.assertRaises(DistNetworkError):
# use any available port (port 0) since timeout is expected
create_c10d_store(
is_server=False,
server_addr=socket.gethostname(),
server_port=0,
world_size=2,
timeout=1,
)
|
import multiprocessing as mp
import os
import socket
import sys
import unittest
from contextlib import closing
from torch.distributed.elastic.utils.distributed import (
create_c10d_store,
get_socket_with_port,
)
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase
)
class DistributedUtilTest(TestCase):
|
import multiprocessing as mp
import os
import socket
import sys
import unittest
from contextlib import closing
from torch.distributed import DistNetworkError, DistStoreError
from torch.distributed.elastic.utils.distributed import (
create_c10d_store,
get_socket_with_port,
)
from torch.testing._internal.common_utils import (
IS_MACOS,
IS_WINDOWS,
run_tests,
TEST_WITH_TSAN,
TestCase,
)
class DistributedUtilTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_core.py
|
test_register_functions_called
|
def test_register_functions_called(self, cuda_first: bool, mixed_precision: bool):
"""Tests that ``_register_{pre|post}_backward_hooks()`` are called
during the FSDP forward."""
fsdp_kwargs = {}
if mixed_precision:
fsdp_kwargs["mixed_precision"] = MixedPrecision()
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE if cuda_first else CUDAInitMode.CUDA_AFTER,
fsdp_kwargs,
)
input = fsdp_model.module.get_input(torch.device("cuda"))
# Since `_register_pre_backward_hooks()` modifies the forward output,
# we cannot directly mock it. We implement our own counter instead.
orig_register_pre_backward_hooks = (
torch.distributed.fsdp._runtime_utils._register_pre_backward_hooks
)
register_pre_backward_hooks_call_count = 0
def _register_pre_backward_hooks_with_count(*args, **kwargs):
nonlocal register_pre_backward_hooks_call_count
register_pre_backward_hooks_call_count += 1
return orig_register_pre_backward_hooks(*args, **kwargs)
with mock.patch(
"torch.distributed.fsdp._runtime_utils._register_pre_backward_hooks",
_register_pre_backward_hooks_with_count,
), mock.patch(
"torch.distributed.fsdp._runtime_utils._register_post_backward_hooks"
) as register_post_bwd_mock:
self.assertEqual(register_pre_backward_hooks_call_count, 0)
self.assertFalse(register_post_bwd_mock.called)
fsdp_model(*input)
self.assertTrue(register_pre_backward_hooks_call_count > 0)
self.assertTrue(register_post_bwd_mock.called)
|
def test_register_functions_called(self, cuda_first: bool, mixed_precision: bool):
"""Tests that ``_register_{pre|post}_backward_hooks()`` are called
during the FSDP forward."""
fsdp_kwargs = {}
if mixed_precision:
fsdp_kwargs["mixed_precision"] = MixedPrecision()
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE if cuda_first else CUDAInitMode.CUDA_AFTER,
fsdp_kwargs,
)
input = fsdp_model.module.get_input(torch.device("cuda"))
# Since `_register_pre_backward_hooks()` modifies the forward output,
# we cannot directly mock it. We implement our own counter instead.
orig_register_pre_backward_hooks = (
torch.distributed.fsdp._runtime_utils._register_pre_backward_hooks
)
register_pre_backward_hooks_call_count = 0
def _register_pre_backward_hooks_with_count(*args, **kwargs):
nonlocal register_pre_backward_hooks_call_count
register_pre_backward_hooks_call_count += 1
return orig_register_pre_backward_hooks(*args, **kwargs)
with mock.patch(
"torch.distributed.fsdp._runtime_utils._register_pre_backward_hooks",
_register_pre_backward_hooks_with_count,
), mock.patch(
"torch.distributed.fsdp._runtime_utils._register_post_backward_hook"
) as register_post_bwd_mock:
self.assertEqual(register_pre_backward_hooks_call_count, 0)
self.assertFalse(register_post_bwd_mock.called)
fsdp_model(*input)
self.assertTrue(register_pre_backward_hooks_call_count > 0)
self.assertTrue(register_post_bwd_mock.called)
|
import functools
import itertools
import sys
from typing import Any, Dict, List, Optional
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
ShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
AlwaysWrapNestedWrappedModule,
CUDAInitMode,
DummyDDP,
FSDPInitMode,
FSDPTest,
MixtureOfExperts,
NestedWrappedModule,
NestedWrappedModuleWithDelay,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
params = "cpu_offload,sharding_strategy"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
sharding_strategy_config = [
None,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
]
configs = list(itertools.product(cpu_offload_config, sharding_strategy_config))
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(ShardingStrategy.SHARD_GRAD_OP): "shard_grad_op",
str(ShardingStrategy.NO_SHARD): "no_shard",
}
subtest_name = functools.partial(subtest_name, test_name_mapping)
class TestHooks(FSDPTest):
|
import contextlib
import functools
import itertools
import sys
from typing import Any, Callable, Dict, List, Optional
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import CPUOffload, MixedPrecision
from torch.distributed.fsdp._flat_param import FlatParamHandle
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.utils import _p_assert
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
AlwaysWrapNestedWrappedModule,
CUDAInitMode,
DummyDDP,
FSDPInitMode,
FSDPTest,
MixtureOfExperts,
NestedWrappedModule,
NestedWrappedModuleWithDelay,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
params = "cpu_offload,sharding_strategy"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
sharding_strategy_config = [
None,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
]
configs = list(itertools.product(cpu_offload_config, sharding_strategy_config))
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(ShardingStrategy.SHARD_GRAD_OP): "shard_grad_op",
str(ShardingStrategy.NO_SHARD): "no_shard",
}
subtest_name = functools.partial(subtest_name, test_name_mapping)
class TestHooks(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_core.py
|
_register_pre_backward_hooks_with_count
|
def _register_pre_backward_hooks_with_count(*args, **kwargs):
nonlocal register_pre_backward_hooks_call_count
register_pre_backward_hooks_call_count += 1
return orig_register_pre_backward_hooks(*args, **kwargs)
with mock.patch(
"torch.distributed.fsdp._runtime_utils._register_pre_backward_hooks",
_register_pre_backward_hooks_with_count,
), mock.patch(
"torch.distributed.fsdp._runtime_utils._register_post_backward_hooks"
) as register_post_bwd_mock:
self.assertEqual(register_pre_backward_hooks_call_count, 0)
self.assertFalse(register_post_bwd_mock.called)
fsdp_model(*input)
self.assertTrue(register_pre_backward_hooks_call_count > 0)
self.assertTrue(register_post_bwd_mock.called)
|
def _register_pre_backward_hooks_with_count(*args, **kwargs):
nonlocal register_pre_backward_hooks_call_count
register_pre_backward_hooks_call_count += 1
return orig_register_pre_backward_hooks(*args, **kwargs)
with mock.patch(
"torch.distributed.fsdp._runtime_utils._register_pre_backward_hooks",
_register_pre_backward_hooks_with_count,
), mock.patch(
"torch.distributed.fsdp._runtime_utils._register_post_backward_hook"
) as register_post_bwd_mock:
self.assertEqual(register_pre_backward_hooks_call_count, 0)
self.assertFalse(register_post_bwd_mock.called)
fsdp_model(*input)
self.assertTrue(register_pre_backward_hooks_call_count > 0)
self.assertTrue(register_post_bwd_mock.called)
|
import functools
import itertools
import sys
from typing import Any, Dict, List, Optional
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
ShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
AlwaysWrapNestedWrappedModule,
CUDAInitMode,
DummyDDP,
FSDPInitMode,
FSDPTest,
MixtureOfExperts,
NestedWrappedModule,
NestedWrappedModuleWithDelay,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
params = "cpu_offload,sharding_strategy"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
sharding_strategy_config = [
None,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
]
configs = list(itertools.product(cpu_offload_config, sharding_strategy_config))
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(ShardingStrategy.SHARD_GRAD_OP): "shard_grad_op",
str(ShardingStrategy.NO_SHARD): "no_shard",
}
subtest_name = functools.partial(subtest_name, test_name_mapping)
|
import contextlib
import functools
import itertools
import sys
from typing import Any, Callable, Dict, List, Optional
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import CPUOffload, MixedPrecision
from torch.distributed.fsdp._flat_param import FlatParamHandle
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.utils import _p_assert
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
AlwaysWrapNestedWrappedModule,
CUDAInitMode,
DummyDDP,
FSDPInitMode,
FSDPTest,
MixtureOfExperts,
NestedWrappedModule,
NestedWrappedModuleWithDelay,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
params = "cpu_offload,sharding_strategy"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
sharding_strategy_config = [
None,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
]
configs = list(itertools.product(cpu_offload_config, sharding_strategy_config))
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(ShardingStrategy.SHARD_GRAD_OP): "shard_grad_op",
str(ShardingStrategy.NO_SHARD): "no_shard",
}
subtest_name = functools.partial(subtest_name, test_name_mapping)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_core.py
|
_patch_use_unsharded_views
|
instantiate_parametrized_tests(TestHooks)
instantiate_parametrized_tests(TestParityWithDDP)
instantiate_parametrized_tests(TestNoGrad)
instantiate_parametrized_tests(TestParamInit)
if __name__ == "__main__":
run_tests()
|
def _patch_use_unsharded_views(self, new_use_unsharded_views: Callable):
orig_use_unsharded_views = FlatParamHandle._use_unsharded_views
FlatParamHandle._use_unsharded_views = new_use_unsharded_views
try:
yield
finally:
FlatParamHandle._use_unsharded_views = orig_use_unsharded_views
|
import contextlib
import functools
import itertools
import sys
from typing import Any, Callable, Dict, List, Optional
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import CPUOffload, MixedPrecision
from torch.distributed.fsdp._flat_param import FlatParamHandle
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.utils import _p_assert
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
AlwaysWrapNestedWrappedModule,
CUDAInitMode,
DummyDDP,
FSDPInitMode,
FSDPTest,
MixtureOfExperts,
NestedWrappedModule,
NestedWrappedModuleWithDelay,
subtest_name,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
params = "cpu_offload,sharding_strategy"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
sharding_strategy_config = [
None,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
]
configs = list(itertools.product(cpu_offload_config, sharding_strategy_config))
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(ShardingStrategy.SHARD_GRAD_OP): "shard_grad_op",
str(ShardingStrategy.NO_SHARD): "no_shard",
}
subtest_name = functools.partial(subtest_name, test_name_mapping)
class TestAutograd(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_dtensor_state_dict.py
|
forward
|
def forward(self, x):
return self.net4(self.net3(self.net2(self.net1(x))))
|
import io
from copy import deepcopy
import torch
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class TestDummyModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_dtensor_state_dict.py
|
get_input
|
def get_input(self):
return torch.rand(8, 8, device="cuda")
|
import io
from copy import deepcopy
import torch
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class TestDummyModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_dtensor_state_dict.py
|
forward
|
def forward(self, x):
return self.net4(self.net3(self.net2(self.net1(x))))
|
import io
from copy import deepcopy
import torch
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class TestDummyModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_dtensor_state_dict.py
|
get_input
|
def get_input(self):
return torch.rand(8, 8, device="cuda")
|
import io
from copy import deepcopy
import torch
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class TestDummyModel(torch.nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_backward_prefetch.py
|
test_backward_prefetch
|
def test_backward_prefetch(self):
# subtest reuse process group to shorten test time
self.run_subtests(
{
"backward_prefetch": [
None,
BackwardPrefetch.BACKWARD_PRE,
BackwardPrefetch.BACKWARD_POST,
],
},
self._test_backward_prefetch,
)
|
import sys
from typing import List
from unittest.mock import patch
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import BackwardPrefetch, FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import _get_handle_fqns_from_root
from torch.distributed.fsdp._flat_param import HandleTrainingState
from torch.distributed.fsdp._runtime_utils import (
_get_handle_to_prefetch,
_get_training_state,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
NUM_ITERS = 2
DECODER_PARAM_FQNS = [
"decoder.layers.{index}.self_attn.in_proj_weight",
"decoder.layers.{index}.self_attn.in_proj_bias",
"decoder.layers.{index}.self_attn.out_proj.weight",
"decoder.layers.{index}.self_attn.out_proj.bias",
"decoder.layers.{index}.multihead_attn.in_proj_weight",
"decoder.layers.{index}.multihead_attn.in_proj_bias",
"decoder.layers.{index}.multihead_attn.out_proj.weight",
"decoder.layers.{index}.multihead_attn.out_proj.bias",
"decoder.layers.{index}.linear1.weight",
"decoder.layers.{index}.linear1.bias",
"decoder.layers.{index}.linear2.weight",
"decoder.layers.{index}.linear2.bias",
"decoder.layers.{index}.norm1.weight",
"decoder.layers.{index}.norm1.bias",
"decoder.layers.{index}.norm2.weight",
"decoder.layers.{index}.norm2.bias",
"decoder.layers.{index}.norm3.weight",
"decoder.layers.{index}.norm3.bias",
]
ENCODER_PARAM_FQNS = [
"encoder.layers.{index}.self_attn.in_proj_weight",
"encoder.layers.{index}.self_attn.in_proj_bias",
"encoder.layers.{index}.self_attn.out_proj.weight",
"encoder.layers.{index}.self_attn.out_proj.bias",
"encoder.layers.{index}.linear1.weight",
"encoder.layers.{index}.linear1.bias",
"encoder.layers.{index}.linear2.weight",
"encoder.layers.{index}.linear2.bias",
"encoder.layers.{index}.norm1.weight",
"encoder.layers.{index}.norm1.bias",
"encoder.layers.{index}.norm2.weight",
"encoder.layers.{index}.norm2.bias",
]
TOTAL_NUM_PREFETCH_FOR_PRE = 12
TOTAL_NUM_PREFETCH_FOR_POST = 11
ENCODER_BEGIN_INDEX_FOR_PRE = 6
ENCODER_BEGIN_INDEX_FOR_POST = 5
ENCODER_PREFETCH_NUM = 5
class TestBackwardPrefetch(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_backward_prefetch.py
|
_test_backward_prefetch
|
def _test_backward_prefetch(self, backward_prefetch: BackwardPrefetch):
self._dist_train(backward_prefetch)
|
import sys
from typing import List
from unittest.mock import patch
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import BackwardPrefetch, FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import _get_handle_fqns_from_root
from torch.distributed.fsdp._flat_param import HandleTrainingState
from torch.distributed.fsdp._runtime_utils import (
_get_handle_to_prefetch,
_get_training_state,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
NUM_ITERS = 2
DECODER_PARAM_FQNS = [
"decoder.layers.{index}.self_attn.in_proj_weight",
"decoder.layers.{index}.self_attn.in_proj_bias",
"decoder.layers.{index}.self_attn.out_proj.weight",
"decoder.layers.{index}.self_attn.out_proj.bias",
"decoder.layers.{index}.multihead_attn.in_proj_weight",
"decoder.layers.{index}.multihead_attn.in_proj_bias",
"decoder.layers.{index}.multihead_attn.out_proj.weight",
"decoder.layers.{index}.multihead_attn.out_proj.bias",
"decoder.layers.{index}.linear1.weight",
"decoder.layers.{index}.linear1.bias",
"decoder.layers.{index}.linear2.weight",
"decoder.layers.{index}.linear2.bias",
"decoder.layers.{index}.norm1.weight",
"decoder.layers.{index}.norm1.bias",
"decoder.layers.{index}.norm2.weight",
"decoder.layers.{index}.norm2.bias",
"decoder.layers.{index}.norm3.weight",
"decoder.layers.{index}.norm3.bias",
]
ENCODER_PARAM_FQNS = [
"encoder.layers.{index}.self_attn.in_proj_weight",
"encoder.layers.{index}.self_attn.in_proj_bias",
"encoder.layers.{index}.self_attn.out_proj.weight",
"encoder.layers.{index}.self_attn.out_proj.bias",
"encoder.layers.{index}.linear1.weight",
"encoder.layers.{index}.linear1.bias",
"encoder.layers.{index}.linear2.weight",
"encoder.layers.{index}.linear2.bias",
"encoder.layers.{index}.norm1.weight",
"encoder.layers.{index}.norm1.bias",
"encoder.layers.{index}.norm2.weight",
"encoder.layers.{index}.norm2.bias",
]
TOTAL_NUM_PREFETCH_FOR_PRE = 12
TOTAL_NUM_PREFETCH_FOR_POST = 11
ENCODER_BEGIN_INDEX_FOR_PRE = 6
ENCODER_BEGIN_INDEX_FOR_POST = 5
ENCODER_PREFETCH_NUM = 5
class TestBackwardPrefetch(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/utils/util_test.py
|
test_barrier
|
def test_barrier(self):
store = MockStore()
store_util.barrier(store, 3, key_prefix="test/store")
self.assertListEqual(
store.ops,
[
("timeout",),
("set_timeout", datetime.timedelta(seconds=300)),
("add", "test/store/num_members", 1),
("set", "test/store/last_member", "<val_ignored>"),
("wait", ["test/store/last_member"]),
("set_timeout", datetime.timedelta(seconds=store._TEST_TIMEOUT)),
],
)
|
import datetime
from multiprocessing.pool import ThreadPool
from typing import List
from unittest import mock
import torch.distributed as dist
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
class StoreUtilTest(TestCase):
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/utils/util_test.py
|
test_barrier_timeout_rank_tracing
|
def test_barrier_timeout_rank_tracing(self):
N = 3
store = dist.HashStore()
def run_barrier_for_rank(i: int):
try:
store_util.barrier(
store,
N,
key_prefix="test/store",
barrier_timeout=0.1,
rank=i,
rank_tracing_decoder=lambda x: f"Rank {x} host",
trace_timeout=0.01,
)
except Exception as e:
return str(e)
return ""
with ThreadPool(N - 1) as pool:
outputs: List[str] = pool.map(run_barrier_for_rank, range(N - 1))
self.assertTrue(any("missing_ranks=[Rank 2 host]" in msg for msg in outputs))
self.assertTrue(
any(
"check rank 0 (Rank 0 host) for missing rank info" in msg
for msg in outputs
)
)
|
import datetime
from multiprocessing.pool import ThreadPool
from typing import List
from unittest import mock
import torch.distributed as dist
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
class StoreUtilTest(TestCase):
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/utils/util_test.py
|
run_barrier_for_rank
|
def run_barrier_for_rank(i: int):
try:
store_util.barrier(
store,
N,
key_prefix="test/store",
barrier_timeout=0.1,
rank=i,
rank_tracing_decoder=lambda x: f"Rank {x} host",
trace_timeout=0.01,
)
except Exception as e:
return str(e)
return ""
with ThreadPool(N - 1) as pool:
outputs: List[str] = pool.map(run_barrier_for_rank, range(N - 1))
self.assertTrue(any("missing_ranks=[Rank 2 host]" in msg for msg in outputs))
self.assertTrue(
any(
"check rank 0 (Rank 0 host) for missing rank info" in msg
for msg in outputs
)
)
|
import datetime
from multiprocessing.pool import ThreadPool
from typing import List
from unittest import mock
import torch.distributed as dist
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/elastic/utils/util_test.py
|
test_barrier_timeout_operations
|
def test_barrier_timeout_operations(self):
import torch
DistStoreError = torch._C._DistStoreError
N = 3
store = MockStore()
# rank 0
with mock.patch.object(store, "wait") as wait_mock:
wait_mock.side_effect = [DistStoreError("test"), None, None]
with self.assertRaises(DistStoreError):
store_util.barrier(
store,
N,
key_prefix="test/store",
barrier_timeout=1,
rank=0,
rank_tracing_decoder=lambda x: f"Rank {x} host",
trace_timeout=0.1,
)
self.assertListEqual(
store.ops,
[
("timeout",),
("set_timeout", datetime.timedelta(seconds=1)),
("add", "test/store/num_members", 1),
("set", "test/store/last_member", "<val_ignored>"),
# wait for last member is mocked
("set", "test/store0/TRACE", "<val_ignored>"),
# wait for each rank is mocked
("set", "test/store/TRACING_GATE", "<val_ignored>"),
],
)
# rank 1
with mock.patch.object(store, "wait") as wait_mock:
store.ops = []
wait_mock.side_effect = [
DistStoreError("test"),
None,
]
with self.assertRaises(DistStoreError):
store_util.barrier(
store,
N,
key_prefix="test/store",
barrier_timeout=1,
rank=1,
rank_tracing_decoder=lambda x: f"Rank {x} host",
trace_timeout=0.1,
)
self.assertListEqual(
store.ops,
[
("timeout",),
("set_timeout", datetime.timedelta(seconds=1)),
("add", "test/store/num_members", 1),
("set", "test/store/last_member", "<val_ignored>"),
("set", "test/store1/TRACE", "<val_ignored>"),
# wait for gate is mocked
],
)
|
import datetime
from multiprocessing.pool import ThreadPool
from typing import List
from unittest import mock
import torch.distributed as dist
import torch.distributed.elastic.utils.store as store_util
from torch.distributed.elastic.utils.logging import get_logger
from torch.testing._internal.common_utils import run_tests, TestCase
class StoreUtilTest(TestCase):
import torch
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/flight_recorder/test_fr_analysis.py
|
test_match_one_event
|
def test_match_one_event(self):
e1 = create_one_event(
"all_reduce", ("0", "default"), [[4, 4]], [[4, 4]], "scheduled", 1
)
membership = {"0": {0, 1}}
self.assertEqual(
match_one_event(e1, e1, membership, "0"), MatchState.FULLY_MATCHED
)
e2 = create_one_event(
"all_gather", ("0", "default"), [[4, 4]], [[4, 4]], "scheduled", 1
)
self.assertEqual(
match_one_event(e1, e2, membership, "0"),
MatchState.COLLECTIVE_TYPE_MISMATCH,
)
e3 = create_one_event(
"all_to_all", ("0", "default"), [[4, 4]], [[4, 4]], "scheduled", 1
)
e4 = create_one_event(
"all_to_all", ("0", "default"), [[4, 4]], [[4, 4]], "scheduled", 1
)
self.assertEqual(match_one_event(e3, e4, membership, "0"), MatchState.UNDECIDED)
e5 = create_one_event(
"all_reduce", ("0", "default"), [[5, 4]], [[4, 4]], "scheduled", 1, 1
)
self.assertEqual(
match_one_event(e1, e5, membership, "0"), MatchState.SIZE_OR_SYNTAX_MISMATCH
)
e6 = create_one_event(
"all_reduce", ("0", "default"), [[4, 4]], [[5, 4]], "scheduled", 1, 2
)
self.assertEqual(
match_one_event(e1, e6, membership, "0"), MatchState.SIZE_OR_SYNTAX_MISMATCH
)
e7 = create_one_event(
"all_reduce", ("0", "default"), [[4, 4]], [[5, 4]], "scheduled", 2
)
self.assertEqual(
match_one_event(e7, e7, membership, "0"), MatchState.SIZE_OR_SYNTAX_MISMATCH
)
e9 = create_one_event(
"all_reduce", ("0", "default"), [[4, 4]], [[4, 4]], "completed", 1
)
self.assertEqual(
match_one_event(e1, e9, membership, "0"),
MatchState.COLLECTIVE_STATE_MISMATCH,
)
e10 = create_one_event(
"all_reduce",
("0", "default"),
[[4, 4]],
[[4, 4]],
"completed",
1,
output_dtypes="float16",
)
self.assertEqual(
match_one_event(e10, e9, membership, "0"),
MatchState.COLLECTIVE_DTYPE_MISMATCH,
)
|
import pathlib
import sys
REPO_ROOT = pathlib.Path(__file__).resolve().parent.parent.parent.parent
from tools.flight_recorder.components.types import MatchState
from tools.flight_recorder.components.utils import match_one_event
from torch.testing._internal.common_utils import run_tests, TestCase
class FlightRecorderEventTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_checkpoint_wrapper.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(10, 10)
|
def __init__(self) -> None:
super().__init__()
self.lin = nn.Linear(10, 10)
|
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class MyModel(nn.Module):
|
import contextlib
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_checkpoint_wrapper.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(10, 10)
|
def __init__(self) -> None:
super().__init__()
self.lin = nn.Linear(10, 10)
|
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class MyModel(nn.Module):
|
import contextlib
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_checkpoint_wrapper.py
|
ctx_manager
|
def ctx_manager():
nonlocal count
count += 1
yield
|
import contextlib
import unittest
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
CheckpointWrapper,
offload_wrapper,
OffloadWrapper,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils.checkpoint import checkpoint
_SAVED_PREFIX = "_saved_"
GRAD_FN_NEXT_FUNCTIONS = "next_functions"
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_dtensor_state_dict.py
|
test_raises_warning_or_errors
|
def test_raises_warning_or_errors(self):
device_mesh = init_device_mesh(self.device_type, (self.world_size,))
model, optim = self._create_model(
is_even_sharded_model=True, device_mesh=device_mesh
)
# initialize optim
model(model.get_input()).sum().backward()
optim.step()
with self.assertRaisesRegex(
RuntimeError, "DeviceMesh is not compatible with LOCAL_STATE_DICT."
):
with FSDP.state_dict_type(model, StateDictType.LOCAL_STATE_DICT):
state_dict = model.state_dict()
with self.assertRaisesRegex(
RuntimeError, "DeviceMesh is not compatible with LOCAL_STATE_DICT."
):
with FSDP.state_dict_type(model, StateDictType.LOCAL_STATE_DICT):
optim_state_dict = FSDP.optim_state_dict(model, optim)
|
import io
from copy import deepcopy
import torch
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._tensor import DTensor, Shard
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.api import (
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictType,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
class TestFSDPWithDeviceMeshAndDTensor(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_exec_order.py
|
test_train_eval
|
def test_train_eval(self, sharding_strategy: ShardingStrategy):
dist.set_debug_level(dist.DebugLevel.INFO)
fsdp_model = Model.wrap(sharding_strategy, self.device)
NUM_ITERS = 3
NUM_EPOCHS = 2
with warnings.catch_warnings(record=True) as w: # records warnings to `w`
for _ in range(NUM_EPOCHS):
fsdp_model.train()
for _ in range(NUM_ITERS):
inp = fsdp_model.module.get_input(self.device)
output = fsdp_model(*inp)
loss = fsdp_model.module.get_loss(inp, output).to(self.device)
fsdp_model.module.run_backward(loss)
fsdp_model.eval()
for _ in range(NUM_ITERS):
inp = fsdp_model.module.get_input(self.device)
output = fsdp_model(*inp)
fsdp_model.module.get_loss(inp, output).to(self.device)
# Check that the order validation warning was not issued (errors do not
# need to be checked since they will be directly reported)
warning_prefix = "Forward order differs"
for warning in w:
if str(warning.message).startswith(warning_prefix):
raise AssertionError(
f"Warning was incorrectly issued: {warning.message}"
)
# If we still validate the forward execution order in eval mode, then
# an `AssertionError` will be raised above for both sharding strategies
|
def test_train_eval(self, sharding_strategy: ShardingStrategy):
dist.set_debug_level(dist.DebugLevel.DETAIL)
fsdp_model = Model.wrap(sharding_strategy, self.device)
NUM_ITERS = 3
NUM_EPOCHS = 2
with warnings.catch_warnings(record=True) as w: # records warnings to `w`
for _ in range(NUM_EPOCHS):
fsdp_model.train()
for _ in range(NUM_ITERS):
inp = fsdp_model.module.get_input(self.device)
output = fsdp_model(*inp)
loss = fsdp_model.module.get_loss(inp, output).to(self.device)
fsdp_model.module.run_backward(loss)
fsdp_model.eval()
for _ in range(NUM_ITERS):
inp = fsdp_model.module.get_input(self.device)
output = fsdp_model(*inp)
fsdp_model.module.get_loss(inp, output).to(self.device)
# Check that the order validation warning was not issued (errors do not
# need to be checked since they will be directly reported)
warning_prefix = "Forward order differs"
for warning in w:
if str(warning.message).startswith(warning_prefix):
raise AssertionError(
f"Warning was incorrectly issued: {warning.message}"
)
# If we still validate the forward execution order in eval mode, then
# an `AssertionError` will be raised above for both sharding strategies
|
import sys
import warnings
from contextlib import suppress
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPExecOrder(FSDPTest):
|
import sys
import warnings
from contextlib import nullcontext
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPExecOrder(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
forward
|
def forward(self, frozen_input, learnable_input):
return super().forward(frozen_input)
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class LinearUnusedInput(nn.Linear):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
__init__
|
def __init__(self, freeze: bool):
super().__init__()
self.layer0 = LinearUnusedInput(4, 4, device="cuda")
self.layer1_frozen = LinearUnusedInput(4, 4, device="cuda")
if freeze:
for param in self.layer1_frozen.parameters():
param.requires_grad = False
self.layer2 = LinearUnusedInput(4, 4, device="cuda")
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class ModelUnusedInput(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
forward
|
def forward(self, frozen_input, learnable_input):
return super().forward(frozen_input)
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class LinearUnusedInput(nn.Linear):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
test_backward_reshard_hooks
|
def test_backward_reshard_hooks(self):
"""
Tests that the post-backward reshard happens even for flat parameters
that do not require gradients.
"""
self.run_subtests(
{
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
],
"use_orig_params": [False, True],
"inp_requires_grad": [False, True],
"unfreeze_params": [False, True],
},
self._test_backward_reshard_hooks,
)
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFSDPFineTune(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
_post_backward_reshard_with_count
|
def _post_backward_reshard_with_count(*args, **kwargs):
nonlocal post_backward_reshard_count
post_backward_reshard_count += 1
return orig_post_backward_reshard(*args, **kwargs)
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_comm_hooks.py
|
custom_reduce_scatter
|
def custom_reduce_scatter(self, output, input, group=None):
"""
This function is for illustrative purpose only.
It is meant to implement a custom reduce-scatter
of a flattened tensor to all processes in a group.
Currently a no-op.
"""
pass
|
def custom_reduce_scatter(self, output, input, group=None):
"""
This function is for illustrative purpose only.
It is meant to implement a custom reduce-scatter
of a flattened tensor to all processes in a group.
Currently a no-op.
"""
|
import sys
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.algorithms._comm_hooks import default_hooks
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.testing._internal.common_distributed import (
requires_nccl,
requires_nccl_version,
sandcastle_skip_if,
skip_if_lt_x_gpu,
skip_if_rocm,
)
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
BFLOAT16_AVAILABLE = (
torch.cuda.is_available()
and torch.version.cuda is not None
and int(torch.version.cuda.split(".")[0]) >= 11
)
class DummyHook:
|
import sys
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.algorithms._comm_hooks import default_hooks
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.testing._internal.common_distributed import (
requires_nccl,
requires_nccl_version,
skip_but_pass_in_sandcastle_if,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
)
BFLOAT16_AVAILABLE = torch.cuda.is_available() and (
torch.version.cuda is not None or torch.version.hip is not None
)
class DummyHook:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_comm.py
|
_run_iter
|
def _run_iter(self, fsdp_model, batch, use_no_sync: bool):
"""Runs an iteration inside or outside the ``no_sync()`` context."""
context = fsdp_model.no_sync() if use_no_sync else suppress()
with context:
output = fsdp_model(*batch)
loss = fsdp_model.module.get_loss(batch, output)
loss.backward()
|
def _run_iter(self, fsdp_model, batch, use_no_sync: bool):
"""Runs an iteration inside or outside the ``no_sync()`` context."""
context = fsdp_model.no_sync() if use_no_sync else nullcontext()
with context:
output = fsdp_model(*batch)
loss = fsdp_model.module.get_loss(batch, output)
loss.backward()
|
import sys
from contextlib import suppress
from enum import auto, Enum
from typing import Optional
from unittest.mock import patch
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestCommunication(FSDPTest):
|
import sys
from contextlib import nullcontext
from enum import auto, Enum
from typing import List, Optional
from unittest.mock import patch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestCommunication(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_comm.py
|
test_unshard_async
|
def test_unshard_async(self, use_orig_params: bool):
class ReduceModule(nn.Module):
def __init__(self, dim: int, group: dist.ProcessGroup):
super().__init__()
self.group = group
self.weight = nn.Parameter(torch.randn(dim, dim))
def forward(self, x: torch.Tensor):
y = F.relu(x @ self.weight)
# NOTE: This all-reduce is not differentiable and is included
# to exercise the overlap.
work = dist.all_reduce(y, group=self.group, async_op=True)
return y, work
class MLPs(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.mlp1 = MLP(dim)
self.mlp2 = MLP(dim)
self.mlp3 = MLP(dim)
def forward(self, ys: List[torch.Tensor], works: List[dist.Work]):
(y1, y2, y3), (work1, work2, work3) = ys, works
work1.wait()
z1 = self.mlp1(y1)
work2.wait()
z2 = self.mlp2(y2)
work3.wait()
z3 = self.mlp3(y3)
return z1 + z2 + z3
class ReduceModel(nn.Module):
def __init__(self, dim: int, group: dist.ProcessGroup):
super().__init__()
self.reduce_module1 = ReduceModule(dim, group)
self.reduce_module2 = ReduceModule(dim, group)
self.reduce_module3 = ReduceModule(dim, group)
self.mlps = MLPs(dim)
def forward(self, x: torch.Tensor):
y1, work1 = self.reduce_module1(x)
if isinstance(self.mlps.mlp1, FSDP):
self.mlps.mlp1._unshard(async_op=True)
y2, work2 = self.reduce_module2(x)
if isinstance(self.mlps.mlp2, FSDP):
self.mlps.mlp2._unshard(async_op=True)
y3, work3 = self.reduce_module3(x)
if isinstance(self.mlps.mlp3, FSDP):
self.mlps.mlp3._unshard(async_op=True)
return self.mlps([y1, y2, y3], [work1, work2, work3])
group = self.process_group
batch_size, dim = 2, 8
torch.manual_seed(42)
ref_model = DDP(ReduceModel(dim, group).cuda(), device_ids=[self.rank])
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
torch.manual_seed(42)
model = ReduceModel(dim, group)
model.mlps = FSDP(
model.mlps,
sharding_strategy=ShardingStrategy.SHARD_GRAD_OP,
auto_wrap_policy=ModuleWrapPolicy((MLP,)),
device_id=self.rank,
use_orig_params=use_orig_params,
)
model.mlps.check_is_root()
mlp_params = set(model.mlps.parameters())
mlp_param_names = {n for n, p in model.named_parameters() if p in mlp_params}
DDP._set_params_and_buffers_to_ignore_for_model(model, mlp_param_names)
model = DDP(model.cuda(), device_ids=[self.rank])
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
torch.manual_seed(42 + self.rank + 1)
inp = torch.randn((batch_size, dim), device="cuda")
for _ in range(10):
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
losses.append(_model(inp).sum())
losses[-1].backward()
_optim.step()
_optim.zero_grad()
self.assertEqual(losses[0], losses[1])
model.module.mlps._wait_unshard_streams_on_current_stream()
|
import sys
from contextlib import nullcontext
from enum import auto, Enum
from typing import List, Optional
from unittest.mock import patch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestExplicitUnshard(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_comm.py
|
__init__
|
def __init__(self, dim: int, group: dist.ProcessGroup):
super().__init__()
self.group = group
self.weight = nn.Parameter(torch.randn(dim, dim))
|
import sys
from contextlib import nullcontext
from enum import auto, Enum
from typing import List, Optional
from unittest.mock import patch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class ReduceModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_comm.py
|
forward
|
def forward(self, x: torch.Tensor):
y = F.relu(x @ self.weight)
# NOTE: This all-reduce is not differentiable and is included
# to exercise the overlap.
work = dist.all_reduce(y, group=self.group, async_op=True)
return y, work
|
import sys
from contextlib import nullcontext
from enum import auto, Enum
from typing import List, Optional
from unittest.mock import patch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class ReduceModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_comm.py
|
__init__
|
def __init__(self, dim: int, group: dist.ProcessGroup):
super().__init__()
self.group = group
self.weight = nn.Parameter(torch.randn(dim, dim))
|
import sys
from contextlib import nullcontext
from enum import auto, Enum
from typing import List, Optional
from unittest.mock import patch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class ReduceModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_comm.py
|
forward
|
def forward(self, x: torch.Tensor):
y = F.relu(x @ self.weight)
# NOTE: This all-reduce is not differentiable and is included
# to exercise the overlap.
work = dist.all_reduce(y, group=self.group, async_op=True)
return y, work
|
import sys
from contextlib import nullcontext
from enum import auto, Enum
from typing import List, Optional
from unittest.mock import patch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class ReduceModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_comm.py
|
__init__
|
def __init__(self, dim: int, group: dist.ProcessGroup):
super().__init__()
self.group = group
self.weight = nn.Parameter(torch.randn(dim, dim))
|
import sys
from contextlib import nullcontext
from enum import auto, Enum
from typing import List, Optional
from unittest.mock import patch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class ReduceModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_comm.py
|
forward
|
instantiate_parametrized_tests(TestCommunication)
if __name__ == "__main__":
run_tests()
|
def forward(self, x: torch.Tensor):
y = F.relu(x @ self.weight)
# NOTE: This all-reduce is not differentiable and is included
# to exercise the overlap.
work = dist.all_reduce(y, group=self.group, async_op=True)
return y, work
|
import sys
from contextlib import nullcontext
from enum import auto, Enum
from typing import List, Optional
from unittest.mock import patch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class ReduceModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
_assert_post_backward_requires_grad
|
def _assert_post_backward_requires_grad(seq):
if step_idx == num_steps - 1 and unfreeze_params:
self.assertTrue(
all(p.requires_grad for p in seq.parameters()),
msg="Expected all parameters to require grad but some did not!",
)
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
_assert_post_backward_reshard_count
|
def _assert_post_backward_reshard_count(step_idx, num_steps):
if step_idx < num_steps - 1 or not unfreeze_params:
# If the input does not require gradient, then the 0th
# frozen linear gets resharded in the catch-all reshard
# since we cannot register an autograd hook on it
expected_post_backward_reshard_count = (
self.NUM_LINEARS if inp_requires_grad else self.NUM_LINEARS - 1
)
else:
# This follows the normal post-backward hook path
expected_post_backward_reshard_count = self.NUM_LINEARS
self.assertEqual(
post_backward_reshard_count, expected_post_backward_reshard_count
)
with mock.patch(
"torch.distributed.fsdp._runtime_utils._post_backward_reshard",
_post_backward_reshard_with_count,
):
num_steps = 3
# interleave a `no_grad` step to validate post-backward hooks are not registered in that context
# and that `requires_grad` is reset appropriately when unfreezing
nograd_step_idx = 1
for step_idx in range(num_steps):
if unfreeze_params and step_idx == num_steps - 1:
# Unfreeze the parameters on the last step to emulate some
# kinds of fine-tuning
self._set_seq_module_requires_grad(seq, True)
inp = torch.randn(
(8, 5), device="cuda", requires_grad=inp_requires_grad
)
if step_idx == nograd_step_idx:
with torch.no_grad():
output = seq(inp)
else:
output = seq(inp)
if step_idx != nograd_step_idx:
output.sum().backward()
_assert_post_backward_requires_grad(seq)
_assert_post_backward_reshard_count(step_idx, num_steps)
post_backward_reshard_count = 0
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
forward
|
def forward(self, frozen_input, learnable_input):
return super().forward(frozen_input)
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class LinearUnusedInput(nn.Linear):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
test_hooks_multi_traversal
|
def test_hooks_multi_traversal(self):
"""
Tests that the hooks do reshard / unshard correctly in the case of same
parameters being used multiple times during forward pass.
"""
self.run_subtests(
{
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
],
"use_orig_params": [False, True],
"inp_requires_grad": [False, True],
"forward_prefetch": [False, True],
},
self._test_hooks_multi_traversal,
)
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFSDPFineTune(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
test_parity_with_ddp
|
def test_parity_with_ddp(self):
"""
Tests parity with DDP when mixing flat parameters that require and do
not require gradients.
"""
self.run_subtests(
{
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
],
"use_orig_params": [False, True],
},
self._test_parity_with_ddp,
)
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFSDPFineTune(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_fine_tune.py
|
test_parity_with_non_frozen_fsdp
|
def test_parity_with_non_frozen_fsdp(self):
"""
For frozen modules with unused input, reshard could happen without unshard
Verify numerical parity between `_post_backward_reshard_only_hook` and
`_post_backward_hook` path
"""
self.run_subtests(
{
"sharding_strategy": [
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
],
"use_orig_params": [True, False],
"offload_params": [True, False],
"mixed_precision": [
MixedPrecision(),
MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
),
],
"backward_prefetch": [
BackwardPrefetch.BACKWARD_PRE,
BackwardPrefetch.BACKWARD_POST,
],
},
self._test_parity_with_non_frozen_fsdp,
)
|
import copy
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFSDPFineTune(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_flatten_params.py
|
_get_default_config
|
def _get_default_config(self):
return (HandleShardingStrategy.FULL_SHARD, False, None, None, False)
|
def _get_default_config(self):
return {
"device": torch.device("cuda"),
"sharding_strategy": HandleShardingStrategy.FULL_SHARD,
"offload_params": False,
"mp_param_dtype": None,
"mp_reduce_dtype": None,
"keep_low_precision_grads": False,
"process_group": self.process_group,
"use_orig_params": False,
"fsdp_extension": None,
}
|
import sys
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.flat_param import (
FlatParamHandle,
FlatParamShardMetadata,
HandleShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFlattenParams(FSDPTest):
|
import sys
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._flat_param import (
FlatParamHandle,
FlatParamShardMetadata,
HandleShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFlattenParams(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_flatten_params.py
|
_get_transformer
|
def _get_transformer(self, seed=0):
torch.manual_seed(seed) # keep everything deterministic
module = torch.nn.Transformer(
d_model=32,
num_encoder_layers=2,
num_decoder_layers=2,
dim_feedforward=128,
dropout=0.1,
)
module.register_buffer("dummy_buffer", torch.tensor(1.0))
def get_input(device, dtype):
torch.manual_seed(1) # keep everything deterministic
src = torch.rand(20, 8, 32).to(device=device, dtype=dtype) # T x B x C
tgt = torch.rand(10, 8, 32).to(device=device, dtype=dtype) # T x B x C
return (src, tgt)
module.get_input = get_input
return module
|
def _get_transformer(self, seed=0):
torch.manual_seed(seed) # keep everything deterministic
module = torch.nn.Transformer(
d_model=32,
num_encoder_layers=2,
num_decoder_layers=2,
dim_feedforward=128,
dropout=0.1,
)
module.dummy_buffer = nn.Buffer(torch.tensor(1.0))
def get_input(device, dtype):
torch.manual_seed(1) # keep everything deterministic
src = torch.rand(20, 8, 32).to(device=device, dtype=dtype) # T x B x C
tgt = torch.rand(10, 8, 32).to(device=device, dtype=dtype) # T x B x C
return (src, tgt)
module.get_input = get_input
return module
|
import sys
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.flat_param import (
FlatParamHandle,
FlatParamShardMetadata,
HandleShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFlattenParams(FSDPTest):
|
import sys
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._flat_param import (
FlatParamHandle,
FlatParamShardMetadata,
HandleShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFlattenParams(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_flatten_params.py
|
test_flat_param_shard_metadata_unaligned
|
"""
Tests that ``FlatParameter`` shard metadata are computed as expected.
"""
module = torch.nn.Sequential(
torch.nn.Linear(10, 10, bias=False),
torch.nn.ReLU(),
torch.nn.Linear(10, 10, bias=False),
torch.nn.ReLU(),
torch.nn.Linear(10, 10, bias=False),
torch.nn.ReLU(),
)
params_to_flatten = list(module.parameters())
flat_param_handle = FlatParamHandle(
params_to_flatten,
module,
torch.device("cuda"),
*self._get_default_config(),
self.process_group,
False,
)
|
def test_flat_param_shard_metadata_unaligned(self):
"""
Tests that ``FlatParameter`` shard metadata are computed as expected
without any explicit alignment padding.
"""
module = torch.nn.Sequential(
torch.nn.Linear(10, 10, bias=False),
nn.ReLU(),
torch.nn.Linear(10, 10, bias=False),
nn.ReLU(),
torch.nn.Linear(10, 10, bias=False),
nn.ReLU(),
)
params_to_flatten = list(module.parameters())
handle = FlatParamHandle(
params_to_flatten,
module,
**self._get_default_config(),
)
self._test_flat_param_shard_metadata(
handle,
start=0,
end=0,
expected=FlatParamShardMetadata(
param_names=["0.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(0, 0)],
),
)
self._test_flat_param_shard_metadata(
handle,
start=0,
end=50,
expected=FlatParamShardMetadata(
param_names=["0.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(0, 50)],
),
)
self._test_flat_param_shard_metadata(
handle,
start=0,
end=99,
expected=FlatParamShardMetadata(
param_names=["0.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(0, 99)],
),
)
self._test_flat_param_shard_metadata(
handle,
start=50,
end=149,
expected=FlatParamShardMetadata(
param_names=["0.weight", "2.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(50, 99), (0, 49)],
),
)
self._test_flat_param_shard_metadata(
handle,
start=50,
end=199,
expected=FlatParamShardMetadata(
param_names=["0.weight", "2.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(50, 99), (0, 99)],
),
)
self._test_flat_param_shard_metadata(
handle,
start=99,
end=199,
expected=FlatParamShardMetadata(
param_names=["0.weight", "2.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(99, 99), (0, 99)],
),
)
self._test_flat_param_shard_metadata(
handle,
start=100,
end=199,
expected=FlatParamShardMetadata(
param_names=["2.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(0, 99)],
),
)
self._test_flat_param_shard_metadata(
handle,
start=100,
end=299,
expected=FlatParamShardMetadata(
param_names=["2.weight", "4.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(0, 99), (0, 99)],
),
)
self._test_flat_param_shard_metadata(
handle,
start=100,
end=1000,
expected=FlatParamShardMetadata(
param_names=["2.weight", "4.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(0, 99), (0, 99)],
),
)
self._test_flat_param_shard_metadata(
handle,
start=299,
end=299,
expected=FlatParamShardMetadata(
param_names=["4.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(99, 99)],
),
)
|
import sys
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._flat_param import (
FlatParamHandle,
FlatParamShardMetadata,
HandleShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFlattenParams(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_flatten_params.py
|
test_flat_param_shard_metadata_aligned_full_precision
|
def test_flat_param_shard_metadata_aligned_full_precision(self):
"""
Tests that ``FlatParameter`` shard metadata are computed as expected
with alignment padding and parameter full precision.
"""
module = torch.nn.Sequential(
torch.nn.Linear(3, 7, bias=False), # 0.weight
torch.nn.Linear(7, 5, bias=False), # 1.weight
torch.nn.Linear(5, 5, bias=False), # 2.weight
)
params_to_flatten = list(module.parameters())
handle_kwargs = self._get_default_config()
handle_kwargs["use_orig_params"] = True
handle = FlatParamHandle(params_to_flatten, module, **handle_kwargs)
# For 32-bit full precision, FSDP pads up to 3 numel after each
# original parameter to achieve 0 mod 4 numel (i.e. 0 mod 16 bytes).
# Thus, the unsharded `FlatParameter` layout looks like:
# 21 + (3) + 35 + (1) + 25
# where (x) means x numel of padding. This gives a total of 85 numel.
# The `FlatParamShardMetadata` do not include alignment padding but do
# account for them
self._test_flat_param_shard_metadata(
handle,
# Emulate rank 0 of 2 ranks
start=0,
end=42,
expected=FlatParamShardMetadata(
param_names=["0.weight", "1.weight"],
param_shapes=[(7, 3), (5, 7)],
param_numels=[21, 35],
# 21 + (3) + 19 = 43
param_offsets=[(0, 20), (0, 18)],
),
)
self._test_flat_param_shard_metadata(
handle,
# Emulate rank 1 of 2 ranks
start=43,
end=85,
expected=FlatParamShardMetadata(
param_names=["1.weight", "2.weight"],
param_shapes=[(5, 7), (5, 5)],
param_numels=[35, 25],
# 16 + (1) + 25 = 42
param_offsets=[(19, 34), (0, 24)],
),
)
|
import sys
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._flat_param import (
FlatParamHandle,
FlatParamShardMetadata,
HandleShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFlattenParams(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_flatten_params.py
|
test_flat_param_shard_metadata_aligned_mixed_precision
|
if __name__ == "__main__":
run_tests()
|
def test_flat_param_shard_metadata_aligned_mixed_precision(self):
"""
Tests that ``FlatParameter`` shard metadata are computed as expected
with alignment padding and parameter mixed precision.
"""
module = torch.nn.Sequential(
torch.nn.Linear(2, 5, bias=False), # 0.weight
torch.nn.Linear(5, 5, bias=False), # 1.weight
torch.nn.Linear(5, 3, bias=False), # 2.weight
)
params_to_flatten = list(module.parameters())
handle_kwargs = self._get_default_config()
handle_kwargs["use_orig_params"] = True
handle_kwargs["mp_param_dtype"] = torch.float16
handle = FlatParamHandle(params_to_flatten, module, **handle_kwargs)
# For 16-bit mixed precision, FSDP pads up to 7 numel after each
# original parameter to achieve 0 mod 8 numel (i.e. 0 mod 16 bytes).
# Thus, the unsharded `FlatParameter` layout looks like:
# 10 + (6) + 25 + (7) + 15
# where (x) means x numel of padding. This gives a total of 63 numel.
# The `FlatParamShardMetadata` do not include alignment padding but do
# account for them
self._test_flat_param_shard_metadata(
handle,
# Emulate rank 0 of 2 ranks
start=0,
end=31,
expected=FlatParamShardMetadata(
param_names=["0.weight", "1.weight"],
param_shapes=[(5, 2), (5, 5)],
param_numels=[10, 25],
# 10 + (6) + 16 = 32
param_offsets=[(0, 9), (0, 15)],
),
)
self._test_flat_param_shard_metadata(
handle,
# Emulate rank 1 of 2 ranks
start=32,
end=63,
expected=FlatParamShardMetadata(
param_names=["1.weight", "2.weight"],
param_shapes=[(5, 5), (3, 5)],
param_numels=[25, 15],
# 9 + (7) + 15 = 31
param_offsets=[(16, 24), (0, 14)],
),
)
|
import sys
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._flat_param import (
FlatParamHandle,
FlatParamShardMetadata,
HandleShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
class TestFlattenParams(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_freezing_weights.py
|
__init__
|
def __init__(self, with_fsdp, freeze_after_wrap_fsdp):
super().__init__()
self.trunk = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
)
self.head = nn.Linear(64, 10)
if with_fsdp and freeze_after_wrap_fsdp:
self.fsdp_wrap()
|
def __init__(
self,
with_fsdp,
freeze_after_wrap_fsdp,
disable_autograd,
fsdp_kwargs,
):
super().__init__()
self.trunk = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
)
self.device = torch.cuda.current_device()
self.head = nn.Linear(64, 10)
if with_fsdp and freeze_after_wrap_fsdp:
self.fsdp_wrap(fsdp_kwargs)
self.autograd_ctx = (
torch.no_grad if disable_autograd else contextlib.nullcontext
)
|
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
import contextlib
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_freezing_weights.py
|
fsdp_wrap
|
def fsdp_wrap(self):
self.trunk = FSDP(self.trunk)
self.head = FSDP(self.head)
|
def fsdp_wrap(self, fsdp_kwargs):
self.trunk = FSDP(self.trunk, **fsdp_kwargs)
self.head = FSDP(self.head, **fsdp_kwargs)
|
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
import contextlib
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_freezing_weights.py
|
fsdp_wrap
|
def fsdp_wrap(self):
self.trunk = FSDP(self.trunk)
self.head = FSDP(self.head)
|
def fsdp_wrap(self, fsdp_kwargs):
self.trunk = FSDP(self.trunk, **fsdp_kwargs)
self.head = FSDP(self.head, **fsdp_kwargs)
|
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
import contextlib
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_freezing_weights.py
|
forward
|
def forward(self, x):
return self.head(self.trunk(x))
|
def forward(self, x):
with self.autograd_ctx():
x = self.trunk(x)
return self.head(x)
|
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
import contextlib
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_hybrid_shard.py
|
test_fsdp_hybrid_shard_basic_setup
|
def test_fsdp_hybrid_shard_basic_setup(self):
"""
Tests basic functionality of HYBRID_SHARD and _HYBRID_SHARD_ZERO2:
1. Inter and intra-node process groups are correctly setup
2. Process groups are the same across FSDP wrapped instances
3. reduce_scatter and allreduce called the expected no. of times
"""
self.run_subtests(
{
"hsdp_sharding_strategy": [
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
],
"sharding_strategy_mode": [
ShardingStrategyMode.ALL_HYBRID_SHARD,
ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD,
],
},
self._test_fsdp_hybrid_shard_basic_setup,
)
|
def test_fsdp_hybrid_shard_basic_setup(self):
"""
Tests basic functionality of HYBRID_SHARD and _HYBRID_SHARD_ZERO2:
1. Inter and intra-node process groups are correctly setup
2. Process groups are the same across FSDP wrapped instances
3. reduce_scatter and allreduce called the expected no. of times
"""
self.run_subtests(
{
"hsdp_sharding_strategy": [
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
],
"sharding_strategy_mode": [
ShardingStrategyMode.ALL_HYBRID_SHARD,
ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD,
],
"use_orig_params": [False, True],
"use_device_mesh": [False, True],
},
self._test_fsdp_hybrid_shard_basic_setup,
)
|
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPHybridShard(FSDPTest):
|
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
from typing import List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._init_utils import (
_init_intra_and_inter_node_groups,
HYBRID_SHARDING_STRATEGIES,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPHybridShard(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_hybrid_shard.py
|
patched_collective
|
def patched_collective(orig_collective, counter, *args, **kwargs):
counter[orig_collective] += 1
return orig_collective(*args, **kwargs)
cntr = Counter()
patched_allreduce = partial(patched_collective, orig_ar, cntr)
patched_reduce_scatter = partial(patched_collective, orig_rs, cntr)
with patch_allreduce(patched_allreduce), patch_reduce_scatter(
patched_reduce_scatter
):
inp = fsdp_model.get_input(device=torch.cuda.current_device())
out = fsdp_model(inp[0], inp[1])
loss = fsdp_model.get_loss(inp, out)
loss.backward()
if sharding_strategy_mode == ShardingStrategyMode.ALL_HYBRID_SHARD:
num_flat_params = len(list(traversal_utils._get_fsdp_handles(fsdp_model)))
self.assertEqual(num_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
elif sharding_strategy_mode == ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD:
num_hsdp_flat_params = len(
list(traversal_utils._get_fsdp_handles(fsdp_model.transformer))
)
num_flat_params = len(list(traversal_utils._get_fsdp_handles(fsdp_model)))
self.assertEqual(num_hsdp_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
|
def patched_collective(orig_collective, counter, *args, **kwargs):
counter[orig_collective] += 1
return orig_collective(*args, **kwargs)
cntr = Counter()
patched_allreduce = partial(patched_collective, orig_ar, cntr)
patched_reduce_scatter = partial(patched_collective, orig_rs, cntr)
with patch_allreduce(patched_allreduce), patch_reduce_scatter(
patched_reduce_scatter
):
inp = hsdp_model.get_input(device=torch.cuda.current_device())
out = hsdp_model(inp[0], inp[1])
loss = hsdp_model.get_loss(inp, out)
loss.backward()
if sharding_strategy_mode == ShardingStrategyMode.ALL_HYBRID_SHARD:
num_flat_params = len(list(traversal_utils._get_fsdp_handles(hsdp_model)))
self.assertEqual(num_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
elif sharding_strategy_mode == ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD:
num_hsdp_flat_params = len(
list(traversal_utils._get_fsdp_handles(hsdp_model.transformer))
)
num_flat_params = len(list(traversal_utils._get_fsdp_handles(hsdp_model)))
self.assertEqual(num_hsdp_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
|
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
from typing import List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._init_utils import (
_init_intra_and_inter_node_groups,
HYBRID_SHARDING_STRATEGIES,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_hybrid_shard.py
|
test_fsdp_hybrid_shard_parity
|
def _init_hsdp_model(
self,
hsdp_sharding_strategy: ShardingStrategy,
sharding_strategy_mode: str,
):
if sharding_strategy_mode == ShardingStrategyMode.ALL_HYBRID_SHARD:
auto_wrap_policy = ModuleWrapPolicy(
{TransformerEncoderLayer, TransformerDecoderLayer},
)
fsdp_kwargs = {
"auto_wrap_policy": auto_wrap_policy,
"device_id": torch.cuda.current_device(),
"sharding_strategy": hsdp_sharding_strategy,
}
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
fsdp_kwargs,
)
elif sharding_strategy_mode == ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD:
model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_BEFORE,
{},
)
transformer_auto_wrap_policy = ModuleWrapPolicy(
{TransformerEncoderLayer, TransformerDecoderLayer},
)
# Use the HSDP strategy for the transformer module
model.transformer = FSDP(
model.transformer,
auto_wrap_policy=transformer_auto_wrap_policy,
device_id=torch.cuda.current_device(),
sharding_strategy=hsdp_sharding_strategy,
)
# Use `FULL_SHARD` for the embedding and output projection
fsdp_model = FSDP(
model,
device_id=torch.cuda.current_device(),
sharding_strategy=ShardingStrategy.FULL_SHARD,
)
return fsdp_model
instantiate_parametrized_tests(TestFSDPHybridShard)
if __name__ == "__main__":
run_tests()
|
def test_fsdp_hybrid_shard_parity(self):
self.run_subtests(
{
"hsdp_sharding_strategy": [
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
],
"use_orig_params": [False, True],
},
self._test_fsdp_hybrid_shard_parity,
)
|
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
from typing import List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._init_utils import (
_init_intra_and_inter_node_groups,
HYBRID_SHARDING_STRATEGIES,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPHybridShard(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_freezing_weights.py
|
__init__
|
def __init__(self, with_fsdp, freeze_after_wrap_fsdp):
super().__init__()
self.trunk = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
)
self.head = nn.Linear(64, 10)
if with_fsdp and freeze_after_wrap_fsdp:
self.fsdp_wrap()
|
def __init__(
self,
with_fsdp,
freeze_after_wrap_fsdp,
disable_autograd,
fsdp_kwargs,
):
super().__init__()
self.trunk = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
)
self.device = torch.cuda.current_device()
self.head = nn.Linear(64, 10)
if with_fsdp and freeze_after_wrap_fsdp:
self.fsdp_wrap(fsdp_kwargs)
self.autograd_ctx = (
torch.no_grad if disable_autograd else contextlib.nullcontext
)
|
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
import contextlib
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_freezing_weights.py
|
fsdp_wrap
|
def fsdp_wrap(self):
self.trunk = FSDP(self.trunk)
self.head = FSDP(self.head)
|
def fsdp_wrap(self, fsdp_kwargs):
self.trunk = FSDP(self.trunk, **fsdp_kwargs)
self.head = FSDP(self.head, **fsdp_kwargs)
|
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
import contextlib
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_freezing_weights.py
|
forward
|
def forward(self, x):
return self.head(self.trunk(x))
|
def forward(self, x):
with self.autograd_ctx():
x = self.trunk(x)
return self.head(x)
|
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
import contextlib
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_freezing_weights.py
|
_create_model
|
def _create_model(self, with_fsdp, with_nested_trunk, freeze_after_wrap_fsdp):
if with_nested_trunk:
model = NestedTrunkModel(with_fsdp, freeze_after_wrap_fsdp)
else:
model = Model(with_fsdp, freeze_after_wrap_fsdp)
return model
|
def _create_model(
self,
with_fsdp,
with_nested_trunk,
freeze_after_wrap_fsdp,
disable_autograd,
fsdp_kwargs,
):
if with_nested_trunk:
model = NestedTrunkModel(
with_fsdp, freeze_after_wrap_fsdp, disable_autograd, fsdp_kwargs
)
else:
model = Model(
with_fsdp, freeze_after_wrap_fsdp, disable_autograd, fsdp_kwargs
)
return model
|
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFreezingWeights(FSDPTest):
|
import contextlib
import sys
from enum import Enum
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, get_full_params
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFreezingWeights(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_grad_acc.py
|
permute_tensor
|
def permute_tensor(x: torch.Tensor):
return x.view(-1)[torch.randperm(x.numel())].view_as(x)
batch: Tuple[torch.Tensor, ...] = fsdp_model.module.get_input(device)
batches: List[Tuple[torch.Tensor, ...]] = [batch]
num_iters_to_acc = sum(config.num_iters for config in configs)
for _ in range(num_iters_to_acc - 1):
batches.append(tuple(permute_tensor(t) for t in batch))
for (batch1, batch2) in itertools.combinations(batches, r=2):
for t1, t2 in zip(batch1, batch2):
assert not torch.all(
t1 == t2
), "Check the test to make sure that batches are distinct"
# Concatenate the batches along the given batch dimension
concat_batch: Tuple[torch.Tensor, ...] = tuple(
torch.cat(ts, dim=batch_dim) for ts in zip(*batches)
)
# Establish reference gradients using the concatenated batch
fsdp_model.zero_grad()
output = fsdp_model(*concat_batch)
ref_loss = fsdp_model.module.get_loss(concat_batch, output)
ref_loss.backward()
ref_grads = [
p.grad.detach().clone()
for p in fsdp_model.parameters()
if p.grad is not None
]
# Compute and accumulate the gradients
fsdp_model.zero_grad()
losses = []
batch_idx = 0
for config in configs:
sync_context = (
fsdp_model.no_sync()
if config.use_no_sync
else contextlib.suppress()
)
with sync_context:
for _ in range(config.num_iters):
if batch_idx == num_iters_to_acc - 1:
break # always sync on the last iteration
batch = batches[batch_idx]
batch_idx += 1
output = fsdp_model(*batch)
loss = fsdp_model.module.get_loss(batch, output)
loss.backward()
losses.append(loss)
output = fsdp_model(*batches[-1])
loss = fsdp_model.module.get_loss(batches[-1], output)
loss.backward()
losses.append(loss)
acc_loss = sum(losses)
acc_grads = [
p.grad.detach().clone()
for p in fsdp_model.parameters()
if p.grad is not None
]
# Compare the losses and gradients
torch.testing.assert_close(ref_loss, acc_loss)
self.assertEqual(len(ref_grads), len(acc_grads))
for ref_grad, acc_grad in zip(ref_grads, acc_grads):
self.assertEqual(ref_grad.device, acc_grad.device)
self.assertEqual(ref_grad.size(), acc_grad.size())
self.assertEqual(ref_grad.dtype, acc_grad.dtype)
torch.testing.assert_close(ref_grad, acc_grad)
# Check that the optimizer step does not error
optim.step()
|
def permute_tensor(x: torch.Tensor):
return x.view(-1)[torch.randperm(x.numel())].view_as(x)
batch: Tuple[torch.Tensor, ...] = fsdp_model.module.get_input(device)
batches: List[Tuple[torch.Tensor, ...]] = [batch]
num_iters_to_acc = sum(config.num_iters for config in configs)
for _ in range(num_iters_to_acc - 1):
batches.append(tuple(permute_tensor(t) for t in batch))
for batch1, batch2 in itertools.combinations(batches, r=2):
for t1, t2 in zip(batch1, batch2):
assert not torch.all(
t1 == t2
), "Check the test to make sure that batches are distinct"
# Concatenate the batches along the given batch dimension
concat_batch: Tuple[torch.Tensor, ...] = tuple(
torch.cat(ts, dim=batch_dim) for ts in zip(*batches)
)
# Establish reference gradients using the concatenated batch
fsdp_model.zero_grad()
output = fsdp_model(*concat_batch)
ref_loss = fsdp_model.module.get_loss(concat_batch, output)
ref_loss.backward()
ref_grads = [
p.grad.detach().clone()
for p in fsdp_model.parameters()
if p.grad is not None
]
# Compute and accumulate the gradients
fsdp_model.zero_grad()
losses = []
batch_idx = 0
for config in configs:
sync_context = (
fsdp_model.no_sync() if config.use_no_sync else contextlib.nullcontext()
)
with sync_context:
for _ in range(config.num_iters):
if batch_idx == num_iters_to_acc - 1:
break # always sync on the last iteration
batch = batches[batch_idx]
batch_idx += 1
output = fsdp_model(*batch)
loss = fsdp_model.module.get_loss(batch, output)
loss.backward()
losses.append(loss)
output = fsdp_model(*batches[-1])
loss = fsdp_model.module.get_loss(batches[-1], output)
loss.backward()
losses.append(loss)
acc_loss = sum(losses)
acc_grads = [
p.grad.detach().clone()
for p in fsdp_model.parameters()
if p.grad is not None
]
# Compare the losses and gradients
torch.testing.assert_close(ref_loss, acc_loss)
self.assertEqual(len(ref_grads), len(acc_grads))
for ref_grad, acc_grad in zip(ref_grads, acc_grads):
self.assertEqual(ref_grad.device, acc_grad.device)
self.assertEqual(ref_grad.size(), acc_grad.size())
self.assertEqual(ref_grad.dtype, acc_grad.dtype)
torch.testing.assert_close(ref_grad, acc_grad)
# Check that the optimizer step does not error
optim.step()
|
import contextlib
import itertools
import sys
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed.fsdp import CPUOffload, FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
ShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import contextlib
import itertools
import sys
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed.fsdp import CPUOffload, FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
ShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfRocm,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_grad_acc.py
|
permute_tensor
|
def permute_tensor(x: torch.Tensor):
return x.view(-1)[torch.randperm(x.numel())].view_as(x)
batch: Tuple[torch.Tensor, ...] = fsdp_model.module.get_input(device)
batches: List[Tuple[torch.Tensor, ...]] = [batch]
num_iters_to_acc = sum(config.num_iters for config in configs)
for _ in range(num_iters_to_acc - 1):
batches.append(tuple(permute_tensor(t) for t in batch))
for (batch1, batch2) in itertools.combinations(batches, r=2):
for t1, t2 in zip(batch1, batch2):
assert not torch.all(
t1 == t2
), "Check the test to make sure that batches are distinct"
# Concatenate the batches along the given batch dimension
concat_batch: Tuple[torch.Tensor, ...] = tuple(
torch.cat(ts, dim=batch_dim) for ts in zip(*batches)
)
# Establish reference gradients using the concatenated batch
fsdp_model.zero_grad()
output = fsdp_model(*concat_batch)
ref_loss = fsdp_model.module.get_loss(concat_batch, output)
ref_loss.backward()
ref_grads = [
p.grad.detach().clone()
for p in fsdp_model.parameters()
if p.grad is not None
]
# Compute and accumulate the gradients
fsdp_model.zero_grad()
losses = []
batch_idx = 0
for config in configs:
sync_context = (
fsdp_model.no_sync()
if config.use_no_sync
else contextlib.suppress()
)
with sync_context:
for _ in range(config.num_iters):
if batch_idx == num_iters_to_acc - 1:
break # always sync on the last iteration
batch = batches[batch_idx]
batch_idx += 1
output = fsdp_model(*batch)
loss = fsdp_model.module.get_loss(batch, output)
loss.backward()
losses.append(loss)
output = fsdp_model(*batches[-1])
loss = fsdp_model.module.get_loss(batches[-1], output)
loss.backward()
losses.append(loss)
acc_loss = sum(losses)
acc_grads = [
p.grad.detach().clone()
for p in fsdp_model.parameters()
if p.grad is not None
]
# Compare the losses and gradients
torch.testing.assert_close(ref_loss, acc_loss)
self.assertEqual(len(ref_grads), len(acc_grads))
for ref_grad, acc_grad in zip(ref_grads, acc_grads):
self.assertEqual(ref_grad.device, acc_grad.device)
self.assertEqual(ref_grad.size(), acc_grad.size())
self.assertEqual(ref_grad.dtype, acc_grad.dtype)
torch.testing.assert_close(ref_grad, acc_grad)
# Check that the optimizer step does not error
optim.step()
|
def permute_tensor(x: torch.Tensor):
return x.view(-1)[torch.randperm(x.numel())].view_as(x)
batch: Tuple[torch.Tensor, ...] = fsdp_model.module.get_input(device)
batches: List[Tuple[torch.Tensor, ...]] = [batch]
num_iters_to_acc = sum(config.num_iters for config in configs)
for _ in range(num_iters_to_acc - 1):
batches.append(tuple(permute_tensor(t) for t in batch))
for batch1, batch2 in itertools.combinations(batches, r=2):
for t1, t2 in zip(batch1, batch2):
assert not torch.all(
t1 == t2
), "Check the test to make sure that batches are distinct"
# Concatenate the batches along the given batch dimension
concat_batch: Tuple[torch.Tensor, ...] = tuple(
torch.cat(ts, dim=batch_dim) for ts in zip(*batches)
)
# Establish reference gradients using the concatenated batch
fsdp_model.zero_grad()
output = fsdp_model(*concat_batch)
ref_loss = fsdp_model.module.get_loss(concat_batch, output)
ref_loss.backward()
ref_grads = [
p.grad.detach().clone()
for p in fsdp_model.parameters()
if p.grad is not None
]
# Compute and accumulate the gradients
fsdp_model.zero_grad()
losses = []
batch_idx = 0
for config in configs:
sync_context = (
fsdp_model.no_sync() if config.use_no_sync else contextlib.nullcontext()
)
with sync_context:
for _ in range(config.num_iters):
if batch_idx == num_iters_to_acc - 1:
break # always sync on the last iteration
batch = batches[batch_idx]
batch_idx += 1
output = fsdp_model(*batch)
loss = fsdp_model.module.get_loss(batch, output)
loss.backward()
losses.append(loss)
output = fsdp_model(*batches[-1])
loss = fsdp_model.module.get_loss(batches[-1], output)
loss.backward()
losses.append(loss)
acc_loss = sum(losses)
acc_grads = [
p.grad.detach().clone()
for p in fsdp_model.parameters()
if p.grad is not None
]
# Compare the losses and gradients
torch.testing.assert_close(ref_loss, acc_loss)
self.assertEqual(len(ref_grads), len(acc_grads))
for ref_grad, acc_grad in zip(ref_grads, acc_grads):
self.assertEqual(ref_grad.device, acc_grad.device)
self.assertEqual(ref_grad.size(), acc_grad.size())
self.assertEqual(ref_grad.dtype, acc_grad.dtype)
torch.testing.assert_close(ref_grad, acc_grad)
# Check that the optimizer step does not error
optim.step()
|
import contextlib
import itertools
import sys
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed.fsdp import CPUOffload, FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
ShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import contextlib
import itertools
import sys
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed.fsdp import CPUOffload, FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
ShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfRocm,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_hybrid_shard.py
|
patch_reduce_scatter
|
def patch_reduce_scatter(new_reduce_scatter):
"""
Patches dist.reduce_scatter_tensor with a new reduce_scatter_tensor and
restores upon exiting.
"""
orig_reduce_scatter = dist.reduce_scatter_tensor
dist.reduce_scatter_tensor = new_reduce_scatter
try:
yield
finally:
dist.reduce_scatter_tensor = orig_reduce_scatter
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.lin1 = nn.Linear(10, 10)
self.lin2 = nn.Linear(10, 10)
self.lin3 = nn.Linear(10, 10)
class ShardingStrategyMode(Enum):
ALL_HYBRID_SHARD = auto()
MIXED_HYBRID_FULL_SHARD = auto()
class TestFSDPHybridShard(FSDPTest):
@property
def world_size(self):
return max(torch.cuda.device_count(), 2)
@property
def process_group(self):
return dist.distributed_c10d._get_default_group()
@skip_if_lt_x_gpu(2)
def test_raises_manual_wrap_hybrid_shard_when_none_policy(self):
model = MyModel().cuda()
err_ctx = self.assertRaisesRegex(
ValueError, "requires explicit specification of process group"
)
with err_ctx:
model = FSDP(model, sharding_strategy=ShardingStrategy.HYBRID_SHARD)
with err_ctx:
model = FSDP(model, sharding_strategy=ShardingStrategy._HYBRID_SHARD_ZERO2)
@skip_if_lt_x_gpu(2)
def test_hybrid_shard_pg_mismatch_raises(self):
model = MyModel().cuda()
intra_pg = self.process_group
inter_pg = dist.new_group(ranks=[self.rank])
# Mismatched process groups for intra-node
model.lin1 = FSDP(
model.lin1,
process_group=(intra_pg, inter_pg),
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
)
model = FSDP(
model,
process_group=(dist.new_group(), dist.new_group()),
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
)
# Errors during _lazy_init
inp = torch.randn(4, 10)
with self.assertRaisesRegex(
ValueError, "intra-node process groups do not match"
):
model(inp)
# Mismatched process groups for inter-node
model = MyModel().cuda()
model.lin1 = FSDP(
model.lin1,
process_group=(intra_pg, inter_pg),
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
)
model = FSDP(
model,
process_group=(intra_pg, dist.new_group()),
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
)
with self.assertRaisesRegex(
ValueError, "inter-node process groups do not match"
):
model(inp)
@skip_if_lt_x_gpu(2)
def test_invalid_pg_specification_raises(self):
pol = ModuleWrapPolicy({nn.Linear})
model = MyModel().cuda()
with self.assertRaisesRegex(
ValueError, "Expected process_group to be passed in"
):
model = FSDP(
model,
auto_wrap_policy=pol,
process_group=self.process_group,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
)
# TODO - add test for ZeRO-2 style sharding ensure params are not
# resharded after forward.
@skip_if_lt_x_gpu(2)
def test_fsdp_hybrid_shard_basic_setup(self):
"""
Tests basic functionality of HYBRID_SHARD and _HYBRID_SHARD_ZERO2:
1. Inter and intra-node process groups are correctly setup
2. Process groups are the same across FSDP wrapped instances
3. reduce_scatter and allreduce called the expected no. of times
"""
self.run_subtests(
{
"hsdp_sharding_strategy": [
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
],
"sharding_strategy_mode": [
ShardingStrategyMode.ALL_HYBRID_SHARD,
ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD,
],
},
self._test_fsdp_hybrid_shard_basic_setup,
)
def _test_fsdp_hybrid_shard_basic_setup(
self,
hsdp_sharding_strategy: ShardingStrategy,
sharding_strategy_mode: ShardingStrategyMode,
):
auto_wrap_policy = ModuleWrapPolicy(
{TransformerEncoderLayer, TransformerDecoderLayer},
)
fsdp_kwargs = {
"auto_wrap_policy": auto_wrap_policy,
"device_id": torch.cuda.current_device(),
"sharding_strategy": hsdp_sharding_strategy,
}
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
fsdp_kwargs,
)
fsdp_model = self._init_hsdp_model(
hsdp_sharding_strategy, sharding_strategy_mode
)
# All FSDP modules should have state.process_group as the process group over which to
# shard (default process group), and state._inter_node_pg (process group containing only
# this rank)
intra_node_pgs = set()
inter_node_pgs = set()
for fsdp_module in fsdp_model.fsdp_modules(fsdp_model):
# TODO: This needs to be replaced if we deprecate
# `FSDP.sharding_strategy` to only use the handle one.
# https://github.com/pytorch/pytorch/issues/90857
if fsdp_module.sharding_strategy not in HYBRID_SHARDING_STRATEGIES:
self.assertEqual(
sharding_strategy_mode, ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD
)
self.assertEqual(
fsdp_module.sharding_strategy, ShardingStrategy.FULL_SHARD
)
continue
# process_group should be across the node, which is just the
# whole world here.
self.assertEqual(
dist.get_world_size(fsdp_module.process_group),
dist.get_world_size(self.process_group),
)
intra_node_pgs.add(fsdp_module.process_group)
inter_node_pg = fsdp_module._inter_node_pg
inter_node_pgs.add(inter_node_pg)
self.assertEqual(1, dist.get_world_size(inter_node_pg))
self.assertFalse(_rank_not_in_group(inter_node_pg))
self.assertEqual(hsdp_sharding_strategy, fsdp_module.sharding_strategy)
# All fsdp modules should share the same process groups
self.assertEqual(1, len(intra_node_pgs))
self.assertEqual(1, len(inter_node_pgs))
orig_ar = dist.all_reduce
orig_rs = dist.reduce_scatter_tensor
def patched_collective(orig_collective, counter, *args, **kwargs):
counter[orig_collective] += 1
return orig_collective(*args, **kwargs)
cntr = Counter()
patched_allreduce = partial(patched_collective, orig_ar, cntr)
patched_reduce_scatter = partial(patched_collective, orig_rs, cntr)
with patch_allreduce(patched_allreduce), patch_reduce_scatter(
patched_reduce_scatter
):
inp = fsdp_model.get_input(device=torch.cuda.current_device())
out = fsdp_model(inp[0], inp[1])
loss = fsdp_model.get_loss(inp, out)
loss.backward()
if sharding_strategy_mode == ShardingStrategyMode.ALL_HYBRID_SHARD:
num_flat_params = len(list(traversal_utils._get_fsdp_handles(fsdp_model)))
self.assertEqual(num_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
elif sharding_strategy_mode == ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD:
num_hsdp_flat_params = len(
list(traversal_utils._get_fsdp_handles(fsdp_model.transformer))
)
num_flat_params = len(list(traversal_utils._get_fsdp_handles(fsdp_model)))
self.assertEqual(num_hsdp_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
def _init_hsdp_model(
self,
hsdp_sharding_strategy: ShardingStrategy,
sharding_strategy_mode: str,
):
if sharding_strategy_mode == ShardingStrategyMode.ALL_HYBRID_SHARD:
auto_wrap_policy = ModuleWrapPolicy(
{TransformerEncoderLayer, TransformerDecoderLayer},
)
fsdp_kwargs = {
"auto_wrap_policy": auto_wrap_policy,
"device_id": torch.cuda.current_device(),
"sharding_strategy": hsdp_sharding_strategy,
}
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
fsdp_kwargs,
)
elif sharding_strategy_mode == ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD:
model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_BEFORE,
{},
)
transformer_auto_wrap_policy = ModuleWrapPolicy(
{TransformerEncoderLayer, TransformerDecoderLayer},
)
# Use the HSDP strategy for the transformer module
model.transformer = FSDP(
model.transformer,
auto_wrap_policy=transformer_auto_wrap_policy,
device_id=torch.cuda.current_device(),
sharding_strategy=hsdp_sharding_strategy,
)
# Use `FULL_SHARD` for the embedding and output projection
fsdp_model = FSDP(
model,
device_id=torch.cuda.current_device(),
sharding_strategy=ShardingStrategy.FULL_SHARD,
)
return fsdp_model
instantiate_parametrized_tests(TestFSDPHybridShard)
if __name__ == "__main__":
run_tests()
|
def patch_reduce_scatter(new_reduce_scatter):
"""
Patches dist.reduce_scatter_tensor with a new reduce_scatter_tensor and
restores upon exiting.
"""
orig_reduce_scatter = dist.reduce_scatter_tensor
dist.reduce_scatter_tensor = new_reduce_scatter
try:
yield
finally:
dist.reduce_scatter_tensor = orig_reduce_scatter
class MyModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.lin1 = nn.Linear(10, 10)
self.lin2 = nn.Linear(10, 10)
self.lin3 = nn.Linear(10, 10)
def forward(self, x):
return self.lin3(self.lin2(self.lin1(x)))
class ShardingStrategyMode(Enum):
ALL_HYBRID_SHARD = auto()
MIXED_HYBRID_FULL_SHARD = auto()
class TestFSDPHybridShard(FSDPTest):
@property
def world_size(self):
return max(torch.cuda.device_count(), 2)
@property
def process_group(self):
return dist.distributed_c10d._get_default_group()
@skip_if_lt_x_gpu(2)
def test_raises_manual_wrap_hybrid_shard_when_none_policy(self):
model = MyModel().cuda()
err_ctx = self.assertRaisesRegex(
ValueError,
"requires explicit specification of process group or device_mesh.",
)
with err_ctx:
model = FSDP(model, sharding_strategy=ShardingStrategy.HYBRID_SHARD)
with err_ctx:
model = FSDP(model, sharding_strategy=ShardingStrategy._HYBRID_SHARD_ZERO2)
@skip_if_lt_x_gpu(4)
def test_hsdp_save_load_state_dict(self):
model = MyModel().cuda()
num_node_devices = torch.cuda.device_count()
shard_rank_lists = list(range(0, num_node_devices // 2)), list(
range(num_node_devices // 2, num_node_devices)
)
shard_groups = (
dist.new_group(shard_rank_lists[0]),
dist.new_group(shard_rank_lists[1]),
)
my_shard_group = (
shard_groups[0] if self.rank in shard_rank_lists[0] else shard_groups[1]
)
my_replicate_group = None
my_rank = self.rank
# Create groups like (0, 4), (1, 5), (2, 6) etc and assign appropriately
shard_factor = len(shard_rank_lists[0])
for i in range(num_node_devices // 2):
replicate_group_ranks = list(range(i, num_node_devices, shard_factor))
replicate_group = dist.new_group(replicate_group_ranks)
if my_rank in replicate_group_ranks:
my_replicate_group = replicate_group
fsdp_ctor = partial(
FSDP,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
use_orig_params=True,
process_group=(my_shard_group, my_replicate_group),
)
model = fsdp_ctor(model)
optim = torch.optim.AdamW(model.parameters())
# Initialize optimizer states
model(torch.randn(2, 10)).sum().backward()
optim.step()
shard_g = model.process_group
replicate_g = model._inter_node_pg
assert shard_g == my_shard_group
assert replicate_g == my_replicate_group
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
msd = model.state_dict()
osd = FSDP.optim_state_dict(model, optim)
load_model = fsdp_ctor(MyModel().cuda())
load_optim = torch.optim.AdamW(load_model.parameters())
with FSDP.state_dict_type(load_model, StateDictType.SHARDED_STATE_DICT):
load_model.load_state_dict(msd)
FSDP.optim_state_dict_to_load(load_model, load_optim, osd)
load_optim.load_state_dict(osd)
@skip_if_lt_x_gpu(4)
def test_hsdp_sync_module_state(self):
model = MyModel().cuda()
num_node_devices = torch.cuda.device_count()
shard_rank_lists = list(range(0, num_node_devices // 2)), list(
range(num_node_devices // 2, num_node_devices)
)
shard_groups = (
dist.new_group(shard_rank_lists[0]),
dist.new_group(shard_rank_lists[1]),
)
my_shard_group = (
shard_groups[0] if self.rank in shard_rank_lists[0] else shard_groups[1]
)
my_replicate_group = None
my_rank = self.rank
# Create groups like (0, 4), (1, 5), (2, 6) etc and assign appropriately
shard_factor = len(shard_rank_lists[0])
for i in range(num_node_devices // 2):
replicate_group_ranks = list(range(i, num_node_devices, shard_factor))
replicate_group = dist.new_group(replicate_group_ranks)
if my_rank in replicate_group_ranks:
my_replicate_group = replicate_group
nn.init.constant_(model.lin1.weight, self.rank)
nn.init.constant_(model.lin2.weight, self.rank)
nn.init.constant_(model.lin3.weight, self.rank)
fsdp_ctor = partial(
FSDP,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
use_orig_params=True,
sync_module_states=True,
process_group=(my_shard_group, my_replicate_group),
)
model = fsdp_ctor(model)
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT):
self.assertTrue((model.lin1.weight == 0).all())
self.assertTrue((model.lin2.weight == 0).all())
self.assertTrue((model.lin3.weight == 0).all())
@skip_if_lt_x_gpu(2)
def test_invalid_pg_specification_raises(self):
pol = ModuleWrapPolicy({nn.Linear})
model = MyModel().cuda()
with self.assertRaisesRegex(
ValueError, "Expected process_group to be passed in"
):
model = FSDP(
model,
auto_wrap_policy=pol,
process_group=self.process_group,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
)
# TODO - add test for ZeRO-2 style sharding ensure params are not
# resharded after forward.
@skip_if_lt_x_gpu(2)
def test_fsdp_hybrid_shard_basic_setup(self):
"""
Tests basic functionality of HYBRID_SHARD and _HYBRID_SHARD_ZERO2:
1. Inter and intra-node process groups are correctly setup
2. Process groups are the same across FSDP wrapped instances
3. reduce_scatter and allreduce called the expected no. of times
"""
self.run_subtests(
{
"hsdp_sharding_strategy": [
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
],
"sharding_strategy_mode": [
ShardingStrategyMode.ALL_HYBRID_SHARD,
ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD,
],
"use_orig_params": [False, True],
"use_device_mesh": [False, True],
},
self._test_fsdp_hybrid_shard_basic_setup,
)
def _test_fsdp_hybrid_shard_basic_setup(
self,
hsdp_sharding_strategy: ShardingStrategy,
sharding_strategy_mode: ShardingStrategyMode,
use_orig_params: bool,
use_device_mesh: bool,
):
if use_device_mesh:
device_mesh = init_device_mesh("cuda", (1, self.world_size))
else:
device_mesh = None
hsdp_model = self._init_hsdp_model(
hsdp_sharding_strategy,
sharding_strategy_mode,
use_orig_params,
hsdp_device_mesh=device_mesh,
)
# All FSDP modules should have state.process_group as the process group over which to
# shard (default process group), and state._inter_node_pg (process group containing only
# this rank)
intra_node_pgs = set()
inter_node_pgs = set()
for fsdp_module in hsdp_model.fsdp_modules(hsdp_model):
# TODO: This needs to be replaced if we deprecate
# `FSDP.sharding_strategy` to only use the handle one.
# https://github.com/pytorch/pytorch/issues/90857
if fsdp_module.sharding_strategy not in HYBRID_SHARDING_STRATEGIES:
self.assertEqual(
sharding_strategy_mode, ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD
)
self.assertEqual(
fsdp_module.sharding_strategy, ShardingStrategy.FULL_SHARD
)
continue
# process_group should be across the node, which is just the
# whole world here.
self.assertEqual(
dist.get_world_size(fsdp_module.process_group),
dist.get_world_size(self.process_group),
)
intra_node_pgs.add(fsdp_module.process_group)
inter_node_pg = fsdp_module._inter_node_pg
inter_node_pgs.add(inter_node_pg)
self.assertEqual(1, dist.get_world_size(inter_node_pg))
self.assertFalse(_rank_not_in_group(inter_node_pg))
self.assertEqual(hsdp_sharding_strategy, fsdp_module.sharding_strategy)
# All fsdp modules should share the same process groups
self.assertEqual(1, len(intra_node_pgs))
self.assertEqual(1, len(inter_node_pgs))
orig_ar = dist.all_reduce
orig_rs = dist.reduce_scatter_tensor
def patched_collective(orig_collective, counter, *args, **kwargs):
counter[orig_collective] += 1
return orig_collective(*args, **kwargs)
cntr = Counter()
patched_allreduce = partial(patched_collective, orig_ar, cntr)
patched_reduce_scatter = partial(patched_collective, orig_rs, cntr)
with patch_allreduce(patched_allreduce), patch_reduce_scatter(
patched_reduce_scatter
):
inp = hsdp_model.get_input(device=torch.cuda.current_device())
out = hsdp_model(inp[0], inp[1])
loss = hsdp_model.get_loss(inp, out)
loss.backward()
if sharding_strategy_mode == ShardingStrategyMode.ALL_HYBRID_SHARD:
num_flat_params = len(list(traversal_utils._get_fsdp_handles(hsdp_model)))
self.assertEqual(num_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
elif sharding_strategy_mode == ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD:
num_hsdp_flat_params = len(
list(traversal_utils._get_fsdp_handles(hsdp_model.transformer))
)
num_flat_params = len(list(traversal_utils._get_fsdp_handles(hsdp_model)))
self.assertEqual(num_hsdp_flat_params, cntr[orig_ar])
self.assertEqual(num_flat_params, cntr[orig_rs])
@skip_if_lt_x_gpu(4)
def test_fsdp_hybrid_shard_parity(self):
self.run_subtests(
{
"hsdp_sharding_strategy": [
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
],
"use_orig_params": [False, True],
},
self._test_fsdp_hybrid_shard_parity,
)
def _test_fsdp_hybrid_shard_parity(
self, hsdp_sharding_strategy: ShardingStrategy, use_orig_params: bool
):
fsdp_model = self._init_fsdp_model(use_orig_params)
global_pg = dist.distributed_c10d._get_default_group()
hsdp_pgs = _init_intra_and_inter_node_groups(global_pg, 2)
hsdp_model = self._init_hsdp_model(
hsdp_sharding_strategy,
ShardingStrategyMode.ALL_HYBRID_SHARD,
use_orig_params,
hsdp_process_groups=hsdp_pgs,
)
assert (
hsdp_model._inter_node_pg.size() > 1
), "HSDP model initialized without replication"
fsdp_optim = torch.optim.Adam(fsdp_model.parameters(), lr=1e-2)
hsdp_optim = torch.optim.Adam(hsdp_model.parameters(), lr=1e-2)
torch.manual_seed(global_pg.rank() + 1)
for _ in range(5):
inp = fsdp_model.module.get_input(torch.device("cuda"))
losses: List[torch.Tensor] = []
for model, optim in ((fsdp_model, fsdp_optim), (hsdp_model, hsdp_optim)):
optim.zero_grad()
loss = model(*inp).sum()
losses.append(loss)
loss.backward()
optim.step()
self.assertEqual(losses[0], losses[1])
def _init_fsdp_model(self, use_orig_params: bool) -> nn.Module:
auto_wrap_policy = ModuleWrapPolicy(
{TransformerEncoderLayer, TransformerDecoderLayer},
)
hsdp_kwargs = {
"auto_wrap_policy": auto_wrap_policy,
"device_id": torch.cuda.current_device(),
"use_orig_params": use_orig_params,
}
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
hsdp_kwargs,
deterministic=True,
)
return fsdp_model
def _init_hsdp_model(
self,
hsdp_sharding_strategy: ShardingStrategy,
sharding_strategy_mode: str,
use_orig_params: bool,
hsdp_process_groups: Optional[
Tuple[dist.ProcessGroup, dist.ProcessGroup]
] = None,
hsdp_device_mesh: Optional = None,
):
assert hsdp_process_groups is None or hsdp_device_mesh is None
auto_wrap_policy = ModuleWrapPolicy(
{TransformerEncoderLayer, TransformerDecoderLayer},
)
hsdp_kwargs = {
"device_id": torch.cuda.current_device(),
"auto_wrap_policy": auto_wrap_policy,
"sharding_strategy": hsdp_sharding_strategy,
"use_orig_params": use_orig_params,
"device_mesh": hsdp_device_mesh,
}
if sharding_strategy_mode == ShardingStrategyMode.ALL_HYBRID_SHARD:
hsdp_model = TransformerWithSharedParams.init(
hsdp_process_groups or self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
hsdp_kwargs,
deterministic=True,
)
elif sharding_strategy_mode == ShardingStrategyMode.MIXED_HYBRID_FULL_SHARD:
model = TransformerWithSharedParams.init(
hsdp_process_groups or self.process_group,
FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_BEFORE,
{},
deterministic=True,
)
# Use the HSDP strategy for the transformer module
model.transformer = FSDP(model.transformer, **hsdp_kwargs)
# Use `FULL_SHARD` for the embedding and output projection
hsdp_model = FSDP(
model,
device_id=torch.cuda.current_device(),
sharding_strategy=ShardingStrategy.FULL_SHARD,
use_orig_params=use_orig_params,
)
return hsdp_model
instantiate_parametrized_tests(TestFSDPHybridShard)
if __name__ == "__main__":
run_tests()
|
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
from typing import List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._init_utils import (
_init_intra_and_inter_node_groups,
HYBRID_SHARDING_STRATEGIES,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_hybrid_shard.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin1 = nn.Linear(10, 10)
self.lin2 = nn.Linear(10, 10)
self.lin3 = nn.Linear(10, 10)
|
def __init__(self) -> None:
super().__init__()
self.lin1 = nn.Linear(10, 10)
self.lin2 = nn.Linear(10, 10)
self.lin3 = nn.Linear(10, 10)
|
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
import contextlib
import sys
from collections import Counter
from enum import auto, Enum
from functools import partial
from typing import List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.distributed_c10d import _rank_not_in_group
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp._init_utils import (
_init_intra_and_inter_node_groups,
HYBRID_SHARDING_STRATEGIES,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_ignored_modules.py
|
test_diff_ignored_modules_across_ranks
|
def test_diff_ignored_modules_across_ranks(self):
"""
Tests ignoring different modules across ranks.
Args:
pass_ignored_modules_to_root (bool): If ``False``, does not pass
any ignored modules (including those already ignored in child
FSDP instances) to the root FSDP instance; if ``True``, passes
all ignored modules (representing a superset of the children's
ignored modules) to the root FSDP instance.
"""
self.run_subtests(
{
"pass_ignored_modules_to_root": [False, True],
"ignore_modules": [True, False],
},
self._test_diff_ignored_modules_across_ranks,
)
|
def test_diff_ignored_modules_across_ranks(self):
"""
Tests ignoring different modules across ranks.
Args:
pass_ignored_modules_to_root (bool): If ``False``, does not pass
any ignored modules (including those already ignored in child
FSDP instances) to the root FSDP instance; if ``True``, passes
all ignored modules (representing a superset of the children's
ignored modules) to the root FSDP instance.
"""
self.run_subtests(
{
"pass_ignored_modules_to_root": [False, True],
"ignore_modules": [True, False],
"composable": [True, False],
},
self._test_diff_ignored_modules_across_ranks,
)
|
import sys
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPIgnoredModules(FSDPTest):
|
import functools
import math
import sys
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import _get_module_fsdp_state
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, transformer_auto_wrap_policy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPIgnoredModules(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_ignored_modules.py
|
test_ignored_states_check
|
def test_ignored_states_check(self):
"""
Tests that passing invalid ``ignored_modules`` or ``ignored_states``
raises an appropriate error.
"""
self.run_subtests(
{"ignore_modules": [True, False]},
self._test_ignored_states_check,
)
|
import functools
import math
import sys
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import _get_module_fsdp_state
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, transformer_auto_wrap_policy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPIgnoredModules(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/fsdp/test_fsdp_ignored_modules.py
|
_test_ignored_states_check
|
instantiate_parametrized_tests(TestFSDPIgnoredModules)
if __name__ == "__main__":
run_tests()
|
def _test_ignored_states_check(self, ignore_modules: bool):
model = Model().cuda()
ignored_modules = list(model.layer1.children())[1:]
ignored_params = {p for m in ignored_modules for p in m.parameters()}
ignored_states = ignored_params.union(set(ignored_modules))
if ignore_modules:
# Check that passing `ignored_modules` not as uniformly `nn.Module`
# raises an error
with self.assertRaisesRegex(
ValueError,
"ignored_modules expects nn.Module list elements but got types "
r"\[<class 'torch.nn.parameter.Parameter'>\]",
):
FSDP(model, ignored_modules=ignored_params)
# Check that passing both `ignored_modules` and `ignored_states`
# raises an error (and fold this only into `ignore_modules=True`)
with self.assertRaisesRegex(
ValueError,
"Cannot pass both ignored_modules and ignored_states at the same time",
):
FSDP(
model,
ignored_modules=ignored_modules,
ignored_states=ignored_params,
)
else:
# Check that passing `ignored_states` not as uniformly
# `nn.Parameter` or uniformly `nn.Module` raises an error
with self.assertRaisesRegex(
ValueError,
"ignored_states expects all nn.Parameter or all nn.Module list "
r"elements but got types \[<class 'torch.nn.modules.linear.Linear'>, "
r"<class 'torch.nn.parameter.Parameter'>\]",
):
FSDP(model, ignored_states=ignored_states)
|
import functools
import math
import sys
import torch
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch import distributed as dist
from torch.distributed._composable import fully_shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp._common_utils import _get_module_fsdp_state
from torch.distributed.fsdp.wrap import ModuleWrapPolicy, transformer_auto_wrap_policy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class TestFSDPIgnoredModules(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/fsdp/test_fsdp_input.py
|
test_input_type
|
def test_input_type(self, input_cls):
"""Test FSDP with input being a list or a dict, only single GPU."""
class Model(Module):
def __init__(self):
super().__init__()
self.layer = Linear(4, 4)
def forward(self, input):
if isinstance(input, list):
input = input[0]
else:
assert isinstance(input, dict), input
input = input["in"]
return self.layer(input)
model = FSDP(Model()).cuda()
optim = SGD(model.parameters(), lr=0.1)
for _ in range(5):
in_data = torch.rand(64, 4).cuda()
in_data.requires_grad = True
if input_cls is list:
in_data = [in_data]
else:
self.assertTrue(input_cls is dict)
in_data = {"in": in_data}
out = model(in_data)
out.sum().backward()
optim.step()
optim.zero_grad()
|
def test_input_type(self, input_cls):
"""Test FSDP with input being a list or a dict, only single GPU."""
class Model(Module):
def __init__(self) -> None:
super().__init__()
self.layer = Linear(4, 4)
def forward(self, input):
if isinstance(input, list):
input = input[0]
else:
assert isinstance(input, dict), input
input = input["in"]
return self.layer(input)
model = FSDP(Model()).cuda()
optim = SGD(model.parameters(), lr=0.1)
for _ in range(5):
in_data = torch.rand(64, 4).cuda()
in_data.requires_grad = True
if input_cls is list:
in_data = [in_data]
else:
self.assertTrue(input_cls is dict)
in_data = {"in": in_data}
out = model(in_data)
out.sum().backward()
optim.step()
optim.zero_grad()
|
import sys
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn import Linear, Module
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_DEV_DBG_ASAN,
)
class TestInput(FSDPTest):
|
import sys
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn import Linear, Module
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_DEV_DBG_ASAN,
)
class TestInput(FSDPTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_input.py
|
__init__
|
def __init__(self):
super().__init__()
self.layer = Linear(4, 4)
|
def __init__(self) -> None:
super().__init__()
self.layer = Linear(4, 4)
|
import sys
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn import Linear, Module
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(Module):
|
import sys
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn import Linear, Module
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
subtest,
TEST_WITH_DEV_DBG_ASAN,
)
class Model(Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_memory.py
|
get_cur_mem
|
def get_cur_mem(rank, result, prefix):
"""Collect memory allocated values in a result dict in MB"""
torch._C._cuda_clearCublasWorkspaces()
result[prefix] = round(torch.cuda.memory_allocated() / 1024 / 1024)
class Model(nn.Module):
def __init__(self, hidden_dim, with_fsdp=False, with_checkpoint=False):
super().__init__()
if with_fsdp:
self.stem = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
FSDP(nn.BatchNorm2d(64)),
nn.ReLU(inplace=True),
)
else:
self.stem = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
if with_fsdp:
self.blocks = nn.Sequential(
nn.Conv2d(64, hidden_dim, kernel_size=5, padding=2),
FSDP(nn.BatchNorm2d(hidden_dim)),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
FSDP(nn.BatchNorm2d(hidden_dim)),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
FSDP(nn.BatchNorm2d(hidden_dim)),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
)
else:
self.blocks = nn.Sequential(
nn.Conv2d(64, hidden_dim, kernel_size=5, padding=2),
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
)
self.head = nn.Linear(hidden_dim, 10)
self.with_checkpoint = with_checkpoint
def forward(self, x):
if self.with_checkpoint:
return self.head(checkpoint(self.blocks, self.stem(x)))
else:
return self.head(self.blocks(self.stem(x)))
|
def get_cur_mem(rank, result, prefix):
"""Collect memory allocated values in a result dict in MB"""
torch._C._cuda_clearCublasWorkspaces()
result[prefix] = round(torch.cuda.memory_allocated() / 1024 / 1024)
class Model(nn.Module):
def __init__(self, hidden_dim, with_fsdp=False, with_checkpoint=False):
super().__init__()
if with_fsdp:
self.stem = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
FSDP(nn.BatchNorm2d(64)),
nn.ReLU(inplace=True),
)
else:
self.stem = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
if with_fsdp:
self.blocks = nn.Sequential(
nn.Conv2d(64, hidden_dim, kernel_size=5, padding=2),
FSDP(nn.BatchNorm2d(hidden_dim)),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
FSDP(nn.BatchNorm2d(hidden_dim)),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
FSDP(nn.BatchNorm2d(hidden_dim)),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
)
else:
self.blocks = nn.Sequential(
nn.Conv2d(64, hidden_dim, kernel_size=5, padding=2),
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten(),
)
self.head = nn.Linear(hidden_dim, 10)
self.with_checkpoint = with_checkpoint
def forward(self, x):
if self.with_checkpoint:
return self.head(checkpoint(self.blocks, self.stem(x), use_reentrant=True))
else:
return self.head(self.blocks(self.stem(x)))
|
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.utils.checkpoint import checkpoint
|
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
from torch.utils.checkpoint import checkpoint
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/fsdp/test_fsdp_misc.py
|
__init__
|
def __init__(self):
super().__init__()
self.lin = nn.Linear(100, 100)
|
def __init__(self) -> None:
super().__init__()
self.a = nn.Linear(2, 2)
self.b = nn.Linear(2, 2)
|
import functools
import sys
import warnings
from collections import namedtuple
from contextlib import suppress
from copy import deepcopy
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModule(nn.Module):
|
import functools
import os
import sys
import warnings
from collections import namedtuple
from contextlib import nullcontext
from copy import deepcopy
from itertools import chain
from typing import Any, Tuple
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed.fsdp import (
CPUOffload,
FlatParameter,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
)
from torch.distributed.fsdp._flat_param import _FSDP_USE_UNSAFE_SETATTR
from torch.distributed.fsdp._runtime_utils import HOMOGENEOUS_ATTR_NAMES
from torch.distributed.fsdp.wrap import (
always_wrap_policy,
ModuleWrapPolicy,
transformer_auto_wrap_policy,
)
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
_assert_module_states,
CUDAInitMode,
FSDPInitMode,
FSDPTest,
FSDPTestMultiThread,
MLP,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class MyModel(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.