library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/distributed/checkpoint/fsdp/test_fsdp_dsd.py
test_1d_fsdp_get_model_state_dict
def test_1d_fsdp_get_model_state_dict(self): self.run_subtests( {"mlp_dim": [2, 3, 4, 5]}, self._test_1d_fsdp_get_model_state_dict, )
import contextlib import copy import torch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed._tensor.experimental import implicit_replication from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType from torch.distributed.fsdp.wrap import always_wrap_policy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.utils._pytree import tree_all_only class TestFullyShardWithDistributedStateDict(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/fsdp/test_fsdp_dsd.py
is_cpu
def is_cpu(v): if isinstance(v, DTensor): return v.device == torch.device("cpu") else: return v.device == cpu_device if self.rank == 0: self.assertEqual(osd, dsd) self.assertTrue(tree_all_only((torch.Tensor, DTensor), is_cpu, osd)) else: self.assertEqual(dsd, {})
import contextlib import copy import torch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._composable.fsdp import fully_shard from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed._tensor.experimental import implicit_replication from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType from torch.distributed.fsdp.wrap import always_wrap_policy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.utils._pytree import tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_dtensor_resharding.py
test_dtensor_checkpoint_resharding_with_empty_shard
def test_dtensor_checkpoint_resharding_with_empty_shard(self): """ Test dtensor checkpoint resharding with dtensor containing empty shards. """ tensor = torch.rand(1).cuda() mesh = init_device_mesh(self.device_type, (self.world_size,)) dtensor = distribute_tensor(tensor, mesh, [Shard(0)]) ref_state_dict = {"dtensor": dtensor} dist_cp.save_state_dict( state_dict=ref_state_dict, storage_writer=dist_cp.FileSystemWriter(path=self.temp_dir), ) tensor = torch.rand(1).cuda() mesh_2 = init_device_mesh(self.device_type, (2, self.world_size // 2)) dtensor = distribute_tensor(tensor, mesh_2, [Shard(0), Shard(0)]) state_dict = {"dtensor": dtensor} dist_cp.load_state_dict( state_dict=state_dict, storage_reader=dist_cp.FileSystemReader(self.temp_dir), ) # TODO: Add a assertEqual for ref_state_dict["dtensor"].full_tensor() # and state_dict["dtensor"].full_tensor() after we fix the size mismatch # issue for un-even sharding dtensor. # TODO: Add dtensor resharding test when world size changes.
import torch import torch.distributed.checkpoint as dist_cp from torch.distributed._tensor import ( distribute_tensor, init_device_mesh, Replicate, Shard, zeros, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir CHECKPOINT_DIR = "checkpoint" ONE_D_PLACEMENTS = [ [Shard(0)], [Replicate()], ] ONE_D_TO_ONE_D_PLACEMENTS = [ ([Replicate()], [Shard(0)]), ([Shard(0)], [Replicate()]), ] TWO_D_PLACEMENTS = [ [Replicate(), Replicate()], [Replicate(), Shard(0)], [Shard(0), Replicate()], [Shard(0), Shard(0)], ] TWO_D_TO_TWO_D_PLACEMENTS = [] class TestDTensorReshardMeshChange(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_format_utils.py
forward
def forward(self, x): x = F.relu(self.net1(x)) x = F.relu(self.net2(x)) x = F.relu(self.net3(x)) x = self.net4(x) return x
import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.format_utils import ( BroadcastingTorchSaveReader, dcp_to_torch_save, DynamicMetaLoadPlanner, torch_save_to_dcp, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModelUneven(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_format_utils.py
get_input
def get_input(self): return torch.rand(4, 5, device="cuda")
import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.format_utils import ( BroadcastingTorchSaveReader, dcp_to_torch_save, DynamicMetaLoadPlanner, torch_save_to_dcp, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModelUneven(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_fsdp_optim_state.py
forward
def forward(self, x): return self.net3(self.net2(self.net1(x)))
import torch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._shard.sharded_tensor.api import ShardedTensor from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestDummyModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_fsdp_optim_state.py
get_input
def get_input(self): return torch.rand(8, 8, device="cuda")
import torch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._shard.sharded_tensor.api import ShardedTensor from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestDummyModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_fsdp_tp_checkpoint_conversion.py
test_fsdp_to_tp
def test_fsdp_to_tp(self): CHECKPOINT_DIR = self.temp_dir model = MLPModule(self.device_type).cuda(self.rank) # create a FSDP wrapped model fsdp_model = FSDP(model, use_orig_params=True) FSDP.set_state_dict_type( fsdp_model, StateDictType.SHARDED_STATE_DICT, ) fsdp_state_dict = fsdp_model.state_dict() # save fsdp_state_dict to storage dist_cp.save( state_dict=fsdp_state_dict, storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR), ) # create a TP wrapped model mesh_shape = (self.world_size,) device_mesh = init_device_mesh(self.device_type, mesh_shape) model = MLPModule(self.device_type).cuda(self.rank) # Parallelize the module based on the given Parallel Style. parallelize_plan = { "net1": ColwiseParallel(), "net2": RowwiseParallel(), } tp_model = parallelize_module(model, device_mesh, parallelize_plan) optimizer = torch.optim.SGD(tp_model.parameters(), lr=0.25) # Update the parameters so tp_model.state_dict() will be different from fsdp_model.state_dict(). torch.manual_seed(0) inp = torch.rand(20, 10).cuda(self.rank) output = tp_model(inp) output.sum().backward() optimizer.step() tp_state_dict = tp_model.state_dict() # Check parameters are indeed different prior to loading. for fsdp_item, tp_item in zip(fsdp_state_dict.items(), tp_state_dict.items()): fsdp_k, fsdp_v = fsdp_item tp_k, tp_v = tp_item self.assertEqual(fsdp_k, tp_k) if isinstance(fsdp_v, ShardedTensor) and isinstance(tp_v, DTensor): fsdp_redistributed = _all_gather_sharded_tensor(fsdp_v) tp_redistributed = tp_v.redistribute( device_mesh, placements=[Replicate()] ).to_local() self.assertNotEqual(fsdp_redistributed, tp_redistributed) dist_cp.load_state_dict( state_dict=tp_state_dict, storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR), ) tp_model.load_state_dict(tp_state_dict) # Check parameters are equal after loading. tp_state_dict_after_load = tp_model.state_dict() for fsdp_item, tp_item in zip(fsdp_state_dict.items(), tp_state_dict.items()): fsdp_k, fsdp_v = fsdp_item tp_k, tp_v = tp_item self.assertEqual(fsdp_k, tp_k) if isinstance(fsdp_v, ShardedTensor) and isinstance(tp_v, DTensor): fsdp_redistributed = _all_gather_sharded_tensor(fsdp_v) tp_redistributed = tp_v.redistribute( device_mesh, placements=[Replicate()] ).to_local() self.assertEqual(fsdp_redistributed, tp_redistributed)
import torch import torch.distributed.checkpoint as dist_cp from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._state_dict_utils import _all_gather_sharded_tensor from torch.distributed._tensor import DTensor, init_device_mesh, Replicate from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestFsdpTpCheckpointConversion(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_fsspec.py
forward
def forward(self, x): return self.net4(self.net3(self.net2(self.net1(x))))
import shutil import tempfile from functools import wraps from typing import Any, Callable, Dict, Optional, Tuple import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed.checkpoint._fsspec_filesystem import FsspecReader, FsspecWriter from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, ) class MyTestModule(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_fsspec.py
opt_at
def opt_at(opt, idx): return list(iter(opt.state.values()))[idx] # Adam lazily creates its state self.assertEqual(opt_at(optim, 0)["exp_avg"], opt_at(optim_2, 0)["exp_avg"]) self.assertEqual( opt_at(optim, 0)["exp_avg_sq"], opt_at(optim_2, 0)["exp_avg_sq"] )
import shutil import tempfile from functools import wraps from typing import Any, Callable, Dict, Optional, Tuple import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed.checkpoint._fsspec_filesystem import FsspecReader, FsspecWriter from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_fsspec.py
test_overwrite
def test_overwrite(self): t1, t2 = torch.randn(10), torch.randn(10) dcp.save( {"random": t1}, storage_writer=FsspecWriter(self.temp_dir, overwrite=False) ) dcp.save( {"random": t2}, storage_writer=FsspecWriter(self.temp_dir, overwrite=True) ) sd = {"random": torch.zeros(10)} dcp.load(sd, checkpoint_id=self.temp_dir) self.assertTrue(torch.allclose(sd["random"], t2)) with self.assertRaisesRegex( CheckpointException, ".*Checkpoint already exists.*" ): dcp.save( {"random": t2}, storage_writer=FsspecWriter(self.temp_dir, overwrite=False), )
import shutil import tempfile from functools import wraps from typing import Any, Callable, Dict, Optional, Tuple import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed.checkpoint._fsspec_filesystem import FsspecReader, FsspecWriter from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, ) class TestFSSpec(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_hsdp_checkpoint.py
forward
def forward(self, x): x = F.relu(self.net1(x)) x = F.relu(self.net2(x)) x = F.relu(self.net3(x)) return x
from copy import deepcopy import torch import torch.distributed.checkpoint as dist_cp import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor import init_device_mesh, Replicate from torch.distributed.checkpoint.default_planner import ( DefaultLoadPlanner, DefaultSavePlanner, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import ( ShardingStrategy, StateDictType, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_planner.py
test_create_read_item_from_chunks
def test_create_read_item_from_chunks(self): tensor_md = TensorStorageMetadata( properties=TensorProperties.create_from_tensor(torch.empty([16])), size=torch.Size([16]), chunks=[ ChunkStorageMetadata(offsets=torch.Size([0]), sizes=torch.Size([8])), ChunkStorageMetadata(offsets=torch.Size([8]), sizes=torch.Size([8])), ], ) chunk = ChunkStorageMetadata(offsets=torch.Size([4]), sizes=torch.Size([7])) read_items = create_read_items_for_chunk_list("foo", tensor_md, [chunk]) self.assertEqual(2, len(read_items)) self.assertEqual(MetadataIndex("foo", [4]), read_items[0].dest_index) self.assertEqual(torch.Size([0]), read_items[0].dest_offsets) self.assertEqual(MetadataIndex("foo", [0]), read_items[0].storage_index) self.assertEqual(torch.Size([4]), read_items[0].storage_offsets) self.assertEqual(torch.Size([4]), read_items[0].lengths) self.assertEqual(MetadataIndex("foo", [4]), read_items[1].dest_index) self.assertEqual(torch.Size([4]), read_items[1].dest_offsets) self.assertEqual(MetadataIndex("foo", [8]), read_items[1].storage_index) self.assertEqual(torch.Size([0]), read_items[1].storage_offsets) self.assertEqual(torch.Size([3]), read_items[1].lengths)
import sys import torch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._shard.sharded_tensor import ( Shard, ShardedTensor, ShardedTensorMetadata, ShardMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import ( TensorProperties as TensorProperties_Shard, ) from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans from torch.distributed.checkpoint.api import CheckpointException from torch.distributed.checkpoint.default_planner import ( _create_default_local_metadata, create_default_global_save_plan, create_default_local_load_plan, create_default_local_save_plan, DefaultLoadPlanner, ) from torch.distributed.checkpoint.metadata import ( BytesStorageMetadata, ChunkStorageMetadata, MetadataIndex, TensorProperties, TensorStorageMetadata, ) from torch.distributed.checkpoint.planner import LoadItemType, WriteItemType from torch.distributed.checkpoint.planner_helpers import ( create_read_items_for_chunk_list, ) from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, TestCase, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.distributed_utils import ( with_dist, with_fake_comms, ) class TestPlannerHelpers(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_planner.py
test_strict
if __name__ == "__main__": run_tests()
def test_strict(self): original_module = nn.Linear(2, 2) dcp.save(state_dict={"module": original_module}, checkpoint_id=self.temp_dir) new_module = nn.Linear(2, 2) new_module.extra_param = nn.Parameter(torch.randn(2, 2)) dcp.load( state_dict={"module": new_module}, checkpoint_id=self.temp_dir, planner=DefaultLoadPlanner(allow_partial_load=True), ) with self.assertRaisesRegex(CheckpointException, "Missing key in checkpoint"): dcp.load( state_dict={"module": new_module}, checkpoint_id=self.temp_dir, planner=DefaultLoadPlanner(allow_partial_load=False), )
import sys import torch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._shard.sharded_tensor import ( Shard, ShardedTensor, ShardedTensorMetadata, ShardMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import ( TensorProperties as TensorProperties_Shard, ) from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans from torch.distributed.checkpoint.api import CheckpointException from torch.distributed.checkpoint.default_planner import ( _create_default_local_metadata, create_default_global_save_plan, create_default_local_load_plan, create_default_local_save_plan, DefaultLoadPlanner, ) from torch.distributed.checkpoint.metadata import ( BytesStorageMetadata, ChunkStorageMetadata, MetadataIndex, TensorProperties, TensorStorageMetadata, ) from torch.distributed.checkpoint.planner import LoadItemType, WriteItemType from torch.distributed.checkpoint.planner_helpers import ( create_read_items_for_chunk_list, ) from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, TestCase, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.distributed_utils import ( with_dist, with_fake_comms, ) class TestLoadPlanner(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_save_load_api.py
forward
def forward(self, x): return self.net4(self.net3(self.net2(self.net1(x))))
import os from unittest.mock import patch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class MyTestModule(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_save_load_api.py
test_auto_detect
def test_auto_detect(self): model = FSDP(MyTestModule().cuda()) device_mesh = init_device_mesh(self.device_type, (self.world_size,)) model = FSDP(model, device_mesh=device_mesh) dcp.save(model.state_dict(), checkpoint_id=os.path.join(self.temp_dir, "first")) sd = dcp.load( model.state_dict(), checkpoint_id=os.path.join(self.temp_dir, "first") ) with patch.object( dcp.FileSystemReader, "validate_checkpoint_id", return_value=False ) as m1: with patch.object( dcp.FileSystemWriter, "validate_checkpoint_id", return_value=False ) as m2: dcp.save( model.state_dict(), checkpoint_id=os.path.join(self.temp_dir, "second"), ) sd = dcp.load( model.state_dict(), checkpoint_id=os.path.join(self.temp_dir, "second"), ) with self.assertRaisesRegex(RuntimeError, "Cannot detect"): dcp.save(model.state_dict(), checkpoint_id="abc://abc.abc") with self.assertRaisesRegex(RuntimeError, "Cannot detect"): sd = dcp.load(model.state_dict(), checkpoint_id="abc://abc.abc")
import os from unittest.mock import patch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestSaveAndLoadAPI(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
init_model_optim
def init_model_optim(): if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) orig_model = CompositeParamModel(device=torch.device("cuda")) orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) if wrapping: strategy = set(wrapping) else: strategy = {UnitModule} if use_composable: dist_model = fully_shard( copy.deepcopy(orig_model), policy=ModuleWrapPolicy(strategy) ) else: if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, device_mesh=device_mesh, ) else: dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, ) if compile_model: dist_model = torch.compile(dist_model) dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4, foreach=True) return orig_model, orig_optim, copy_optim, dist_model, dist_optim self._test_save_load(init_model_optim)
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
init_model_optim
def init_model_optim(): if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) orig_model = CompositeParamModel(device=torch.device("cuda")) orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) if wrapping: strategy = set(wrapping) else: strategy = {UnitModule} if use_composable: dist_model = fully_shard( copy.deepcopy(orig_model), policy=ModuleWrapPolicy(strategy) ) else: if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, device_mesh=device_mesh, ) else: dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, ) if compile_model: dist_model = torch.compile(dist_model) dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4, foreach=True) return orig_model, orig_optim, copy_optim, dist_model, dist_optim self._test_save_load(init_model_optim)
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
init_model_optim
def init_model_optim(): if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) orig_model = CompositeParamModel(device=torch.device("cuda")) orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) if wrapping: strategy = set(wrapping) else: strategy = {UnitModule} if use_composable: dist_model = fully_shard( copy.deepcopy(orig_model), policy=ModuleWrapPolicy(strategy) ) else: if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, device_mesh=device_mesh, ) else: dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, ) if compile_model: dist_model = torch.compile(dist_model) dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4, foreach=True) return orig_model, orig_optim, copy_optim, dist_model, dist_optim self._test_save_load(init_model_optim)
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
init_model_optim
def init_model_optim(): if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) orig_model = CompositeParamModel(device=torch.device("cuda")) orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) if wrapping: strategy = set(wrapping) else: strategy = {UnitModule} if use_composable: dist_model = fully_shard( copy.deepcopy(orig_model), policy=ModuleWrapPolicy(strategy) ) else: if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, device_mesh=device_mesh, ) else: dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, ) if compile_model: dist_model = torch.compile(dist_model) dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4, foreach=True) return orig_model, orig_optim, copy_optim, dist_model, dist_optim self._test_save_load(init_model_optim)
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
init_model_optim
def init_model_optim(): if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) orig_model = CompositeParamModel(device=torch.device("cuda")) orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) if wrapping: strategy = set(wrapping) else: strategy = {UnitModule} if use_composable: dist_model = fully_shard( copy.deepcopy(orig_model), policy=ModuleWrapPolicy(strategy) ) else: if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, device_mesh=device_mesh, ) else: dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, ) if compile_model: dist_model = torch.compile(dist_model) dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4, foreach=True) return orig_model, orig_optim, copy_optim, dist_model, dist_optim self._test_save_load(init_model_optim)
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
is_cpu
def is_cpu(v): if isinstance(v, DTensor): return v.device == cpu_device elif isinstance(v, ShardedTensor): shards = v.local_shards() if not shards: return True return shards[0].tensor.device == cpu_device else: return v.device == cpu_device self.assertTrue( tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, mst) ) self.assertTrue( tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, ost) ) mst, ost = get_state_dict( dist_model, dist_optim, options=StateDictOptions(full_state_dict=True) ) self.assertTrue( tree_all(lambda v: not isinstance(v, (DTensor, ShardedTensor)), mst) ) self.assertTrue( tree_all(lambda v: not isinstance(v, (DTensor, ShardedTensor)), ost) ) mst, ost = get_state_dict( dist_model, dist_optim, options=StateDictOptions(full_state_dict=True, cpu_offload=True), ) if self.rank == 0: self.assertTrue( tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, mst) ) self.assertTrue( tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, ost) ) else: self.assertEqual(mst, {}) self.assertEqual(ost, {})
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict_utils.py
create_dtensor
def create_dtensor(): device_mesh = self.build_device_mesh() shard_spec = [Shard(0)] torch.random.manual_seed(dist.get_rank()) local_tensor = torch.randn(3, 3, 3) dist_tensor = DTensor.from_local(local_tensor, device_mesh, shard_spec) tensor = funcol.all_gather_tensor( dist_tensor.to_local(), gather_dim=0, group=(device_mesh, 0) ) return tensor, dist_tensor ltensor, ldtensor = [], [] for i in range(10): tensor, dtensor = create_dtensor() ltensor.append(tensor) ltensor.append(torch.ones(10, device=torch.device("cuda"))) ldtensor.append(dtensor) ldtensor.append(torch.ones(10, device=torch.device("cuda"))) tensor, dtensor = create_dtensor() dist_state_dict = { "local": dtensor, "list": ldtensor, "arange": torch.arange(10, device=torch.device("cuda")), } state_dict = { "local": tensor, "list": ltensor, "arange": torch.arange(10, device=torch.device("cuda")), } self.assertEqual(state_dict, _gather_state_dict(dist_state_dict))
import copy import io import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol from torch.distributed._state_dict_utils import ( _check_state_dict_similarity, _copy_state_dict, _create_cpu_state_dict, _distribute_tensors, _gather_state_dict, _offload_state_dict_to_cpu, ) from torch.distributed._tensor import ( distribute_tensor, DTensor, init_device_mesh, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict_utils.py
_verify
def _verify(cpu_state_dict): # Verify the correctness of _check_state_dict_similarity() self.assertTrue(_check_state_dict_similarity(state_dict, cpu_state_dict)) tensor1 = cpu_state_dict["tensor1"] cpu_state_dict["tensor1"] = torch.arange(11) self.assertFalse(_check_state_dict_similarity(state_dict, cpu_state_dict)) cpu_state_dict["tensor1"] = tensor1 _copy_state_dict(state_dict, cpu_state_dict) # Verify if _copy_state_dict works for v in cpu_state_dict.values(): if isinstance(v, torch.Tensor): self.assertFalse(v.is_cuda) self.assertEqual(cpu_state_dict["tensor1"], torch.arange(10)) self.assertEqual(cpu_state_dict["tensor2"], torch.ones(10)) buffer.seek(0) cpu_state_dict["non_tensor_bytes_io"].seek(0) self.assertEqual( cpu_state_dict["non_tensor_bytes_io"].read(), buffer.read() ) buffer.seek(0) self.assertEqual(cpu_state_dict["non_tensor_bytes"], buffer.read()) self.assertEqual(cpu_state_dict["lr"], 1.5) self.assertEqual(cpu_state_dict["step"], 7) self.assertEqual(cpu_state_dict["nested"], {"list": [1, 2, 3, 4]}) cpu_state_dict = _create_cpu_state_dict(state_dict, pin_memory=True) _verify(cpu_state_dict) cpu_state_dict = _create_cpu_state_dict(state_dict, share_memory=True) _verify(cpu_state_dict) cpu_state_dict = _create_cpu_state_dict( state_dict, share_memory=True, pin_memory=True ) _verify(cpu_state_dict)
import copy import io import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol from torch.distributed._state_dict_utils import ( _check_state_dict_similarity, _copy_state_dict, _create_cpu_state_dict, _distribute_tensors, _gather_state_dict, _offload_state_dict_to_cpu, ) from torch.distributed._tensor import ( distribute_tensor, DTensor, init_device_mesh, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict_utils.py
test_state_dict_util_distribute_tensors
def test_state_dict_util_distribute_tensors(self): even_tensor = torch.randn(self.world_size, 2) uneven_tensor = torch.randn(1, 2) mesh = init_device_mesh("cuda", mesh_shape=(self.world_size,)) even_dtensor = distribute_tensor( torch.randn(self.world_size, 2), mesh, [Shard(0)] ) uneven_dtensor = distribute_tensor(torch.randn(1, 2), mesh, [Shard(0)]) # the dtensor and tensor are different before _distribute_tensors is called. local_state_dict = { "even": [even_dtensor, even_tensor], "uneven": [uneven_dtensor, uneven_tensor], } ref_local_state_dict = copy.deepcopy(local_state_dict) keys = ["even", "uneven"] _distribute_tensors(local_state_dict, keys, self.device_type) for local_v, ref_v in zip( local_state_dict.values(), ref_local_state_dict.values() ): self.assertEqual(local_v.size(), ref_v[0].size()) self.assertEqual(local_v.stride(), ref_v[0].stride()) self.assertNotEqual( local_v_full_tensor := local_v.full_tensor(), ref_v[0].full_tensor() ) self.assertEqual(local_v_full_tensor, ref_v[1])
import copy import io import torch import torch.distributed as dist import torch.distributed._functional_collectives as funcol from torch.distributed._state_dict_utils import ( _check_state_dict_similarity, _copy_state_dict, _create_cpu_state_dict, _distribute_tensors, _gather_state_dict, _offload_state_dict_to_cpu, ) from torch.distributed._tensor import ( distribute_tensor, DTensor, init_device_mesh, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) class TestStateDictUtils(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_tp_checkpoint.py
__init__
def __init__(self, device): super().__init__() torch.manual_seed(5) self.net1 = torch.nn.Linear(5, 10, device=device) self.relu = torch.nn.ReLU() self.net2 = torch.nn.Linear(10, 15, device=device) self.net3 = torch.nn.Linear(15, 1, device=device)
from copy import deepcopy import torch import torch.distributed.checkpoint as dcp from torch.distributed._tensor import init_device_mesh from torch.distributed.checkpoint.default_planner import ( DefaultLoadPlanner, DefaultSavePlanner, ) from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class UnevenShardedModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_tp_checkpoint.py
forward
def forward(self, x): return self.net3(self.net2(self.relu(self.net1(x))))
from copy import deepcopy import torch import torch.distributed.checkpoint as dcp from torch.distributed._tensor import init_device_mesh from torch.distributed.checkpoint.default_planner import ( DefaultLoadPlanner, DefaultSavePlanner, ) from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class UnevenShardedModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_tp_checkpoint.py
test_tp_checkpoint_load_on_meta_device
def test_tp_checkpoint_load_on_meta_device(self): CHECKPOINT_DIR = self.temp_dir mesh_shpe = (self.world_size,) tp_mesh = init_device_mesh(self.device_type, mesh_shpe) # create model and move it to GPU with id rank model = UnevenShardedModel(self.device_type).cuda(self.rank) # Parallelize the module based on the given Parallel Style. parallelize_plan = { "net1": ColwiseParallel(), "net2": RowwiseParallel(), "net3": ColwiseParallel(), } model = parallelize_module(model, tp_mesh, parallelize_plan=parallelize_plan) original_state_dict = { "model": model.state_dict(), } dcp.save( state_dict=original_state_dict, storage_writer=dcp.FileSystemWriter(CHECKPOINT_DIR), ) model2 = parallelize_module( UnevenShardedModel("meta"), tp_mesh, parallelize_plan=parallelize_plan ) model2_sd_before_load = model2.state_dict() state_dict_to_load = {"model": model2_sd_before_load} dcp.load( state_dict=state_dict_to_load, storage_reader=dcp.FileSystemReader(CHECKPOINT_DIR), ) # We need to make sure state_dict_to_load["model"] is the same as state_dict_after_load["model"], # since we are doing in-place loading. self.assertTrue(state_dict_to_load["model"] is model2_sd_before_load) model2.load_state_dict(state_dict_to_load["model"], assign=True) state_dict_after_load = {"model": model2.state_dict()} self.assertEqual( len(original_state_dict["model"]), len(state_dict_to_load["model"]) ) self.assertEqual( len(original_state_dict["model"]), len(state_dict_after_load["model"]) ) for name, param in original_state_dict["model"].items(): param_to_load = state_dict_to_load["model"][name] param_after_load = state_dict_after_load["model"][name] # we need to explicitly check the device is not meta as the assertEqual check # currently doesn't handle DTensor with meta device. self.assertTrue(not param_to_load.is_meta) self.assertTrue(not param_after_load.is_meta) self.assertEqual(param.to_local(), param_to_load.to_local()) self.assertEqual(param.to_local(), param_after_load.to_local())
from copy import deepcopy import torch import torch.distributed.checkpoint as dcp from torch.distributed._tensor import init_device_mesh from torch.distributed.checkpoint.default_planner import ( DefaultLoadPlanner, DefaultSavePlanner, ) from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class TestTpCheckpoint(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_traverse.py
collect_data
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2",), data) self.assertEqual(data[("key2",)], {1: 2, 2: 3}) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2", "1"), data) self.assertEqual(data[("key2", "1")], 2) self.assertIn(("key2", "2"), data) self.assertEqual(data[("key2", "2")], 3) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
from collections import OrderedDict import torch import torch.distributed.checkpoint._traverse as _traverse from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE from torch.testing._internal.common_utils import run_tests, TestCase
from collections import OrderedDict from typing import TYPE_CHECKING import torch import torch.distributed.checkpoint._traverse as _traverse from torch.testing._internal.common_utils import run_tests, TestCase from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/test_checkpoint.py
_test_dist_failure
def _test_dist_failure(self, callback, kwargs): bad_ranks = list(kwargs.values())[0] if len(kwargs) > 0 else [] # Empty bad_ranks means it must work if len(bad_ranks) == 0: callback() else: with self.assertRaises(CheckpointException) as cm: callback() e = cast(CheckpointException, cm.exception) for rank, wrapped_ex in e.failures.items(): ex = wrapped_ex[0] self.assertTrue(rank in bad_ranks, msg=f"{rank} did not fail") if not kwargs.get("ignore_exception_type", False): self.assertEqual(ValueError, type(ex), str(ex)) failed_ranks = e.failures.keys() for rank in bad_ranks: self.assertTrue( rank in failed_ranks, msg=f"{rank} was supposed to fail was fine", )
def _test_dist_failure(self, callback, kwargs): bad_ranks = next(iter(kwargs.values())) if len(kwargs) > 0 else [] # Empty bad_ranks means it must work if len(bad_ranks) == 0: callback() else: with self.assertRaises(CheckpointException) as cm: callback() e = cast(CheckpointException, cm.exception) for rank, wrapped_ex in e.failures.items(): ex = wrapped_ex[0] self.assertTrue(rank in bad_ranks, msg=f"{rank} did not fail") if not kwargs.get("ignore_exception_type", False): self.assertEqual(ValueError, type(ex), str(ex)) failed_ranks = e.failures.keys() for rank in bad_ranks: self.assertTrue( rank in failed_ranks, msg=f"{rank} was supposed to fail was fine", )
import sys from typing import Optional, List, cast from torch.distributed.checkpoint.storage import WriteResult from torch.distributed.checkpoint import ( StorageReader, StorageWriter, CheckpointException, load_state_dict, save_state_dict, ) import torch import torch.distributed as dist import torch.nn import torch.futures from torch.futures import Future from torch.distributed._shard import sharded_tensor from torch.distributed.checkpoint.default_planner import ( _create_default_local_metadata, ) from torch.distributed.checkpoint.metadata import ( BytesStorageMetadata, Metadata, TensorStorageMetadata, ) from torch.distributed.checkpoint.planner import ( SavePlan, SavePlanner, LoadPlan, LoadPlanner, ) from torch.distributed._shard.sharded_tensor import ( state_dict_hook, ShardedTensor, ) from torch.distributed._shard.sharding_spec import ChunkShardingSpec from torch.testing._internal.common_distributed import ( requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, ) from torch.testing._internal.common_utils import ( TEST_WITH_DEV_DBG_ASAN, run_tests, ) class TestDistributedFailure(ShardedTensorTestBase):
import os import sys from typing import cast, List, Optional, Union import torch import torch.distributed as dist import torch.futures import torch.nn from torch.distributed._shard import sharded_tensor from torch.distributed._shard.sharded_tensor import ShardedTensor, state_dict_hook from torch.distributed._shard.sharding_spec import ChunkShardingSpec from torch.distributed.checkpoint import ( CheckpointException, load_state_dict, save_state_dict, StorageReader, StorageWriter, ) from torch.distributed.checkpoint.default_planner import _create_default_local_metadata from torch.distributed.checkpoint.metadata import ( BytesStorageMetadata, Metadata, TensorStorageMetadata, ) from torch.distributed.checkpoint.planner import ( LoadPlan, LoadPlanner, SavePlan, SavePlanner, ) from torch.distributed.checkpoint.storage import WriteResult from torch.futures import Future from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._shard.sharded_tensor import ( ShardedTensorTestBase, with_comms, ) class TestDistributedFailure(ShardedTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/test_state_dict.py
get_extra_state
def get_extra_state(self): return "MyState"
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
set_extra_state
def set_extra_state(self, state): return UnitModule.get_extra_state = get_extra_state UnitModule.set_extra_state = set_extra_state ddp_model = DDP(copy.deepcopy(model)) set_model_state_dict(ddp_model, get_model_state_dict(ddp_model)) self.assertEqual(model.state_dict()["u1._extra_state"], "MyState") self.assertEqual(model.state_dict(), get_model_state_dict(ddp_model))
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
check
def check(equal): fsdp_states = get_model_state_dict( fsdp_model, options=StateDictOptions(full_state_dict=True), ) fsdp_optim_states = get_optimizer_state_dict( fsdp_model, fsdp_optim, options=StateDictOptions(full_state_dict=True), ) if equal: self.assertEqual(states, fsdp_states) self.assertEqual(optim_states, fsdp_optim_states) else: self.assertNotEqual(states, fsdp_states) self.assertNotEqual(optim_states, fsdp_optim_states) check(equal=True) fsdp_model(batch).sum().backward() fsdp_optim.step() check(equal=False) # Drop the states to simulate loading from rank0 if dist.get_rank() > 0: load_states = {} load_states2 = {} load_optim_states = {} else: load_states = copy.deepcopy(states) load_states2 = copy.deepcopy(states) load_optim_states = copy.deepcopy(optim_states) set_model_state_dict( fsdp_model, model_state_dict=load_states, options=StateDictOptions(broadcast_from_rank0=True, full_state_dict=True), ) set_optimizer_state_dict( fsdp_model, fsdp_optim, optim_state_dict=load_optim_states, options=StateDictOptions(broadcast_from_rank0=True, full_state_dict=True), ) check(equal=True) # Verify the `strict` flag. load_states = load_states2 if load_states: key = next(iter(load_states.keys())) load_states.pop(key) with self.assertRaisesRegex(RuntimeError, "Missing key"): set_model_state_dict( fsdp_model, model_state_dict=load_states, options=StateDictOptions( broadcast_from_rank0=True, full_state_dict=True ), )
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
__init__
def __init__(self, vocab_size, embedding_dim): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.decoder = nn.Linear(embedding_dim, vocab_size) self.decoder.weight = self.embedding.weight # Tying weights
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only class TiedEmbeddingModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
forward
def forward(self, input): input = (input * 10).to(torch.int) embedded = self.embedding(input) output = self.decoder(embedded) return output
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only class TiedEmbeddingModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_state_dict.py
init_model_optim
def init_model_optim(): if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) orig_model = CompositeParamModel(device=torch.device("cuda")) orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True) if wrapping: strategy = set(wrapping) else: strategy = {UnitModule} if use_composable: dist_model = fully_shard( copy.deepcopy(orig_model), policy=ModuleWrapPolicy(strategy) ) else: if use_dtensor: device_mesh = init_device_mesh("cuda", (self.world_size,)) dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, device_mesh=device_mesh, ) else: dist_model = FSDP( copy.deepcopy(orig_model), auto_wrap_policy=ModuleWrapPolicy(strategy), use_orig_params=use_orig_params, ) if compile_model: dist_model = torch.compile(dist_model) dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4, foreach=True) return orig_model, orig_optim, copy_optim, dist_model, dist_optim self._test_save_load(init_model_optim)
import copy import functools import sys from itertools import chain from typing import Callable, Tuple, Type, Union import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable import fully_shard, replicate from torch.distributed._composable.fsdp import ( fully_shard as FSDP2, fully_shard as fsdp_fully_shard, ) from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed._tensor import DTensor, init_device_mesh from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, ) from torch.distributed.checkpoint import state_dict as ptd_state_dict from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_model_state_dict, set_optimizer_state_dict, StateDictOptions, ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import ModuleWrapPolicy from torch.distributed.optim import _apply_optimizer_in_backward from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.testing._internal.common_dist_composable import ( CompositeParamModel, UnitModule, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MultiProcessTestCase, with_comms, ) from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin from torch.utils._pytree import tree_all, tree_all_only
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_hsdp_checkpoint.py
get_input
def get_input(self): return torch.rand(4, 5, device="cuda")
from copy import deepcopy import torch import torch.distributed.checkpoint as dist_cp import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor import init_device_mesh, Replicate from torch.distributed.checkpoint.default_planner import ( DefaultLoadPlanner, DefaultSavePlanner, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import ( ShardingStrategy, StateDictType, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_hsdp_checkpoint.py
forward
def forward(self, x): x = F.relu(self.net1(x)) x = F.relu(self.net2(x)) x = F.relu(self.net3(x)) return x
from copy import deepcopy import torch import torch.distributed.checkpoint as dist_cp import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor import init_device_mesh, Replicate from torch.distributed.checkpoint.default_planner import ( DefaultLoadPlanner, DefaultSavePlanner, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import ( ShardingStrategy, StateDictType, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_hsdp_checkpoint.py
get_input
def get_input(self): return torch.rand(4, 5, device="cuda")
from copy import deepcopy import torch import torch.distributed.checkpoint as dist_cp import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor import init_device_mesh, Replicate from torch.distributed.checkpoint.default_planner import ( DefaultLoadPlanner, DefaultSavePlanner, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import ( ShardingStrategy, StateDictType, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir class SimpleModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_planner.py
create_sharded_tensor
def create_sharded_tensor(rank, world_size, shards_per_rank, shard_size=8): shards_metadata = [] local_shards = [] for idx in range(0, world_size * shards_per_rank): shard_rank = idx // shards_per_rank shard_md = ShardMetadata(shard_offsets=[idx * shard_size], shard_sizes=[shard_size], placement=f"rank:{shard_rank}/cpu") shards_metadata.append(shard_md) if shard_rank == rank: shard = Shard.from_tensor_and_offsets( torch.rand(*shard_md.shard_sizes), shard_offsets=shard_md.shard_offsets, rank=rank ) local_shards.append(shard) sharded_tensor_md = ShardedTensorMetadata( shards_metadata=shards_metadata, size=torch.Size([shard_size * len(shards_metadata)]), tensor_properties=TensorProperties.create_from_tensor(torch.zeros(1)) ) return ShardedTensor._init_from_local_shards_and_global_metadata( local_shards=local_shards, sharded_tensor_metadata=sharded_tensor_md ) class TestSavePlan(TestCase): @with_fake_comms(rank=1, world_size=4) def test_local_plan(self): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=1, world_size=4, shards_per_rank=1) state_dict = { "tensor": tensor, "value": val, "st": st } plan = create_default_local_save_plan(state_dict, False) self.assertEqual(1, len(plan.items)) wi = plan.items[0] self.assertEqual(wi.index, MetadataIndex("st", [8])) self.assertEqual(wi.type, WriteItemType.SHARD) self.assertEqual(wi.tensor_data.size, st.size()) self.assertEqual(wi.tensor_data.properties, TensorProperties.create_from_tensor(torch.zeros(1))) self.assertEqual(wi.tensor_data.chunk.offsets, torch.Size([8])) self.assertEqual(wi.tensor_data.chunk.sizes, torch.Size([8])) # Coordinator rank, should include replicated items as well plan = create_default_local_save_plan(state_dict, True) self.assertEqual(3, len(plan.items)) tensor_wi = next(wi for wi in plan.items if wi.type == WriteItemType.TENSOR) self.assertEqual(tensor_wi.index, MetadataIndex("tensor", [0])) self.assertEqual(tensor_wi.tensor_data.size, tensor.size()) self.assertEqual(tensor_wi.tensor_data.properties, TensorProperties.create_from_tensor(tensor)) self.assertEqual(tensor_wi.tensor_data.chunk.offsets, torch.Size([0])) self.assertEqual(tensor_wi.tensor_data.chunk.sizes, torch.Size([10])) bytes_wi = next(wi for wi in plan.items if wi.type == WriteItemType.BYTE_IO) self.assertEqual(bytes_wi.index, MetadataIndex("value")) self.assertIsNone(bytes_wi.tensor_data) def test_global_plan(self): def create_data(rank): with with_dist(rank=rank, world_size=4): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1) state_dict = { "tensor": tensor, "value": val, "st": st } return create_default_local_save_plan(state_dict, rank == 0) all_plans = [create_data(0), create_data(1), create_data(2), create_data(3)] final_plans, metadata = create_default_global_save_plan(all_plans=all_plans) # The default global plan updates all indexes to include hints for new_plan, old_plan in zip(final_plans, all_plans): for new_item, old_item in zip(new_plan.items, old_plan.items): self.assertEqual(new_item.index, old_item.index) self.assertEqual(new_item.type, old_item.type) self.assertEqual(new_item.tensor_data, old_item.tensor_data) self.assertIn(new_item.index.fqn, metadata.state_dict_metadata) item_md = metadata.state_dict_metadata[new_item.index.fqn] if new_item.type == WriteItemType.BYTE_IO: self.assertTrue(isinstance(item_md, BytesStorageMetadata)) else: self.assertTrue(isinstance(item_md, TensorStorageMetadata)) self.assertEqual(item_md.size, old_item.tensor_data.size) self.assertEqual(item_md.properties, old_item.tensor_data.properties) self.assertIsNotNone(new_item.index.index) # Make sure the hint is correct self.assertEqual(item_md.chunks[new_item.index.index], old_item.tensor_data.chunk) def test_local_load_plan(self): def create_state_dict(rank): with with_dist(rank=rank, world_size=4): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1) return { "tensor": tensor, "value": val, "st": st } state_dict = create_state_dict(1) metadata = _create_default_local_metadata(state_dict) load_plan = create_default_local_load_plan(state_dict, metadata) # This will create 3 entries self.assertEqual(3, len(load_plan.items)) st_item = next(ri for ri in load_plan.items if ri.dest_index.fqn == "st") tensor_item = next(ri for ri in load_plan.items if ri.dest_index.fqn == "tensor") bytes_item = next(ri for ri in load_plan.items if ri.dest_index.fqn == "value") self.assertEqual(st_item.type, LoadItemType.TENSOR) # This is an exact copy self.assertEqual(st_item.dest_index, MetadataIndex("st", [8])) self.assertEqual(st_item.dest_offsets, torch.Size([0])) self.assertEqual(st_item.storage_index, MetadataIndex("st", [8])) self.assertEqual(st_item.storage_offsets, torch.Size([0])) self.assertEqual(st_item.lengths, torch.Size([8])) self.assertEqual(tensor_item.type, LoadItemType.TENSOR) self.assertEqual(tensor_item.dest_index, MetadataIndex("tensor", [0])) self.assertEqual(tensor_item.dest_offsets, torch.Size([0])) self.assertEqual(tensor_item.storage_index, MetadataIndex("tensor", [0])) self.assertEqual(tensor_item.storage_offsets, torch.Size([0])) self.assertEqual(tensor_item.lengths, torch.Size([10])) self.assertEqual(bytes_item.type, LoadItemType.BYTE_IO) self.assertEqual(bytes_item.dest_index, MetadataIndex("value")) def test_load_with_resharding(self): def create_state_dict(rank, world_size): with with_dist(rank=rank, world_size=world_size): return { "st": create_sharded_tensor( rank=rank, world_size=world_size, shards_per_rank=1, shard_size=128 // world_size, ) } # Rank 1 has a 16 bytes shard from [16, 32[ world8_state_dict = create_state_dict(rank=1, world_size=8) world8_metadata = _create_default_local_metadata(world8_state_dict) # Rank 1 has a 32 bytes shard from [32, 64[ world4_state_dict = create_state_dict(rank=1, world_size=4) world4_metadata = _create_default_local_metadata(world4_state_dict) # First scenario, going from world=8 to world=4, need to load 2 shards # Each 4-world shard has 32 elements, so it needs to load 2 shards load_plan = create_default_local_load_plan(world4_state_dict, world8_metadata) self.assertEqual(2, len(load_plan.items)) low_ri = next(ri for ri in load_plan.items if ri.dest_offsets == torch.Size([0])) high_ri = next(ri for ri in load_plan.items if ri.dest_offsets == torch.Size([16])) self.assertEqual(low_ri.storage_index, MetadataIndex("st", [32])) self.assertEqual(low_ri.storage_offsets, torch.Size([0])) self.assertEqual(low_ri.dest_index, MetadataIndex("st", [32])) self.assertEqual(low_ri.dest_offsets, torch.Size([0])) self.assertEqual(low_ri.lengths, torch.Size([16])) self.assertEqual(high_ri.storage_index, MetadataIndex("st", [48])) self.assertEqual(high_ri.storage_offsets, torch.Size([0])) self.assertEqual(high_ri.dest_index, MetadataIndex("st", [32])) self.assertEqual(high_ri.dest_offsets, torch.Size([16])) self.assertEqual(high_ri.lengths, torch.Size([16])) # Second scenario, going from world=4 to world=8, need to load half of 1 shard # rank1 on 8-world needs to load the upper half of the rank0 4-world shard load_plan = create_default_local_load_plan(world8_state_dict, world4_metadata) self.assertEqual(1, len(load_plan.items)) ri = load_plan.items[0] self.assertEqual(ri.storage_index, MetadataIndex("st", [0])) self.assertEqual(ri.storage_offsets, torch.Size([16])) self.assertEqual(ri.dest_index, MetadataIndex("st", [16])) self.assertEqual(ri.dest_offsets, torch.Size([0])) self.assertEqual(ri.lengths, torch.Size([16])) def test_load_with_world_size_diff_by_one(self): def create_state_dict(rank, world_size): with with_dist(rank=rank, world_size=world_size): return { "st": create_sharded_tensor( rank=rank, world_size=world_size, shards_per_rank=1, shard_size=120 // world_size, ) } # rank 1 has a 30 bytes shard from [30, 60[ world4_state_dict = create_state_dict(rank=1, world_size=4) world4_metadata = _create_default_local_metadata(world4_state_dict) # rank 1 has a 40 bytes shard from [40, 80[ world3_state_dict = create_state_dict(rank=1, world_size=3) load_plan = create_default_local_load_plan(world3_state_dict, world4_metadata) self.assertEqual(2, len(load_plan.items)) # this is [30, 60] to load [40, 60] low_ri = next(ri for ri in load_plan.items if ri.dest_offsets == torch.Size([0])) # this is [60, 90] to load [60, 80] high_ri = next(ri for ri in load_plan.items if ri.dest_offsets == torch.Size([20])) self.assertEqual(low_ri.storage_index, MetadataIndex("st", [30])) self.assertEqual(low_ri.storage_offsets, torch.Size([10])) self.assertEqual(low_ri.dest_index, MetadataIndex("st", [40])) self.assertEqual(low_ri.dest_offsets, torch.Size([0])) self.assertEqual(low_ri.lengths, torch.Size([20])) self.assertEqual(high_ri.storage_index, MetadataIndex("st", [60])) self.assertEqual(high_ri.storage_offsets, torch.Size([0])) self.assertEqual(high_ri.dest_index, MetadataIndex("st", [40])) self.assertEqual(high_ri.dest_offsets, torch.Size([20])) self.assertEqual(high_ri.lengths, torch.Size([20])) if __name__ == "__main__": run_tests()
def create_sharded_tensor(rank, world_size, shards_per_rank, shard_size=8): shards_metadata = [] local_shards = [] for idx in range(0, world_size * shards_per_rank): shard_rank = idx // shards_per_rank shard_md = ShardMetadata( shard_offsets=[idx * shard_size], shard_sizes=[shard_size], placement=f"rank:{shard_rank}/cpu", ) shards_metadata.append(shard_md) if shard_rank == rank: shard = Shard.from_tensor_and_offsets( torch.rand(*shard_md.shard_sizes), shard_offsets=shard_md.shard_offsets, rank=rank, ) local_shards.append(shard) sharded_tensor_md = ShardedTensorMetadata( shards_metadata=shards_metadata, size=torch.Size([shard_size * len(shards_metadata)]), tensor_properties=TensorProperties_Shard.create_from_tensor(torch.zeros(1)), ) return ShardedTensor._init_from_local_shards_and_global_metadata( local_shards=local_shards, sharded_tensor_metadata=sharded_tensor_md ) class TestSavePlan(TestCase): @with_fake_comms(rank=1, world_size=4) def test_local_plan(self): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=1, world_size=4, shards_per_rank=1) state_dict = {"tensor": tensor, "value": val, "st": st} plan = create_default_local_save_plan(state_dict, False) self.assertEqual(3, len(plan.items)) wi = plan.items[0] self.assertEqual(wi.index, MetadataIndex("tensor", [0])) self.assertEqual(wi.type, WriteItemType.TENSOR) self.assertEqual(wi.tensor_data.size, tensor.size()) self.assertEqual( wi.tensor_data.properties, TensorProperties.create_from_tensor(torch.zeros(1)), ) self.assertEqual(wi.tensor_data.chunk.offsets, torch.Size([0])) self.assertEqual(wi.tensor_data.chunk.sizes, torch.Size([10])) st_wi = plan.items[2] self.assertEqual(st_wi.index, MetadataIndex("st", [8])) self.assertEqual(st_wi.type, WriteItemType.SHARD) self.assertEqual(st_wi.tensor_data.size, st.size()) self.assertEqual( st_wi.tensor_data.properties, TensorProperties.create_from_tensor(torch.zeros(1)), ) self.assertEqual(st_wi.tensor_data.chunk.offsets, torch.Size([8])) self.assertEqual(st_wi.tensor_data.chunk.sizes, torch.Size([8])) # Coordinator rank, should include replicated items as well plan = create_default_local_save_plan(state_dict, True) self.assertEqual(3, len(plan.items)) tensor_wi = next(wi for wi in plan.items if wi.type == WriteItemType.TENSOR) self.assertEqual(tensor_wi.index, MetadataIndex("tensor", [0])) self.assertEqual(tensor_wi.tensor_data.size, tensor.size()) self.assertEqual( tensor_wi.tensor_data.properties, TensorProperties.create_from_tensor(tensor), ) self.assertEqual(tensor_wi.tensor_data.chunk.offsets, torch.Size([0])) self.assertEqual(tensor_wi.tensor_data.chunk.sizes, torch.Size([10])) bytes_wi = next(wi for wi in plan.items if wi.type == WriteItemType.BYTE_IO) self.assertEqual(bytes_wi.index, MetadataIndex("value")) self.assertIsNone(bytes_wi.tensor_data) def test_global_plan(self): def create_data(rank): with with_dist(rank=rank, world_size=4): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1) state_dict = {"tensor": tensor, "value": val, "st": st} return create_default_local_save_plan(state_dict, rank == 0) all_plans = [create_data(0), create_data(1), create_data(2), create_data(3)] all_plans = dedup_save_plans(all_plans) final_plans, metadata = create_default_global_save_plan(all_plans=all_plans) # The default global plan updates all indexes to include hints for new_plan, old_plan in zip(final_plans, all_plans): for new_item, old_item in zip(new_plan.items, old_plan.items): self.assertEqual(new_item.index, old_item.index) self.assertEqual(new_item.type, old_item.type) self.assertEqual(new_item.tensor_data, old_item.tensor_data) self.assertIn(new_item.index.fqn, metadata.state_dict_metadata) item_md = metadata.state_dict_metadata[new_item.index.fqn] if new_item.type == WriteItemType.BYTE_IO: self.assertTrue(isinstance(item_md, BytesStorageMetadata)) else: self.assertTrue(isinstance(item_md, TensorStorageMetadata)) self.assertEqual(item_md.size, old_item.tensor_data.size) self.assertEqual( item_md.properties, old_item.tensor_data.properties ) self.assertIsNotNone(new_item.index.index) # Make sure the hint is correct self.assertEqual( item_md.chunks[new_item.index.index], old_item.tensor_data.chunk ) def test_local_load_plan(self): def create_state_dict(rank): with with_dist(rank=rank, world_size=4): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1) return {"tensor": tensor, "value": val, "st": st} state_dict = create_state_dict(1) metadata = _create_default_local_metadata(state_dict) load_plan = create_default_local_load_plan(state_dict, metadata) # This will create 3 entries self.assertEqual(3, len(load_plan.items)) st_item = next(ri for ri in load_plan.items if ri.dest_index.fqn == "st") tensor_item = next( ri for ri in load_plan.items if ri.dest_index.fqn == "tensor" ) bytes_item = next(ri for ri in load_plan.items if ri.dest_index.fqn == "value") self.assertEqual(st_item.type, LoadItemType.TENSOR) # This is an exact copy self.assertEqual(st_item.dest_index, MetadataIndex("st", [8])) self.assertEqual(st_item.dest_offsets, torch.Size([0])) self.assertEqual(st_item.storage_index, MetadataIndex("st", [8])) self.assertEqual(st_item.storage_offsets, torch.Size([0])) self.assertEqual(st_item.lengths, torch.Size([8])) self.assertEqual(tensor_item.type, LoadItemType.TENSOR) self.assertEqual(tensor_item.dest_index, MetadataIndex("tensor", [0])) self.assertEqual(tensor_item.dest_offsets, torch.Size([0])) self.assertEqual(tensor_item.storage_index, MetadataIndex("tensor", [0])) self.assertEqual(tensor_item.storage_offsets, torch.Size([0])) self.assertEqual(tensor_item.lengths, torch.Size([10])) self.assertEqual(bytes_item.type, LoadItemType.BYTE_IO) self.assertEqual(bytes_item.dest_index, MetadataIndex("value")) def test_load_with_resharding(self): def create_state_dict(rank, world_size): with with_dist(rank=rank, world_size=world_size): return { "st": create_sharded_tensor( rank=rank, world_size=world_size, shards_per_rank=1, shard_size=128 // world_size, ) } # Rank 1 has a 16 bytes shard from [16, 32[ world8_state_dict = create_state_dict(rank=1, world_size=8) world8_metadata = _create_default_local_metadata(world8_state_dict) # Rank 1 has a 32 bytes shard from [32, 64[ world4_state_dict = create_state_dict(rank=1, world_size=4) world4_metadata = _create_default_local_metadata(world4_state_dict) # First scenario, going from world=8 to world=4, need to load 2 shards # Each 4-world shard has 32 elements, so it needs to load 2 shards load_plan = create_default_local_load_plan(world4_state_dict, world8_metadata) self.assertEqual(2, len(load_plan.items)) low_ri = next( ri for ri in load_plan.items if ri.dest_offsets == torch.Size([0]) ) high_ri = next( ri for ri in load_plan.items if ri.dest_offsets == torch.Size([16]) ) self.assertEqual(low_ri.storage_index, MetadataIndex("st", [32])) self.assertEqual(low_ri.storage_offsets, torch.Size([0])) self.assertEqual(low_ri.dest_index, MetadataIndex("st", [32])) self.assertEqual(low_ri.dest_offsets, torch.Size([0])) self.assertEqual(low_ri.lengths, torch.Size([16])) self.assertEqual(high_ri.storage_index, MetadataIndex("st", [48])) self.assertEqual(high_ri.storage_offsets, torch.Size([0])) self.assertEqual(high_ri.dest_index, MetadataIndex("st", [32])) self.assertEqual(high_ri.dest_offsets, torch.Size([16])) self.assertEqual(high_ri.lengths, torch.Size([16])) # Second scenario, going from world=4 to world=8, need to load half of 1 shard # rank1 on 8-world needs to load the upper half of the rank0 4-world shard load_plan = create_default_local_load_plan(world8_state_dict, world4_metadata) self.assertEqual(1, len(load_plan.items)) ri = load_plan.items[0] self.assertEqual(ri.storage_index, MetadataIndex("st", [0])) self.assertEqual(ri.storage_offsets, torch.Size([16])) self.assertEqual(ri.dest_index, MetadataIndex("st", [16])) self.assertEqual(ri.dest_offsets, torch.Size([0])) self.assertEqual(ri.lengths, torch.Size([16])) def test_load_with_world_size_diff_by_one(self): def create_state_dict(rank, world_size): with with_dist(rank=rank, world_size=world_size): return { "st": create_sharded_tensor( rank=rank, world_size=world_size, shards_per_rank=1, shard_size=120 // world_size, ) } # rank 1 has a 30 bytes shard from [30, 60[ world4_state_dict = create_state_dict(rank=1, world_size=4) world4_metadata = _create_default_local_metadata(world4_state_dict) # rank 1 has a 40 bytes shard from [40, 80[ world3_state_dict = create_state_dict(rank=1, world_size=3) load_plan = create_default_local_load_plan(world3_state_dict, world4_metadata) self.assertEqual(2, len(load_plan.items)) # this is [30, 60] to load [40, 60] low_ri = next( ri for ri in load_plan.items if ri.dest_offsets == torch.Size([0]) ) # this is [60, 90] to load [60, 80] high_ri = next( ri for ri in load_plan.items if ri.dest_offsets == torch.Size([20]) ) self.assertEqual(low_ri.storage_index, MetadataIndex("st", [30])) self.assertEqual(low_ri.storage_offsets, torch.Size([10])) self.assertEqual(low_ri.dest_index, MetadataIndex("st", [40])) self.assertEqual(low_ri.dest_offsets, torch.Size([0])) self.assertEqual(low_ri.lengths, torch.Size([20])) self.assertEqual(high_ri.storage_index, MetadataIndex("st", [60])) self.assertEqual(high_ri.storage_offsets, torch.Size([0])) self.assertEqual(high_ri.dest_index, MetadataIndex("st", [40])) self.assertEqual(high_ri.dest_offsets, torch.Size([20])) self.assertEqual(high_ri.lengths, torch.Size([20])) class TestPlannerHelpers(TestCase): def test_create_read_item_from_chunks(self): tensor_md = TensorStorageMetadata( properties=TensorProperties.create_from_tensor(torch.empty([16])), size=torch.Size([16]), chunks=[ ChunkStorageMetadata(offsets=torch.Size([0]), sizes=torch.Size([8])), ChunkStorageMetadata(offsets=torch.Size([8]), sizes=torch.Size([8])), ], ) chunk = ChunkStorageMetadata(offsets=torch.Size([4]), sizes=torch.Size([7])) read_items = create_read_items_for_chunk_list("foo", tensor_md, [chunk]) self.assertEqual(2, len(read_items)) self.assertEqual(MetadataIndex("foo", [4]), read_items[0].dest_index) self.assertEqual(torch.Size([0]), read_items[0].dest_offsets) self.assertEqual(MetadataIndex("foo", [0]), read_items[0].storage_index) self.assertEqual(torch.Size([4]), read_items[0].storage_offsets) self.assertEqual(torch.Size([4]), read_items[0].lengths) self.assertEqual(MetadataIndex("foo", [4]), read_items[1].dest_index) self.assertEqual(torch.Size([4]), read_items[1].dest_offsets) self.assertEqual(MetadataIndex("foo", [8]), read_items[1].storage_index) self.assertEqual(torch.Size([0]), read_items[1].storage_offsets) self.assertEqual(torch.Size([3]), read_items[1].lengths) class TestLoadPlanner(TestCase): @with_temp_dir def test_strict(self): original_module = nn.Linear(2, 2) dcp.save(state_dict={"module": original_module}, checkpoint_id=self.temp_dir) new_module = nn.Linear(2, 2) new_module.extra_param = nn.Parameter(torch.randn(2, 2)) dcp.load( state_dict={"module": new_module}, checkpoint_id=self.temp_dir, planner=DefaultLoadPlanner(allow_partial_load=True), ) with self.assertRaisesRegex(CheckpointException, "Missing key in checkpoint"): dcp.load( state_dict={"module": new_module}, checkpoint_id=self.temp_dir, planner=DefaultLoadPlanner(allow_partial_load=False), ) if __name__ == "__main__": run_tests()
import sys import torch from torch.distributed.checkpoint.planner import LoadItemType, WriteItemType from torch.distributed._shard.sharded_tensor import ( Shard, ShardMetadata, ShardedTensor, ShardedTensorMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import TensorProperties from torch.testing._internal.common_utils import ( TestCase, TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.distributed.checkpoint.metadata import BytesStorageMetadata, MetadataIndex, TensorStorageMetadata from torch.testing._internal.distributed.distributed_utils import ( with_fake_comms, with_dist ) from torch.distributed.checkpoint.default_planner import ( create_default_global_save_plan, create_default_local_save_plan, create_default_local_load_plan, _create_default_local_metadata )
import sys import torch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._shard.sharded_tensor import ( Shard, ShardedTensor, ShardedTensorMetadata, ShardMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import ( TensorProperties as TensorProperties_Shard, ) from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans from torch.distributed.checkpoint.api import CheckpointException from torch.distributed.checkpoint.default_planner import ( _create_default_local_metadata, create_default_global_save_plan, create_default_local_load_plan, create_default_local_save_plan, DefaultLoadPlanner, ) from torch.distributed.checkpoint.metadata import ( BytesStorageMetadata, ChunkStorageMetadata, MetadataIndex, TensorProperties, TensorStorageMetadata, ) from torch.distributed.checkpoint.planner import LoadItemType, WriteItemType from torch.distributed.checkpoint.planner_helpers import ( create_read_items_for_chunk_list, ) from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, TestCase, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.distributed_utils import ( with_dist, with_fake_comms, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/test_planner.py
test_local_plan
def test_local_plan(self): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=1, world_size=4, shards_per_rank=1) state_dict = { "tensor": tensor, "value": val, "st": st } plan = create_default_local_save_plan(state_dict, False) self.assertEqual(1, len(plan.items)) wi = plan.items[0] self.assertEqual(wi.index, MetadataIndex("st", [8])) self.assertEqual(wi.type, WriteItemType.SHARD) self.assertEqual(wi.tensor_data.size, st.size()) self.assertEqual(wi.tensor_data.properties, TensorProperties.create_from_tensor(torch.zeros(1))) self.assertEqual(wi.tensor_data.chunk.offsets, torch.Size([8])) self.assertEqual(wi.tensor_data.chunk.sizes, torch.Size([8])) # Coordinator rank, should include replicated items as well plan = create_default_local_save_plan(state_dict, True) self.assertEqual(3, len(plan.items)) tensor_wi = next(wi for wi in plan.items if wi.type == WriteItemType.TENSOR) self.assertEqual(tensor_wi.index, MetadataIndex("tensor", [0])) self.assertEqual(tensor_wi.tensor_data.size, tensor.size()) self.assertEqual(tensor_wi.tensor_data.properties, TensorProperties.create_from_tensor(tensor)) self.assertEqual(tensor_wi.tensor_data.chunk.offsets, torch.Size([0])) self.assertEqual(tensor_wi.tensor_data.chunk.sizes, torch.Size([10])) bytes_wi = next(wi for wi in plan.items if wi.type == WriteItemType.BYTE_IO) self.assertEqual(bytes_wi.index, MetadataIndex("value")) self.assertIsNone(bytes_wi.tensor_data)
def test_local_plan(self): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=1, world_size=4, shards_per_rank=1) state_dict = {"tensor": tensor, "value": val, "st": st} plan = create_default_local_save_plan(state_dict, False) self.assertEqual(3, len(plan.items)) wi = plan.items[0] self.assertEqual(wi.index, MetadataIndex("tensor", [0])) self.assertEqual(wi.type, WriteItemType.TENSOR) self.assertEqual(wi.tensor_data.size, tensor.size()) self.assertEqual( wi.tensor_data.properties, TensorProperties.create_from_tensor(torch.zeros(1)), ) self.assertEqual(wi.tensor_data.chunk.offsets, torch.Size([0])) self.assertEqual(wi.tensor_data.chunk.sizes, torch.Size([10])) st_wi = plan.items[2] self.assertEqual(st_wi.index, MetadataIndex("st", [8])) self.assertEqual(st_wi.type, WriteItemType.SHARD) self.assertEqual(st_wi.tensor_data.size, st.size()) self.assertEqual( st_wi.tensor_data.properties, TensorProperties.create_from_tensor(torch.zeros(1)), ) self.assertEqual(st_wi.tensor_data.chunk.offsets, torch.Size([8])) self.assertEqual(st_wi.tensor_data.chunk.sizes, torch.Size([8])) # Coordinator rank, should include replicated items as well plan = create_default_local_save_plan(state_dict, True) self.assertEqual(3, len(plan.items)) tensor_wi = next(wi for wi in plan.items if wi.type == WriteItemType.TENSOR) self.assertEqual(tensor_wi.index, MetadataIndex("tensor", [0])) self.assertEqual(tensor_wi.tensor_data.size, tensor.size()) self.assertEqual( tensor_wi.tensor_data.properties, TensorProperties.create_from_tensor(tensor), ) self.assertEqual(tensor_wi.tensor_data.chunk.offsets, torch.Size([0])) self.assertEqual(tensor_wi.tensor_data.chunk.sizes, torch.Size([10])) bytes_wi = next(wi for wi in plan.items if wi.type == WriteItemType.BYTE_IO) self.assertEqual(bytes_wi.index, MetadataIndex("value")) self.assertIsNone(bytes_wi.tensor_data)
import sys import torch from torch.distributed.checkpoint.planner import LoadItemType, WriteItemType from torch.distributed._shard.sharded_tensor import ( Shard, ShardMetadata, ShardedTensor, ShardedTensorMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import TensorProperties from torch.testing._internal.common_utils import ( TestCase, TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.distributed.checkpoint.metadata import BytesStorageMetadata, MetadataIndex, TensorStorageMetadata from torch.testing._internal.distributed.distributed_utils import ( with_fake_comms, with_dist ) from torch.distributed.checkpoint.default_planner import ( create_default_global_save_plan, create_default_local_save_plan, create_default_local_load_plan, _create_default_local_metadata ) class TestSavePlan(TestCase):
import sys import torch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._shard.sharded_tensor import ( Shard, ShardedTensor, ShardedTensorMetadata, ShardMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import ( TensorProperties as TensorProperties_Shard, ) from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans from torch.distributed.checkpoint.api import CheckpointException from torch.distributed.checkpoint.default_planner import ( _create_default_local_metadata, create_default_global_save_plan, create_default_local_load_plan, create_default_local_save_plan, DefaultLoadPlanner, ) from torch.distributed.checkpoint.metadata import ( BytesStorageMetadata, ChunkStorageMetadata, MetadataIndex, TensorProperties, TensorStorageMetadata, ) from torch.distributed.checkpoint.planner import LoadItemType, WriteItemType from torch.distributed.checkpoint.planner_helpers import ( create_read_items_for_chunk_list, ) from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, TestCase, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.distributed_utils import ( with_dist, with_fake_comms, ) class TestSavePlan(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/test_planner.py
create_data
def create_data(rank): with with_dist(rank=rank, world_size=4): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1) state_dict = { "tensor": tensor, "value": val, "st": st } return create_default_local_save_plan(state_dict, rank == 0) all_plans = [create_data(0), create_data(1), create_data(2), create_data(3)] final_plans, metadata = create_default_global_save_plan(all_plans=all_plans) # The default global plan updates all indexes to include hints for new_plan, old_plan in zip(final_plans, all_plans): for new_item, old_item in zip(new_plan.items, old_plan.items): self.assertEqual(new_item.index, old_item.index) self.assertEqual(new_item.type, old_item.type) self.assertEqual(new_item.tensor_data, old_item.tensor_data) self.assertIn(new_item.index.fqn, metadata.state_dict_metadata) item_md = metadata.state_dict_metadata[new_item.index.fqn] if new_item.type == WriteItemType.BYTE_IO: self.assertTrue(isinstance(item_md, BytesStorageMetadata)) else: self.assertTrue(isinstance(item_md, TensorStorageMetadata)) self.assertEqual(item_md.size, old_item.tensor_data.size) self.assertEqual(item_md.properties, old_item.tensor_data.properties) self.assertIsNotNone(new_item.index.index) # Make sure the hint is correct self.assertEqual(item_md.chunks[new_item.index.index], old_item.tensor_data.chunk)
def create_data(rank): with with_dist(rank=rank, world_size=4): tensor = torch.rand(10) val = [1, 2, 3] st = create_sharded_tensor(rank=rank, world_size=4, shards_per_rank=1) state_dict = {"tensor": tensor, "value": val, "st": st} return create_default_local_save_plan(state_dict, rank == 0) all_plans = [create_data(0), create_data(1), create_data(2), create_data(3)] all_plans = dedup_save_plans(all_plans) final_plans, metadata = create_default_global_save_plan(all_plans=all_plans) # The default global plan updates all indexes to include hints for new_plan, old_plan in zip(final_plans, all_plans): for new_item, old_item in zip(new_plan.items, old_plan.items): self.assertEqual(new_item.index, old_item.index) self.assertEqual(new_item.type, old_item.type) self.assertEqual(new_item.tensor_data, old_item.tensor_data) self.assertIn(new_item.index.fqn, metadata.state_dict_metadata) item_md = metadata.state_dict_metadata[new_item.index.fqn] if new_item.type == WriteItemType.BYTE_IO: self.assertTrue(isinstance(item_md, BytesStorageMetadata)) else: self.assertTrue(isinstance(item_md, TensorStorageMetadata)) self.assertEqual(item_md.size, old_item.tensor_data.size) self.assertEqual( item_md.properties, old_item.tensor_data.properties ) self.assertIsNotNone(new_item.index.index) # Make sure the hint is correct self.assertEqual( item_md.chunks[new_item.index.index], old_item.tensor_data.chunk )
import sys import torch from torch.distributed.checkpoint.planner import LoadItemType, WriteItemType from torch.distributed._shard.sharded_tensor import ( Shard, ShardMetadata, ShardedTensor, ShardedTensorMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import TensorProperties from torch.testing._internal.common_utils import ( TestCase, TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.distributed.checkpoint.metadata import BytesStorageMetadata, MetadataIndex, TensorStorageMetadata from torch.testing._internal.distributed.distributed_utils import ( with_fake_comms, with_dist ) from torch.distributed.checkpoint.default_planner import ( create_default_global_save_plan, create_default_local_save_plan, create_default_local_load_plan, _create_default_local_metadata )
import sys import torch import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed._shard.sharded_tensor import ( Shard, ShardedTensor, ShardedTensorMetadata, ShardMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import ( TensorProperties as TensorProperties_Shard, ) from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans from torch.distributed.checkpoint.api import CheckpointException from torch.distributed.checkpoint.default_planner import ( _create_default_local_metadata, create_default_global_save_plan, create_default_local_load_plan, create_default_local_save_plan, DefaultLoadPlanner, ) from torch.distributed.checkpoint.metadata import ( BytesStorageMetadata, ChunkStorageMetadata, MetadataIndex, TensorProperties, TensorStorageMetadata, ) from torch.distributed.checkpoint.planner import LoadItemType, WriteItemType from torch.distributed.checkpoint.planner_helpers import ( create_read_items_for_chunk_list, ) from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, TestCase, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.distributed_utils import ( with_dist, with_fake_comms, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/test_traverse.py
collect_data
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2",), data) self.assertEqual(data[("key2",)], {1: 2, 2: 3}) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2", "1"), data) self.assertEqual(data[("key2", "1")], 2) self.assertIn(("key2", "2"), data) self.assertEqual(data[("key2", "2")], 3) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
from collections import OrderedDict import torch import torch.distributed.checkpoint._traverse as _traverse from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE from torch.testing._internal.common_utils import run_tests, TestCase
from collections import OrderedDict from typing import TYPE_CHECKING import torch import torch.distributed.checkpoint._traverse as _traverse from torch.testing._internal.common_utils import run_tests, TestCase from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/test_traverse.py
collect_data
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2",), data) self.assertEqual(data[("key2",)], {1: 2, 2: 3}) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2", "1"), data) self.assertEqual(data[("key2", "1")], 2) self.assertIn(("key2", "2"), data) self.assertEqual(data[("key2", "2")], 3) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
from collections import OrderedDict import torch import torch.distributed.checkpoint._traverse as _traverse from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE from torch.testing._internal.common_utils import run_tests, TestCase
from collections import OrderedDict from typing import TYPE_CHECKING import torch import torch.distributed.checkpoint._traverse as _traverse from torch.testing._internal.common_utils import run_tests, TestCase from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/test_traverse.py
collect_data
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2",), data) self.assertEqual(data[("key2",)], {1: 2, 2: 3}) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2", "1"), data) self.assertEqual(data[("key2", "1")], 2) self.assertIn(("key2", "2"), data) self.assertEqual(data[("key2", "2")], 3) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
from collections import OrderedDict import torch import torch.distributed.checkpoint._traverse as _traverse from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE from torch.testing._internal.common_utils import run_tests, TestCase
from collections import OrderedDict from typing import TYPE_CHECKING import torch import torch.distributed.checkpoint._traverse as _traverse from torch.testing._internal.common_utils import run_tests, TestCase from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/test_traverse.py
collect_data
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2",), data) self.assertEqual(data[("key2",)], {1: 2, 2: 3}) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
def collect_data(path, value): nonlocal data data[path] = value _traverse.traverse_state_dict(state_dict, collect_data) self.assertIn(("key0",), data) self.assertEqual(data[("key0",)], 1) self.assertIn(("key1",), data) self.assertEqual(data[("key1",)], [1, 2]) self.assertIn(("key2", "1"), data) self.assertEqual(data[("key2", "1")], 2) self.assertIn(("key2", "2"), data) self.assertEqual(data[("key2", "2")], 3) self.assertIn(("key3",), data) self.assertEqual(data[("key3",)], torch.tensor([1]))
from collections import OrderedDict import torch import torch.distributed.checkpoint._traverse as _traverse from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE from torch.testing._internal.common_utils import run_tests, TestCase
from collections import OrderedDict from typing import TYPE_CHECKING import torch import torch.distributed.checkpoint._traverse as _traverse from torch.testing._internal.common_utils import run_tests, TestCase from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/test_utils.py
create_sharded_tensor
def create_sharded_tensor(rank, world_size, shards_per_rank): shards_metadata = [] local_shards = [] for idx in range(0, world_size * shards_per_rank): shard_rank = idx // shards_per_rank shard_md = ShardMetadata(shard_offsets=[idx * 8], shard_sizes=[8], placement=f"rank:{shard_rank}/cpu") shards_metadata.append(shard_md) if shard_rank == rank: shard = Shard.from_tensor_and_offsets( torch.rand(*shard_md.shard_sizes), shard_offsets=shard_md.shard_offsets, rank=rank ) local_shards.append(shard) sharded_tensor_md = ShardedTensorMetadata( shards_metadata=shards_metadata, size=torch.Size([8 * len(shards_metadata)]), tensor_properties=TensorProperties.create_from_tensor(torch.zeros(1)) ) return ShardedTensor._init_from_local_shards_and_global_metadata( local_shards=local_shards, sharded_tensor_metadata=sharded_tensor_md ) class TestMedatadaIndex(TestCase): def test_init_convert_offset(self): a = MetadataIndex("foo", [1, 2]) b = MetadataIndex("foo", torch.Size([1, 2])) self.assertEqual(a, b) def test_index_hint_ignored_on_equals(self): a = MetadataIndex("foo") b = MetadataIndex("foo", index=99) self.assertEqual(a, b) def test_index_hint_ignored_on_hash(self): a = MetadataIndex("foo") b = MetadataIndex("foo", index=99) self.assertEqual(hash(a), hash(b)) def test_flat_data(self): state_dict = { "a": torch.rand(10), "b": [1, 2, 3], } a = find_state_dict_object(state_dict, MetadataIndex("a")) self.assertEqual(a, state_dict["a"]) a = find_state_dict_object(state_dict, MetadataIndex("a", [0])) self.assertEqual(a, state_dict["a"]) a = find_state_dict_object(state_dict, MetadataIndex("a", index=99)) self.assertEqual(a, state_dict["a"]) b = find_state_dict_object(state_dict, MetadataIndex("b")) self.assertEqual(b, state_dict["b"]) b = find_state_dict_object(state_dict, MetadataIndex("b", index=1)) self.assertEqual(b, state_dict["b"]) with self.assertRaisesRegex(ValueError, "FQN"): find_state_dict_object(state_dict, MetadataIndex("c")) with self.assertRaisesRegex(ValueError, "ShardedTensor"): find_state_dict_object(state_dict, MetadataIndex("b", [1])) @with_fake_comms(rank=0, world_size=2) def test_sharded_tensor_lookup(self): st = create_sharded_tensor(rank=0, world_size=2, shards_per_rank=3) state_dict = {"st": st} obj = find_state_dict_object(state_dict, MetadataIndex("st", [8])) self.assertEqual(obj, st.local_shards()[1].tensor) # good hint obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=1)) self.assertEqual(obj, st.local_shards()[1].tensor) # bad hint obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=2)) self.assertEqual(obj, st.local_shards()[1].tensor) # broken hint obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=99)) self.assertEqual(obj, st.local_shards()[1].tensor) with self.assertRaisesRegex(ValueError, "no offset was provided"): find_state_dict_object(state_dict, MetadataIndex("st")) with self.assertRaisesRegex(ValueError, "Could not find shard"): find_state_dict_object(state_dict, MetadataIndex("st", [1])) if __name__ == "__main__": run_tests()
def create_sharded_tensor(rank, world_size, shards_per_rank): shards_metadata = [] local_shards = [] for idx in range(0, world_size * shards_per_rank): shard_rank = idx // shards_per_rank shard_md = ShardMetadata( shard_offsets=[idx * 8], shard_sizes=[8], placement=f"rank:{shard_rank}/cpu" ) shards_metadata.append(shard_md) if shard_rank == rank: shard = Shard.from_tensor_and_offsets( torch.rand(*shard_md.shard_sizes), shard_offsets=shard_md.shard_offsets, rank=rank, ) local_shards.append(shard) sharded_tensor_md = ShardedTensorMetadata( shards_metadata=shards_metadata, size=torch.Size([8 * len(shards_metadata)]), tensor_properties=TensorProperties.create_from_tensor(torch.zeros(1)), ) return ShardedTensor._init_from_local_shards_and_global_metadata( local_shards=local_shards, sharded_tensor_metadata=sharded_tensor_md ) class TestMedatadaIndex(TestCase): def test_init_convert_offset(self): a = MetadataIndex("foo", [1, 2]) b = MetadataIndex("foo", torch.Size([1, 2])) self.assertEqual(a, b) def test_index_hint_ignored_on_equals(self): a = MetadataIndex("foo") b = MetadataIndex("foo", index=99) self.assertEqual(a, b) def test_index_hint_ignored_on_hash(self): a = MetadataIndex("foo") b = MetadataIndex("foo", index=99) self.assertEqual(hash(a), hash(b)) def test_flat_data(self): state_dict = { "a": torch.rand(10), "b": [1, 2, 3], } a = find_state_dict_object(state_dict, MetadataIndex("a")) self.assertEqual(a, state_dict["a"]) a = find_state_dict_object(state_dict, MetadataIndex("a", [0])) self.assertEqual(a, state_dict["a"]) a = find_state_dict_object(state_dict, MetadataIndex("a", index=99)) self.assertEqual(a, state_dict["a"]) b = find_state_dict_object(state_dict, MetadataIndex("b")) self.assertEqual(b, state_dict["b"]) b = find_state_dict_object(state_dict, MetadataIndex("b", index=1)) self.assertEqual(b, state_dict["b"]) with self.assertRaisesRegex(ValueError, "FQN"): find_state_dict_object(state_dict, MetadataIndex("c")) with self.assertRaisesRegex(ValueError, "ShardedTensor"): find_state_dict_object(state_dict, MetadataIndex("b", [1])) @with_fake_comms(rank=0, world_size=2) def test_sharded_tensor_lookup(self): st = create_sharded_tensor(rank=0, world_size=2, shards_per_rank=3) state_dict = {"st": st} obj = find_state_dict_object(state_dict, MetadataIndex("st", [8])) self.assertEqual(obj, st.local_shards()[1].tensor) # good hint obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=1)) self.assertEqual(obj, st.local_shards()[1].tensor) # bad hint obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=2)) self.assertEqual(obj, st.local_shards()[1].tensor) # broken hint obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=99)) self.assertEqual(obj, st.local_shards()[1].tensor) with self.assertRaisesRegex(ValueError, "no offset was provided"): find_state_dict_object(state_dict, MetadataIndex("st")) with self.assertRaisesRegex(ValueError, "Could not find shard"): find_state_dict_object(state_dict, MetadataIndex("st", [1])) def test_dcp_logger(self): self.assertTrue(_c10d_logger is not _dcp_logger) self.assertEqual(1, len(_c10d_logger.handlers)) if __name__ == "__main__": run_tests()
import sys import torch from torch.distributed._shard.sharded_tensor import ( Shard, ShardMetadata, ShardedTensor, ShardedTensorMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import TensorProperties from torch.testing._internal.common_utils import ( TestCase, TEST_WITH_DEV_DBG_ASAN, run_tests, ) from torch.distributed.checkpoint.utils import find_state_dict_object from torch.distributed.checkpoint.metadata import MetadataIndex from torch.testing._internal.distributed.distributed_utils import ( with_fake_comms )
import sys import torch from torch.distributed._shard.sharded_tensor import ( Shard, ShardedTensor, ShardedTensorMetadata, ShardMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import TensorProperties from torch.distributed.c10d_logger import _c10d_logger from torch.distributed.checkpoint.logger import _dcp_logger from torch.distributed.checkpoint.metadata import MetadataIndex from torch.distributed.checkpoint.utils import find_state_dict_object from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, TestCase, ) from torch.testing._internal.distributed.distributed_utils import with_fake_comms
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/api_test.py
test_get_ranks
def test_get_ranks(self): role_infos = [ _RoleInstanceInfo("parameter_server", 0, 4), _RoleInstanceInfo("trainer", 1, 1), _RoleInstanceInfo("trainer", 2, 2), _RoleInstanceInfo("trainer", 3, 3), _RoleInstanceInfo("parameter_server", 4, 5), ] spec = self._get_worker_spec( max_restarts=3, monitor_interval=0.1, role="not_used", local_world_size=8 ) agent = TestAgent(spec) total_sum, ranks = agent._get_ranks(role_infos, 0, 0, len(role_infos)) self.assertEqual(15, total_sum) self.assertEqual([0, 1, 2, 3], list(ranks))
import signal import unittest import uuid from typing import Any, Dict from unittest.mock import call, patch, MagicMock import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( RunResult, SimpleElasticAgent, WorkerGroup, WorkerSpec, WorkerState, _get_fq_hostname, _RoleInstanceInfo, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/elastic/agent/server/test/api_test.py
test_assign_worker_ranks
def test_assign_worker_ranks(self): role_infos = [ _RoleInstanceInfo("parameter_server", 0, 4), _RoleInstanceInfo("trainer", 1, 1), _RoleInstanceInfo("trainer", 2, 2), _RoleInstanceInfo("trainer", 3, 3), _RoleInstanceInfo("parameter_server", 4, 5), ] num_agents = len(role_infos) with patch.object(TestAgent, "_share_and_gather", return_value=role_infos): self.verify_worker_ranks( role_infos[0], num_agents, [0, 1, 2, 3], [0, 1, 2, 3] ) self.verify_worker_ranks(role_infos[1], num_agents, [4], [0]) self.verify_worker_ranks(role_infos[2], num_agents, [5, 6], [1, 2]) self.verify_worker_ranks(role_infos[3], num_agents, [7, 8, 9], [3, 4, 5])
def test_assign_worker_ranks(self): role_infos = [ _RoleInstanceInfo("parameter_server", 0, 4), _RoleInstanceInfo("trainer", 1, 1), _RoleInstanceInfo("trainer", 2, 2), _RoleInstanceInfo("trainer", 3, 3), _RoleInstanceInfo("parameter_server", 4, 5), ] store = dist.HashStore() def f(info) -> List[Worker]: i, role_info = info spec = self._get_worker_spec( max_restarts=3, monitor_interval=0.1, role=role_info.role, local_world_size=role_info.local_world_size, ) agent = TestAgent(spec) workers = agent._assign_worker_ranks( store, role_info.rank, len(role_infos), spec ) return [ ( w.local_rank, w.role_rank, w.global_rank, w.world_size, w.role_world_size, ) for w in workers ] with ThreadPool(len(role_infos)) as pool: out = pool.map(f, enumerate(role_infos)) self.assertListEqual( out, [ [ (0, 0, 0, 15, 9), (1, 1, 1, 15, 9), (2, 2, 2, 15, 9), (3, 3, 3, 15, 9), ], [ (0, 0, 4, 15, 6), ], [ (0, 1, 5, 15, 6), (1, 2, 6, 15, 6), ], [ (0, 3, 7, 15, 6), (1, 4, 8, 15, 6), (2, 5, 9, 15, 6), ], [ (0, 4, 10, 15, 9), (1, 5, 11, 15, 9), (2, 6, 12, 15, 9), (3, 7, 13, 15, 9), (4, 8, 14, 15, 9), ], ], )
import signal import unittest import uuid from typing import Any, Dict from unittest.mock import call, patch, MagicMock import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( RunResult, SimpleElasticAgent, WorkerGroup, WorkerSpec, WorkerState, _get_fq_hostname, _RoleInstanceInfo, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
import signal import unittest import uuid from multiprocessing.pool import ThreadPool from typing import Any, Dict, List from unittest.mock import call, patch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( _get_fq_hostname, _RoleInstanceInfo, RunResult, SimpleElasticAgent, Worker, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.rendezvous.api import RendezvousGracefulExitError from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/api_test.py
test_rendezvous
def test_rendezvous(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) # single agent rdzv self.assertEqual(1, worker_group.group_world_size) self.assertEqual(0, worker_group.group_rank) master_addr, master_port = agent._get_master_addr_port(worker_group.store) self.assertEqual(_get_fq_hostname(), master_addr) self.assertTrue(master_port > 0) rank_set = {w.global_rank for w in worker_group.workers} for w in worker_group.workers: self.assertIsNone(w.id) local_world_size = spec.local_world_size group_world_size = worker_group.group_world_size group_rank = worker_group.group_rank self.assertEqual(local_world_size * group_world_size, w.world_size) self.assertEqual( local_world_size * group_rank + w.local_rank, w.global_rank ) self.assertSetEqual(set(range(w.world_size)), rank_set)
def test_rendezvous(self): hostname = _get_fq_hostname() spec = self._get_worker_spec(max_restarts=1, local_addr=hostname) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) # single agent rdzv self.assertEqual(1, worker_group.group_world_size) self.assertEqual(0, worker_group.group_rank) self.assertEqual(hostname, worker_group.master_addr) self.assertTrue(worker_group.master_port > 0) rank_set = {w.global_rank for w in worker_group.workers} for w in worker_group.workers: self.assertIsNone(w.id) local_world_size = spec.local_world_size group_world_size = worker_group.group_world_size group_rank = worker_group.group_rank self.assertEqual(local_world_size * group_world_size, w.world_size) self.assertEqual( local_world_size * group_rank + w.local_rank, w.global_rank ) self.assertSetEqual(set(range(w.world_size)), rank_set)
import signal import unittest import uuid from typing import Any, Dict from unittest.mock import call, patch, MagicMock import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( RunResult, SimpleElasticAgent, WorkerGroup, WorkerSpec, WorkerState, _get_fq_hostname, _RoleInstanceInfo, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
import signal import unittest import uuid from multiprocessing.pool import ThreadPool from typing import Any, Dict, List from unittest.mock import call, patch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( _get_fq_hostname, _RoleInstanceInfo, RunResult, SimpleElasticAgent, Worker, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.rendezvous.api import RendezvousGracefulExitError from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/api_test.py
test_rendezvous_default_master_addr
def test_rendezvous_default_master_addr(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) master_addr, master_port = agent._get_master_addr_port(worker_group.store) self.assertEqual(_get_fq_hostname(), master_addr) self.assertGreater(master_port, 0)
def test_rendezvous_default_master_addr(self): hostname = _get_fq_hostname() spec = self._get_worker_spec(max_restarts=1, local_addr=hostname) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) self.assertEqual(_get_fq_hostname(), worker_group.master_addr) self.assertGreater(worker_group.master_port, 0)
import signal import unittest import uuid from typing import Any, Dict from unittest.mock import call, patch, MagicMock import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( RunResult, SimpleElasticAgent, WorkerGroup, WorkerSpec, WorkerState, _get_fq_hostname, _RoleInstanceInfo, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
import signal import unittest import uuid from multiprocessing.pool import ThreadPool from typing import Any, Dict, List from unittest.mock import call, patch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( _get_fq_hostname, _RoleInstanceInfo, RunResult, SimpleElasticAgent, Worker, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.rendezvous.api import RendezvousGracefulExitError from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/api_test.py
test_rendezvous_master_addr_with_local_addr
def test_rendezvous_master_addr_with_local_addr(self): spec_local_addr = "1.2.3.4" spec = self._get_worker_spec(max_restarts=1, local_addr=spec_local_addr) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) master_addr, master_port = agent._get_master_addr_port(worker_group.store) self.assertNotEqual(_get_fq_hostname(), master_addr) self.assertEqual(spec_local_addr, master_addr) self.assertGreater(master_port, 0)
def test_rendezvous_master_addr_with_local_addr(self): spec_local_addr = "127.0.0.1" spec = self._get_worker_spec(max_restarts=1, local_addr=spec_local_addr) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) self.assertNotEqual(_get_fq_hostname(), worker_group.master_addr) self.assertEqual(spec_local_addr, worker_group.master_addr) self.assertGreater(worker_group.master_port, 0)
import signal import unittest import uuid from typing import Any, Dict from unittest.mock import call, patch, MagicMock import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( RunResult, SimpleElasticAgent, WorkerGroup, WorkerSpec, WorkerState, _get_fq_hostname, _RoleInstanceInfo, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
import signal import unittest import uuid from multiprocessing.pool import ThreadPool from typing import Any, Dict, List from unittest.mock import call, patch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( _get_fq_hostname, _RoleInstanceInfo, RunResult, SimpleElasticAgent, Worker, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.rendezvous.api import RendezvousGracefulExitError from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/api_test.py
test_agent_process_handler_graceful_exception
if __name__ == "__main__": run_tests()
def test_agent_process_handler_graceful_exception(self, invoke_run, _): spec = self._get_worker_spec(max_restarts=0) agent = TestAgent(spec) invoke_run.side_effect = RendezvousGracefulExitError() with patch.object(agent, "_shutdown"): agent.run()
import signal import unittest import uuid from multiprocessing.pool import ThreadPool from typing import Any, Dict, List from unittest.mock import call, patch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( _get_fq_hostname, _RoleInstanceInfo, RunResult, SimpleElasticAgent, Worker, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.rendezvous.api import RendezvousGracefulExitError from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class SimpleElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/elastic/agent/server/test/local_elastic_agent_test.py
_bipolar_sleep_function
def _bipolar_sleep_function(sleep_sec): rank = int(os.environ["RANK"]) if rank % 2 == 0: _sleep(sleep_sec) else: _sad_function()
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_HEALTH_CHECK_PORT, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs, Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( skip_but_pass_in_sandcastle_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_utils.py
test_dcp_logger
if __name__ == "__main__": run_tests()
def test_dcp_logger(self): self.assertTrue(_c10d_logger is not _dcp_logger) self.assertEqual(1, len(_c10d_logger.handlers))
import sys import torch from torch.distributed._shard.sharded_tensor import ( Shard, ShardedTensor, ShardedTensorMetadata, ShardMetadata, ) from torch.distributed._shard.sharded_tensor.metadata import TensorProperties from torch.distributed.c10d_logger import _c10d_logger from torch.distributed.checkpoint.logger import _dcp_logger from torch.distributed.checkpoint.metadata import MetadataIndex from torch.distributed.checkpoint.utils import find_state_dict_object from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, TestCase, ) from torch.testing._internal.distributed.distributed_utils import with_fake_comms class TestMedatadaIndex(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/elastic/agent/server/test/api_test.py
do_nothing
def do_nothing(): pass class WorkerStateTest(unittest.TestCase): def test_is_running(self): for state in WorkerState: if state == WorkerState.HEALTHY or state == WorkerState.UNHEALTHY: self.assertTrue(WorkerState.is_running(state)) else: self.assertFalse(WorkerState.is_running(state)) class WorkerGroupTest(unittest.TestCase): def test_worker_group_constructor(self): spec = WorkerSpec( role="test_trainer", local_world_size=4, fn=do_nothing, args=(), rdzv_handler=None, max_restarts=50, monitor_interval=1, ) worker_group = WorkerGroup(spec) self.assertEqual(WorkerState.INIT, worker_group.state) workers = worker_group.workers self.assertEqual(4, len(workers)) # validate full, consecutive local ranks self.assertSetEqual(set(range(4)), {w.local_rank for w in workers}) # global_rank, world_size are assigned after rdzv # id is assigned after starting worker (by the agent) # validate there are None for w in workers: self.assertEqual(-1, w.global_rank) self.assertEqual(-1, w.world_size) self.assertEqual(None, w.id) # rank and store are assigned after rdzv; validate that they are None self.assertIsNone(worker_group.group_rank) self.assertIsNone(worker_group.store) class RoleInstanceInfoTest(unittest.TestCase): def test_compare(self): agent_role1 = _RoleInstanceInfo("role", 1, 10) agent_role2 = _RoleInstanceInfo("role", 2, 10) self.assertEqual(1, _RoleInstanceInfo.compare(agent_role2, agent_role1)) agent_role1 = _RoleInstanceInfo("role1", 1, 10) agent_role2 = _RoleInstanceInfo("role2", 2, 10) self.assertEqual(-1, _RoleInstanceInfo.compare(agent_role1, agent_role2)) agent_role1 = _RoleInstanceInfo("role1", 1, 10) agent_role2 = _RoleInstanceInfo("role2", 1, 10) self.assertEqual(-1, _RoleInstanceInfo.compare(agent_role1, agent_role2)) def test_serde(self): agent_role = _RoleInstanceInfo("role", 1, 10) str_data = agent_role.serialize() actual_agent_role = _RoleInstanceInfo.deserialize(str_data) self.assertEqual(agent_role.role, actual_agent_role.role) self.assertEqual(agent_role.rank, actual_agent_role.rank) self.assertEqual( agent_role.local_world_size, actual_agent_role.local_world_size ) def test_find_boundaries(self): role_infos = [ _RoleInstanceInfo("trainer", 1, 1), _RoleInstanceInfo("trainer", 2, 2), _RoleInstanceInfo("trainer", 3, 3), _RoleInstanceInfo("parameter_server", 4, 5), _RoleInstanceInfo("parameter_server", 0, 4), ] start_idx, end_idx = _RoleInstanceInfo.find_role_boundaries( role_infos, "trainer" ) self.assertEqual(start_idx, 0) self.assertEqual(end_idx, 2) class TestAgent(SimpleElasticAgent): def __init__(self, spec): super().__init__(spec) self.stop_workers_call_count = 0 self.start_workers_call_count = 0 def _stop_workers(self, worker_group: WorkerGroup) -> None: # workers are fake, nothing to stop; just clear the rdzv info worker_group.group_rank = None worker_group.group_world_size = None self.stop_workers_call_count += 1 def _start_workers(self, worker_group: WorkerGroup) -> Dict[int, Any]: # crate fake workers; make worker id equal to global rank ids = {} for worker in worker_group.workers: ids[worker.local_rank] = worker.global_rank self.start_workers_call_count += 1 return ids def _monitor_workers(self, worker_group: WorkerGroup) -> RunResult: raise NotImplementedError("mock this method") def _shutdown(self): pass
def do_nothing(): pass class WorkerStateTest(unittest.TestCase): def test_is_running(self): for state in WorkerState: if state == WorkerState.HEALTHY or state == WorkerState.UNHEALTHY: self.assertTrue(WorkerState.is_running(state)) else: self.assertFalse(WorkerState.is_running(state)) class WorkerGroupTest(unittest.TestCase): def test_worker_group_constructor(self): spec = WorkerSpec( role="test_trainer", local_world_size=4, fn=do_nothing, args=(), rdzv_handler=None, max_restarts=50, monitor_interval=0.1, ) worker_group = WorkerGroup(spec) self.assertEqual(WorkerState.INIT, worker_group.state) workers = worker_group.workers self.assertEqual(4, len(workers)) # validate full, consecutive local ranks self.assertSetEqual(set(range(4)), {w.local_rank for w in workers}) # global_rank, world_size are assigned after rdzv # id is assigned after starting worker (by the agent) # validate there are None for w in workers: self.assertEqual(-1, w.global_rank) self.assertEqual(-1, w.world_size) self.assertEqual(None, w.id) # rank and store are assigned after rdzv; validate that they are None self.assertIsNone(worker_group.group_rank) self.assertIsNone(worker_group.store) class RoleInstanceInfoTest(unittest.TestCase): def test_compare(self): agent_role1 = _RoleInstanceInfo("role", 1, 10) agent_role2 = _RoleInstanceInfo("role", 2, 10) self.assertEqual(1, _RoleInstanceInfo.compare(agent_role2, agent_role1)) agent_role1 = _RoleInstanceInfo("role1", 1, 10) agent_role2 = _RoleInstanceInfo("role2", 2, 10) self.assertEqual(-1, _RoleInstanceInfo.compare(agent_role1, agent_role2)) agent_role1 = _RoleInstanceInfo("role1", 1, 10) agent_role2 = _RoleInstanceInfo("role2", 1, 10) self.assertEqual(-1, _RoleInstanceInfo.compare(agent_role1, agent_role2)) def test_serde(self): agent_role = _RoleInstanceInfo("role", 1, 10) str_data = agent_role.serialize() actual_agent_role = _RoleInstanceInfo.deserialize(str_data) self.assertEqual(agent_role.role, actual_agent_role.role) self.assertEqual(agent_role.rank, actual_agent_role.rank) self.assertEqual( agent_role.local_world_size, actual_agent_role.local_world_size ) def test_find_boundaries(self): role_infos = [ _RoleInstanceInfo("trainer", 1, 1), _RoleInstanceInfo("trainer", 2, 2), _RoleInstanceInfo("trainer", 3, 3), _RoleInstanceInfo("parameter_server", 4, 5), _RoleInstanceInfo("parameter_server", 0, 4), ] start_idx, end_idx = _RoleInstanceInfo.find_role_boundaries( role_infos, "trainer" ) self.assertEqual(start_idx, 0) self.assertEqual(end_idx, 2) class TestAgent(SimpleElasticAgent): def __init__(self, spec): super().__init__(spec) self.stop_workers_call_count = 0 self.start_workers_call_count = 0 def _stop_workers( self, worker_group: WorkerGroup, is_restart: bool = False ) -> None: # workers are fake, nothing to stop; just clear the rdzv info worker_group.group_rank = None worker_group.group_world_size = None self.stop_workers_call_count += 1 def _start_workers(self, worker_group: WorkerGroup) -> Dict[int, Any]: # crate fake workers; make worker id equal to global rank ids = {} for worker in worker_group.workers: ids[worker.local_rank] = worker.global_rank self.start_workers_call_count += 1 return ids def _monitor_workers(self, worker_group: WorkerGroup) -> RunResult: raise NotImplementedError("mock this method") def _shutdown(self): pass
import signal import unittest import uuid from typing import Any, Dict from unittest.mock import call, patch, MagicMock import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( RunResult, SimpleElasticAgent, WorkerGroup, WorkerSpec, WorkerState, _get_fq_hostname, _RoleInstanceInfo, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests
import signal import unittest import uuid from multiprocessing.pool import ThreadPool from typing import Any, Dict, List from unittest.mock import call, patch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( _get_fq_hostname, _RoleInstanceInfo, RunResult, SimpleElasticAgent, Worker, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.rendezvous.api import RendezvousGracefulExitError from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/api_test.py
test_worker_group_constructor
def test_worker_group_constructor(self): spec = WorkerSpec( role="test_trainer", local_world_size=4, fn=do_nothing, args=(), rdzv_handler=None, max_restarts=50, monitor_interval=1, ) worker_group = WorkerGroup(spec) self.assertEqual(WorkerState.INIT, worker_group.state) workers = worker_group.workers self.assertEqual(4, len(workers)) # validate full, consecutive local ranks self.assertSetEqual(set(range(4)), {w.local_rank for w in workers}) # global_rank, world_size are assigned after rdzv # id is assigned after starting worker (by the agent) # validate there are None for w in workers: self.assertEqual(-1, w.global_rank) self.assertEqual(-1, w.world_size) self.assertEqual(None, w.id) # rank and store are assigned after rdzv; validate that they are None self.assertIsNone(worker_group.group_rank) self.assertIsNone(worker_group.store)
def test_worker_group_constructor(self): spec = WorkerSpec( role="test_trainer", local_world_size=4, fn=do_nothing, args=(), rdzv_handler=None, max_restarts=50, monitor_interval=0.1, ) worker_group = WorkerGroup(spec) self.assertEqual(WorkerState.INIT, worker_group.state) workers = worker_group.workers self.assertEqual(4, len(workers)) # validate full, consecutive local ranks self.assertSetEqual(set(range(4)), {w.local_rank for w in workers}) # global_rank, world_size are assigned after rdzv # id is assigned after starting worker (by the agent) # validate there are None for w in workers: self.assertEqual(-1, w.global_rank) self.assertEqual(-1, w.world_size) self.assertEqual(None, w.id) # rank and store are assigned after rdzv; validate that they are None self.assertIsNone(worker_group.group_rank) self.assertIsNone(worker_group.store)
import signal import unittest import uuid from typing import Any, Dict from unittest.mock import call, patch, MagicMock import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( RunResult, SimpleElasticAgent, WorkerGroup, WorkerSpec, WorkerState, _get_fq_hostname, _RoleInstanceInfo, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class WorkerGroupTest(unittest.TestCase):
import signal import unittest import uuid from multiprocessing.pool import ThreadPool from typing import Any, Dict, List from unittest.mock import call, patch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( _get_fq_hostname, _RoleInstanceInfo, RunResult, SimpleElasticAgent, Worker, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.rendezvous.api import RendezvousGracefulExitError from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests class WorkerGroupTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/api_test.py
monres
def monres(state: WorkerState): if state == WorkerState.SUCCEEDED: return RunResult(state=state, return_values={0: 0}, failures={}) elif state in {WorkerState.UNHEALTHY, WorkerState.FAILED}: pf = ProcessFailure(local_rank=0, pid=999, exitcode=1, error_file="<none>") return RunResult(state=state, return_values={}, failures={0: pf}) else: return RunResult(state=state) class SimpleElasticAgentTest(unittest.TestCase): def _get_worker_spec( self, max_restarts=1, monitor_interval=1.0, role="test_trainer", local_world_size=8, local_addr=None, ): run_id = str(uuid.uuid4().int) port = get_free_port() endpoint = f"127.0.0.1:{port}" rdzv_params = RendezvousParameters( backend="static", endpoint=endpoint, run_id=run_id, min_nodes=1, max_nodes=1, rank=0, ) rdzv_handler = rdzv_registry.get_rendezvous_handler(rdzv_params) spec = WorkerSpec( role=role, local_world_size=local_world_size, fn=do_nothing, args=(), rdzv_handler=rdzv_handler, max_restarts=max_restarts, monitor_interval=monitor_interval, local_addr=local_addr, ) return spec def test_agent_constructor(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) worker_group = agent.get_worker_group() self.assertEqual(WorkerState.INIT, worker_group.state) self.assertEqual(spec.max_restarts, agent._remaining_restarts) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_flakiness_metric(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) agent._record_flakiness_metric() put_metric_mock.assert_called_with("workers.test_trainer.flakiness", 0) agent._worker_group.spec.max_restarts = 10 agent._remaining_restarts = 3 agent._record_flakiness_metric() put_metric_mock.assert_called_with("workers.test_trainer.flakiness", 63) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_flakiness_metric_zero_restarts(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=1) spec.max_restarts = 0 agent = TestAgent(spec) agent._record_flakiness_metric() put_metric_mock.assert_called_with("workers.test_trainer.flakiness", 0) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_flakiness_metric_user_exception(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) agent._record_flakiness_metric(True) put_metric_mock.assert_called_with("workers.test_trainer.flakiness", 100) @patch.object(TestAgent, "_invoke_run") @patch.object(TestAgent, "_record_metrics") @patch.object(TestAgent, "_record_worker_events") @patch.object(TestAgent, "_shutdown") def test_invoke_run( self, shutdown_mock, record_events_mock, record_metrics_mock, invoke_run_mock ): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) agent.run() invoke_run_mock.assert_called_once() record_metrics_mock.assert_called_once() record_events_mock.assert_called_once() shutdown_mock.assert_called_once() @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_metrics_success_no_retries(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) group_result = RunResult({}, {}) agent._record_metrics(group_result) calls = self._get_record_metrics_test_calls(success_no_retries=1) put_metric_mock.assert_has_calls(calls, any_order=True) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_metrics_success_with_retries(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=10) agent = TestAgent(spec) agent._remaining_restarts = 2 group_result = RunResult({}, {}) agent._record_metrics(group_result) calls = self._get_record_metrics_test_calls(success_with_retries=1) put_metric_mock.assert_has_calls(calls, any_order=True) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_metrics_failed_with_retries(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=10) agent = TestAgent(spec) agent._remaining_restarts = 2 group_result = RunResult( state=WorkerState.FAILED, return_values={}, failures={0: 0} ) agent._record_metrics(group_result) calls = self._get_record_metrics_test_calls(failed_with_retries=1) put_metric_mock.assert_has_calls(calls, any_order=True) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_metrics_failed_no_retries(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=10) agent = TestAgent(spec) group_result = RunResult( state=WorkerState.FAILED, return_values={}, failures={0: 0} ) agent._record_metrics(group_result) calls = self._get_record_metrics_test_calls(failed_no_retries=1) put_metric_mock.assert_has_calls(calls, any_order=True) def _get_record_metrics_test_calls( self, success_with_retries=0, success_no_retries=0, failed_with_retries=0, failed_no_retries=0, ): calls = [ call("workers.test_trainer.run_success_with_retries", success_with_retries), call("workers.test_trainer.run_success_no_retries", success_no_retries), call("workers.test_trainer.run_failed_with_retries", failed_with_retries), call("workers.test_trainer.run_failed_no_retries", failed_no_retries), ] return calls def test_rendezvous(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) # single agent rdzv self.assertEqual(1, worker_group.group_world_size) self.assertEqual(0, worker_group.group_rank) master_addr, master_port = agent._get_master_addr_port(worker_group.store) self.assertEqual(_get_fq_hostname(), master_addr) self.assertTrue(master_port > 0) rank_set = {w.global_rank for w in worker_group.workers} for w in worker_group.workers: self.assertIsNone(w.id) local_world_size = spec.local_world_size group_world_size = worker_group.group_world_size group_rank = worker_group.group_rank self.assertEqual(local_world_size * group_world_size, w.world_size) self.assertEqual( local_world_size * group_rank + w.local_rank, w.global_rank ) self.assertSetEqual(set(range(w.world_size)), rank_set) def test_rendezvous_default_master_addr(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) master_addr, master_port = agent._get_master_addr_port(worker_group.store) self.assertEqual(_get_fq_hostname(), master_addr) self.assertGreater(master_port, 0) def test_rendezvous_master_addr_with_local_addr(self): spec_local_addr = "1.2.3.4" spec = self._get_worker_spec(max_restarts=1, local_addr=spec_local_addr) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) master_addr, master_port = agent._get_master_addr_port(worker_group.store) self.assertNotEqual(_get_fq_hostname(), master_addr) self.assertEqual(spec_local_addr, master_addr) self.assertGreater(master_port, 0) def test_initialize_workers(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._initialize_workers(worker_group) self.assertEqual(WorkerState.HEALTHY, worker_group.state) for i in range(spec.local_world_size): worker = worker_group.workers[i] self.assertEqual(worker.id, worker.global_rank) def test_restart_workers(self): spec = self._get_worker_spec() agent = TestAgent(spec) worker_group = agent.get_worker_group() num_restarts = 3 for _ in range(0, num_restarts): agent._restart_workers(worker_group) self.assertEqual(WorkerState.HEALTHY, worker_group.state) # test_rendezvous and test_initialize_workers # already validates the correctness of these fields # simply validate that they are not None # (e.g. that they get assigned) self.assertIsNotNone(worker_group.group_rank) self.assertIsNotNone(worker_group.group_world_size) for w in worker_group.workers: self.assertIsNotNone(w.id) self.assertIsNotNone(w.global_rank) self.assertIsNotNone(w.world_size) self.assertEqual(num_restarts, agent.start_workers_call_count) self.assertEqual(num_restarts, agent.stop_workers_call_count) @patch.object( TestAgent, "_monitor_workers", side_effect=[ monres(WorkerState.HEALTHY), monres(WorkerState.HEALTHY), monres(WorkerState.SUCCEEDED), ], ) @patch.object(TestAgent, "_record_worker_events") def test_run_happy_path(self, record_events_mock, mock_monitor_workers): # worker starts # is always healthy # then succeeds max_restarts = 10 spec = self._get_worker_spec(max_restarts) agent = TestAgent(spec) agent.run() # no failure, no membership changes -> no retries self.assertEqual(max_restarts, agent._remaining_restarts) record_events_mock.assert_called_once() @patch.object(TestAgent, "_initialize_workers", side_effect=RuntimeError()) def test_run_initialization_failure(self, mock_initialize_workers): spec = self._get_worker_spec() agent = TestAgent(spec) worker_group = agent._worker_group with self.assertRaises(RuntimeError): agent.run() self.assertEqual(WorkerState.INIT, worker_group.state) def test_run_max_retries_exceeded(self): for restartable_state in [ monres(WorkerState.FAILED), monres(WorkerState.UNHEALTHY), ]: with patch.object( TestAgent, "_monitor_workers", return_value=restartable_state ) as mock_monitor_workers: spec = self._get_worker_spec(max_restarts=3, monitor_interval=0.1) agent = TestAgent(spec) worker_group = agent._worker_group agent.run() self.assertEqual(WorkerState.FAILED, worker_group.state) self.assertEqual(0, agent._remaining_restarts) # one monitor call for each retry + one to monitor the last retry self.assertEqual(spec.max_restarts + 1, mock_monitor_workers.call_count) @patch.object( TestAgent, "_monitor_workers", side_effect=[ monres(WorkerState.HEALTHY), monres(WorkerState.HEALTHY), monres(WorkerState.HEALTHY), monres(WorkerState.SUCCEEDED), ], ) @patch.object(RendezvousHandler, "num_nodes_waiting", side_effect=[1, 1, 0]) @patch.object(TestAgent, "_record_worker_events") def test_run_membership_change( self, record_events_mock, mock_num_nodes_waiting, mock_monitor_workers ): spec = self._get_worker_spec(max_restarts=1, monitor_interval=0.1) agent = TestAgent(spec) worker_group = agent._worker_group agent.run() self.assertEqual(WorkerState.SUCCEEDED, worker_group.state) record_events_mock.assert_called_once() @patch.object( TestAgent, "_monitor_workers", return_value=monres(WorkerState.UNKNOWN) ) def test_run_unknown_state(self, mock_monitor_workers): # when the state is unknown we exit immediately; no retries spec = self._get_worker_spec(max_restarts=100, monitor_interval=0.1) agent = TestAgent(spec) worker_group = agent._worker_group with self.assertRaises(Exception): agent.run() self.assertEqual(WorkerState.UNKNOWN, worker_group.state) self.assertEqual(1, mock_monitor_workers.call_count) self.assertEqual(spec.max_restarts, agent._remaining_restarts) def test_get_ranks(self): role_infos = [ _RoleInstanceInfo("parameter_server", 0, 4), _RoleInstanceInfo("trainer", 1, 1), _RoleInstanceInfo("trainer", 2, 2), _RoleInstanceInfo("trainer", 3, 3), _RoleInstanceInfo("parameter_server", 4, 5), ] spec = self._get_worker_spec( max_restarts=3, monitor_interval=0.1, role="not_used", local_world_size=8 ) agent = TestAgent(spec) total_sum, ranks = agent._get_ranks(role_infos, 0, 0, len(role_infos)) self.assertEqual(15, total_sum) self.assertEqual([0, 1, 2, 3], list(ranks)) def test_assign_worker_ranks(self): role_infos = [ _RoleInstanceInfo("parameter_server", 0, 4), _RoleInstanceInfo("trainer", 1, 1), _RoleInstanceInfo("trainer", 2, 2), _RoleInstanceInfo("trainer", 3, 3), _RoleInstanceInfo("parameter_server", 4, 5), ] num_agents = len(role_infos) with patch.object(TestAgent, "_share_and_gather", return_value=role_infos): self.verify_worker_ranks( role_infos[0], num_agents, [0, 1, 2, 3], [0, 1, 2, 3] ) self.verify_worker_ranks(role_infos[1], num_agents, [4], [0]) self.verify_worker_ranks(role_infos[2], num_agents, [5, 6], [1, 2]) self.verify_worker_ranks(role_infos[3], num_agents, [7, 8, 9], [3, 4, 5]) def verify_worker_ranks( self, agent_config, total_agents, expected_global_ranks, expected_role_ranks ): role, agent_rank, local_world_size = ( agent_config.role, agent_config.rank, agent_config.local_world_size, ) spec = self._get_worker_spec( max_restarts=3, monitor_interval=0.1, role=role, local_world_size=local_world_size, ) agent = TestAgent(spec) workers = agent._assign_worker_ranks(None, agent_rank, total_agents, spec) self.assertEqual( expected_global_ranks, [worker.global_rank for worker in workers] ) self.assertEqual(expected_role_ranks, [worker.role_rank for worker in workers]) @patch("torch.distributed.elastic.utils.store.synchronize") def test_share_and_gather(self, sync_mock): # when the state is unknown we exit immediately; no retries spec = self._get_worker_spec(max_restarts=100, monitor_interval=0.1) agent = TestAgent(spec) expected_agent_infos = [ _RoleInstanceInfo("trainer", 0, 10), _RoleInstanceInfo("trainer", 1, 10), _RoleInstanceInfo("validator", 2, 10), ] sync_mock.return_value = [obj.serialize() for obj in expected_agent_infos] result = agent._share_and_gather(MagicMock(), 1, 3, spec) sync_mock.assert_called_once() for expected_role_info, actual_role_info in zip(expected_agent_infos, result): self.assertEqual(expected_role_info.role, actual_role_info.role) self.assertEqual(expected_role_info.rank, actual_role_info.rank) self.assertEqual( expected_role_info.local_world_size, actual_role_info.local_world_size ) def test_get_event(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) event = agent.get_event_succeeded() self.assertEqual("AGENT", event.source) self.assertEqual("static", event.metadata["rdzv_backend"]) self.assertEqual("SUCCEEDED", event.metadata["state"]) self.assertEqual(spec.role, event.metadata["role"]) def test_get_worker_status_event(self): spec = self._get_worker_spec(max_restarts=4) agent = TestAgent(spec) agent._remaining_restarts = spec.max_restarts - 2 actual_event = agent._construct_event( state="SUCCEEDED", source="WORKER", worker=agent._worker_group.workers[0], ) self.assertEqual("WORKER", actual_event.source) self.assertEqual("static", actual_event.metadata["rdzv_backend"]) self.assertEqual("SUCCEEDED", actual_event.metadata["state"]) self.assertEqual(spec.role, actual_event.metadata["role"]) self.assertEqual(2, actual_event.metadata["agent_restarts"]) @patch("torch.distributed.elastic.agent.server.api.put_metric") @patch.object(TestAgent, "_invoke_run") def test_agent_process_signal_exception(self, invoke_run, _): spec = self._get_worker_spec(max_restarts=0) agent = TestAgent(spec) invoke_run.side_effect = SignalException( "signal exception", sigval=signal.SIGTERM ) with patch.object(agent, "_shutdown") as shutdown_mock: with self.assertRaises(SignalException): agent.run() args, _ = shutdown_mock.call_args self.assertEqual(signal.SIGTERM, args[0]) if __name__ == "__main__": run_tests()
def monres(state: WorkerState): if state == WorkerState.SUCCEEDED: return RunResult(state=state, return_values={0: 0}, failures={}) elif state in {WorkerState.UNHEALTHY, WorkerState.FAILED}: pf = ProcessFailure(local_rank=0, pid=999, exitcode=1, error_file="<none>") return RunResult(state=state, return_values={}, failures={0: pf}) else: return RunResult(state=state) class SimpleElasticAgentTest(unittest.TestCase): def _get_worker_spec( self, max_restarts=1, monitor_interval=0.1, role="test_trainer", local_world_size=8, local_addr=None, ): run_id = str(uuid.uuid4().int) port = get_free_port() if local_addr is None: endpoint = f"127.0.0.1:{port}" else: endpoint = f"{local_addr}:{port}" rdzv_params = RendezvousParameters( backend="static", endpoint=endpoint, run_id=run_id, min_nodes=1, max_nodes=1, rank=0, ) rdzv_handler = rdzv_registry.get_rendezvous_handler(rdzv_params) spec = WorkerSpec( role=role, local_world_size=local_world_size, fn=do_nothing, args=(), rdzv_handler=rdzv_handler, max_restarts=max_restarts, monitor_interval=monitor_interval, local_addr=local_addr, ) return spec def test_agent_constructor(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) worker_group = agent.get_worker_group() self.assertEqual(WorkerState.INIT, worker_group.state) self.assertEqual(spec.max_restarts, agent._remaining_restarts) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_flakiness_metric(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) agent._record_flakiness_metric() put_metric_mock.assert_called_with("workers.test_trainer.flakiness", 0) agent._worker_group.spec.max_restarts = 10 agent._remaining_restarts = 3 agent._record_flakiness_metric() put_metric_mock.assert_called_with("workers.test_trainer.flakiness", 63) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_flakiness_metric_zero_restarts(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=1) spec.max_restarts = 0 agent = TestAgent(spec) agent._record_flakiness_metric() put_metric_mock.assert_called_with("workers.test_trainer.flakiness", 0) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_flakiness_metric_user_exception(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) agent._record_flakiness_metric(True) put_metric_mock.assert_called_with("workers.test_trainer.flakiness", 100) @patch.object(TestAgent, "_invoke_run") @patch.object(TestAgent, "_record_metrics") @patch.object(TestAgent, "_record_worker_events") @patch.object(TestAgent, "_shutdown") def test_invoke_run( self, shutdown_mock, record_events_mock, record_metrics_mock, invoke_run_mock ): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) agent.run() invoke_run_mock.assert_called_once() record_metrics_mock.assert_called_once() record_events_mock.assert_called_once() shutdown_mock.assert_called_once() @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_metrics_success_no_retries(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) group_result = RunResult({}, {}) agent._record_metrics(group_result) calls = self._get_record_metrics_test_calls(success_no_retries=1) put_metric_mock.assert_has_calls(calls, any_order=True) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_metrics_success_with_retries(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=10) agent = TestAgent(spec) agent._remaining_restarts = 2 group_result = RunResult({}, {}) agent._record_metrics(group_result) calls = self._get_record_metrics_test_calls(success_with_retries=1) put_metric_mock.assert_has_calls(calls, any_order=True) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_metrics_failed_with_retries(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=10) agent = TestAgent(spec) agent._remaining_restarts = 2 group_result = RunResult( state=WorkerState.FAILED, return_values={}, failures={0: 0} ) agent._record_metrics(group_result) calls = self._get_record_metrics_test_calls(failed_with_retries=1) put_metric_mock.assert_has_calls(calls, any_order=True) @patch("torch.distributed.elastic.agent.server.api.put_metric") def test_record_metrics_failed_no_retries(self, put_metric_mock): spec = self._get_worker_spec(max_restarts=10) agent = TestAgent(spec) group_result = RunResult( state=WorkerState.FAILED, return_values={}, failures={0: 0} ) agent._record_metrics(group_result) calls = self._get_record_metrics_test_calls(failed_no_retries=1) put_metric_mock.assert_has_calls(calls, any_order=True) def _get_record_metrics_test_calls( self, success_with_retries=0, success_no_retries=0, failed_with_retries=0, failed_no_retries=0, ): calls = [ call("workers.test_trainer.run_success_with_retries", success_with_retries), call("workers.test_trainer.run_success_no_retries", success_no_retries), call("workers.test_trainer.run_failed_with_retries", failed_with_retries), call("workers.test_trainer.run_failed_no_retries", failed_no_retries), ] return calls def test_rendezvous(self): hostname = _get_fq_hostname() spec = self._get_worker_spec(max_restarts=1, local_addr=hostname) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) # single agent rdzv self.assertEqual(1, worker_group.group_world_size) self.assertEqual(0, worker_group.group_rank) self.assertEqual(hostname, worker_group.master_addr) self.assertTrue(worker_group.master_port > 0) rank_set = {w.global_rank for w in worker_group.workers} for w in worker_group.workers: self.assertIsNone(w.id) local_world_size = spec.local_world_size group_world_size = worker_group.group_world_size group_rank = worker_group.group_rank self.assertEqual(local_world_size * group_world_size, w.world_size) self.assertEqual( local_world_size * group_rank + w.local_rank, w.global_rank ) self.assertSetEqual(set(range(w.world_size)), rank_set) def test_rendezvous_default_master_addr(self): hostname = _get_fq_hostname() spec = self._get_worker_spec(max_restarts=1, local_addr=hostname) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) self.assertEqual(_get_fq_hostname(), worker_group.master_addr) self.assertGreater(worker_group.master_port, 0) def test_rendezvous_master_addr_with_local_addr(self): spec_local_addr = "127.0.0.1" spec = self._get_worker_spec(max_restarts=1, local_addr=spec_local_addr) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._rendezvous(worker_group) self.assertNotEqual(_get_fq_hostname(), worker_group.master_addr) self.assertEqual(spec_local_addr, worker_group.master_addr) self.assertGreater(worker_group.master_port, 0) def test_initialize_workers(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) worker_group = agent.get_worker_group() agent._initialize_workers(worker_group) self.assertEqual(WorkerState.HEALTHY, worker_group.state) for i in range(spec.local_world_size): worker = worker_group.workers[i] self.assertEqual(worker.id, worker.global_rank) def test_restart_workers(self): spec = self._get_worker_spec() agent = TestAgent(spec) worker_group = agent.get_worker_group() num_restarts = 3 for _ in range(0, num_restarts): agent._restart_workers(worker_group) self.assertEqual(WorkerState.HEALTHY, worker_group.state) # test_rendezvous and test_initialize_workers # already validates the correctness of these fields # simply validate that they are not None # (e.g. that they get assigned) self.assertIsNotNone(worker_group.group_rank) self.assertIsNotNone(worker_group.group_world_size) for w in worker_group.workers: self.assertIsNotNone(w.id) self.assertIsNotNone(w.global_rank) self.assertIsNotNone(w.world_size) self.assertEqual(num_restarts, agent.start_workers_call_count) self.assertEqual(num_restarts, agent.stop_workers_call_count) @patch.object( TestAgent, "_monitor_workers", side_effect=[ monres(WorkerState.HEALTHY), monres(WorkerState.HEALTHY), monres(WorkerState.SUCCEEDED), ], ) @patch.object(TestAgent, "_record_worker_events") def test_run_happy_path(self, record_events_mock, mock_monitor_workers): # worker starts # is always healthy # then succeeds max_restarts = 10 spec = self._get_worker_spec(max_restarts) agent = TestAgent(spec) agent.run() # no failure, no membership changes -> no retries self.assertEqual(max_restarts, agent._remaining_restarts) record_events_mock.assert_called_once() @patch.object(TestAgent, "_initialize_workers", side_effect=RuntimeError()) def test_run_initialization_failure(self, mock_initialize_workers): spec = self._get_worker_spec() agent = TestAgent(spec) worker_group = agent._worker_group with self.assertRaises(RuntimeError): agent.run() self.assertEqual(WorkerState.INIT, worker_group.state) def test_run_max_retries_exceeded(self): for restartable_state in [ monres(WorkerState.FAILED), monres(WorkerState.UNHEALTHY), ]: with patch.object( TestAgent, "_monitor_workers", return_value=restartable_state ) as mock_monitor_workers: spec = self._get_worker_spec(max_restarts=3, monitor_interval=0.1) agent = TestAgent(spec) worker_group = agent._worker_group agent.run() self.assertEqual(WorkerState.FAILED, worker_group.state) self.assertEqual(0, agent._remaining_restarts) # one monitor call for each retry + one to monitor the last retry self.assertEqual(spec.max_restarts + 1, mock_monitor_workers.call_count) @patch.object( TestAgent, "_monitor_workers", side_effect=[ monres(WorkerState.HEALTHY), monres(WorkerState.HEALTHY), monres(WorkerState.HEALTHY), monres(WorkerState.SUCCEEDED), ], ) @patch.object(RendezvousHandler, "num_nodes_waiting", side_effect=[1, 1, 0]) @patch.object(TestAgent, "_record_worker_events") def test_run_membership_change( self, record_events_mock, mock_num_nodes_waiting, mock_monitor_workers ): spec = self._get_worker_spec(max_restarts=1, monitor_interval=0.1) agent = TestAgent(spec) worker_group = agent._worker_group agent.run() self.assertEqual(WorkerState.SUCCEEDED, worker_group.state) record_events_mock.assert_called_once() @patch.object( TestAgent, "_monitor_workers", return_value=monres(WorkerState.UNKNOWN) ) def test_run_unknown_state(self, mock_monitor_workers): # when the state is unknown we exit immediately; no retries spec = self._get_worker_spec(max_restarts=100, monitor_interval=0.1) agent = TestAgent(spec) worker_group = agent._worker_group with self.assertRaises(Exception): agent.run() self.assertEqual(WorkerState.UNKNOWN, worker_group.state) self.assertEqual(1, mock_monitor_workers.call_count) self.assertEqual(spec.max_restarts, agent._remaining_restarts) def test_assign_worker_ranks(self): role_infos = [ _RoleInstanceInfo("parameter_server", 0, 4), _RoleInstanceInfo("trainer", 1, 1), _RoleInstanceInfo("trainer", 2, 2), _RoleInstanceInfo("trainer", 3, 3), _RoleInstanceInfo("parameter_server", 4, 5), ] store = dist.HashStore() def f(info) -> List[Worker]: i, role_info = info spec = self._get_worker_spec( max_restarts=3, monitor_interval=0.1, role=role_info.role, local_world_size=role_info.local_world_size, ) agent = TestAgent(spec) workers = agent._assign_worker_ranks( store, role_info.rank, len(role_infos), spec ) return [ ( w.local_rank, w.role_rank, w.global_rank, w.world_size, w.role_world_size, ) for w in workers ] with ThreadPool(len(role_infos)) as pool: out = pool.map(f, enumerate(role_infos)) self.assertListEqual( out, [ [ (0, 0, 0, 15, 9), (1, 1, 1, 15, 9), (2, 2, 2, 15, 9), (3, 3, 3, 15, 9), ], [ (0, 0, 4, 15, 6), ], [ (0, 1, 5, 15, 6), (1, 2, 6, 15, 6), ], [ (0, 3, 7, 15, 6), (1, 4, 8, 15, 6), (2, 5, 9, 15, 6), ], [ (0, 4, 10, 15, 9), (1, 5, 11, 15, 9), (2, 6, 12, 15, 9), (3, 7, 13, 15, 9), (4, 8, 14, 15, 9), ], ], ) def test_get_event(self): spec = self._get_worker_spec(max_restarts=1) agent = TestAgent(spec) event = agent.get_event_succeeded() self.assertEqual("AGENT", event.source) self.assertEqual("static", event.metadata["rdzv_backend"]) self.assertEqual("SUCCEEDED", event.metadata["state"]) self.assertEqual(spec.role, event.metadata["role"]) def test_get_worker_status_event(self): spec = self._get_worker_spec(max_restarts=4) agent = TestAgent(spec) agent._remaining_restarts = spec.max_restarts - 2 actual_event = agent._construct_event( state="SUCCEEDED", source="WORKER", worker=agent._worker_group.workers[0], ) self.assertEqual("WORKER", actual_event.source) self.assertEqual("static", actual_event.metadata["rdzv_backend"]) self.assertEqual("SUCCEEDED", actual_event.metadata["state"]) self.assertEqual(spec.role, actual_event.metadata["role"]) self.assertEqual(2, actual_event.metadata["agent_restarts"]) @patch("torch.distributed.elastic.agent.server.api.put_metric") @patch.object(TestAgent, "_invoke_run") def test_agent_process_signal_exception(self, invoke_run, _): spec = self._get_worker_spec(max_restarts=0) agent = TestAgent(spec) invoke_run.side_effect = SignalException( "signal exception", sigval=signal.SIGTERM ) with patch.object(agent, "_shutdown") as shutdown_mock: with self.assertRaises(SignalException): agent.run() args, _ = shutdown_mock.call_args self.assertEqual(signal.SIGTERM, args[0]) @patch("torch.distributed.elastic.agent.server.api.put_metric") @patch.object(TestAgent, "_invoke_run") def test_agent_process_handler_graceful_exception(self, invoke_run, _): spec = self._get_worker_spec(max_restarts=0) agent = TestAgent(spec) invoke_run.side_effect = RendezvousGracefulExitError() with patch.object(agent, "_shutdown"): agent.run() if __name__ == "__main__": run_tests()
import signal import unittest import uuid from typing import Any, Dict from unittest.mock import call, patch, MagicMock import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( RunResult, SimpleElasticAgent, WorkerGroup, WorkerSpec, WorkerState, _get_fq_hostname, _RoleInstanceInfo, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests
import signal import unittest import uuid from multiprocessing.pool import ThreadPool from typing import Any, Dict, List from unittest.mock import call, patch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.agent.server.api import ( _get_fq_hostname, _RoleInstanceInfo, RunResult, SimpleElasticAgent, Worker, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed.elastic.multiprocessing import SignalException from torch.distributed.elastic.multiprocessing.errors import ProcessFailure from torch.distributed.elastic.rendezvous import RendezvousHandler, RendezvousParameters from torch.distributed.elastic.rendezvous.api import RendezvousGracefulExitError from torch.distributed.elastic.utils.distributed import get_free_port from torch.testing._internal.common_utils import run_tests
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/local_elastic_agent_test.py
_check_env_function
def _check_env_function(): # just check these env vars exist, os.environ[...] will naturally throw # if the variable does not exist env_vars = [ "RANK", "LOCAL_RANK", "ROLE_RANK", "ROLE_NAME", "GROUP_RANK", "LOCAL_WORLD_SIZE", "ROLE_WORLD_SIZE", "WORLD_SIZE", "GROUP_WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "TORCHELASTIC_RESTART_COUNT", "TORCHELASTIC_MAX_RESTARTS", "TORCHELASTIC_RUN_ID", "TORCHELASTIC_USE_AGENT_STORE", "NCCL_ASYNC_ERROR_HANDLING", ] for var in env_vars: _ = os.environ[var]
def _check_env_function(): # just check these env vars exist, os.environ[...] will naturally throw # if the variable does not exist env_vars = [ "RANK", "LOCAL_RANK", "ROLE_RANK", "ROLE_NAME", "GROUP_RANK", "LOCAL_WORLD_SIZE", "ROLE_WORLD_SIZE", "WORLD_SIZE", "GROUP_WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "TORCHELASTIC_RESTART_COUNT", "TORCHELASTIC_MAX_RESTARTS", "TORCHELASTIC_RUN_ID", "TORCHELASTIC_USE_AGENT_STORE", "TORCH_NCCL_ASYNC_ERROR_HANDLING", ] for var in env_vars: _ = os.environ[var]
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( sandcastle_skip_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, )
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_HEALTH_CHECK_PORT, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs, Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( skip_but_pass_in_sandcastle_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/local_elastic_agent_test.py
test_no_exit_barrier_on_failure
def test_no_exit_barrier_on_failure(self): self.run_test_with_backend( backend="c10d", test_to_run=self.no_exit_barrier_on_failure )
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_HEALTH_CHECK_PORT, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs, Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( skip_but_pass_in_sandcastle_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, ) class LocalElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/elastic/agent/server/test/local_elastic_agent_test.py
run_check_nccl_async_error_handling_env
def run_check_nccl_async_error_handling_env(self): # make sure NCCL_ASYNC_ERROR_HANDLING set in os.environ is honored with patch.dict(os.environ, {"NCCL_ASYNC_ERROR_HANDLING": "0"}): res = self.run_agent( Conf( entrypoint=_check_env_value, local_world_size=1, args=("NCCL_ASYNC_ERROR_HANDLING", "0"), ) ) self.assertFalse(res.is_failed())
def run_check_nccl_async_error_handling_env(self): # make sure TORCH_NCCL_ASYNC_ERROR_HANDLING set in os.environ is honored with patch.dict(os.environ, {"TORCH_NCCL_ASYNC_ERROR_HANDLING": "0"}): res = self.run_agent( Conf( entrypoint=_check_env_value, local_world_size=1, args=("TORCH_NCCL_ASYNC_ERROR_HANDLING", "0"), ) ) self.assertFalse(res.is_failed())
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( sandcastle_skip_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, ) class LocalElasticAgentTest(unittest.TestCase):
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_HEALTH_CHECK_PORT, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs, Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( skip_but_pass_in_sandcastle_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, ) class LocalElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/local_elastic_agent_test.py
run_check_nccl_async_error_handling_env_default
def run_check_nccl_async_error_handling_env_default(self): # if not present in env var it should default to 1 res = self.run_agent( Conf( entrypoint=_check_env_value, local_world_size=1, args=("NCCL_ASYNC_ERROR_HANDLING", "1"), ) ) self.assertFalse(res.is_failed())
def run_check_nccl_async_error_handling_env_default(self): # if not present in env var it should default to 1 res = self.run_agent( Conf( entrypoint=_check_env_value, local_world_size=1, args=("TORCH_NCCL_ASYNC_ERROR_HANDLING", "1"), ) ) self.assertFalse(res.is_failed())
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( sandcastle_skip_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, ) class LocalElasticAgentTest(unittest.TestCase):
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_HEALTH_CHECK_PORT, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs, Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( skip_but_pass_in_sandcastle_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, ) class LocalElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/local_elastic_agent_test.py
run_agent_local_watchdog_setup_enabled
def run_agent_local_watchdog_setup_enabled(self): # Set the env for watchdog watchdog_env_name = TORCHELASTIC_TIMER_FILE watchdog_file_path = "/tmp/watchdog_timer_" + str(uuid.uuid4()) os.environ[watchdog_env_name] = watchdog_file_path # Run the agent node_conf = Conf(entrypoint=_check_local_watchdog_setup, local_world_size=1, args=(TORCHELASTIC_TIMER_FILE, True)) spec = self.get_worker_spec(node_conf, max_restarts=2) agent = self.get_agent(spec) res = agent.run() self.assertFalse(res.is_failed())
def run_agent_local_watchdog_setup_enabled(self): # Set the env for watchdog watchdog_env_name = TORCHELASTIC_TIMER_FILE watchdog_file_path = "/tmp/watchdog_timer_" + str(uuid.uuid4()) os.environ[watchdog_env_name] = watchdog_file_path # Run the agent node_conf = Conf( entrypoint=_check_local_watchdog_setup, local_world_size=1, args=(TORCHELASTIC_TIMER_FILE, True), ) spec = self.get_worker_spec(node_conf, max_restarts=2) agent = self.get_agent(spec, node_config=node_conf) res = agent.run() self.assertFalse(res.is_failed())
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( sandcastle_skip_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, ) class LocalElasticAgentTest(unittest.TestCase):
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_HEALTH_CHECK_PORT, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs, Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( skip_but_pass_in_sandcastle_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, ) class LocalElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/agent/server/test/local_elastic_agent_test.py
run_agent_healthcheck_setup_enabled
def run_agent_healthcheck_setup_enabled(self): # Set the env for healthcheck healthcheck_port_env_name = TORCHELASTIC_HEALTH_CHECK_PORT os.environ[healthcheck_port_env_name] = "12345" # Run the agent node_conf = Conf( entrypoint=_check_local_watchdog_setup, local_world_size=1, args=(TORCHELASTIC_HEALTH_CHECK_PORT, True), ) spec = self.get_worker_spec(node_conf, max_restarts=2) agent = self.get_agent(spec, node_config=node_conf) res = agent.run() self.assertFalse(res.is_failed())
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_HEALTH_CHECK_PORT, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs, Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( skip_but_pass_in_sandcastle_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, ) class LocalElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/elastic/agent/server/test/local_elastic_agent_test.py
test_rank_restart_after_failure
def test_rank_restart_after_failure(self): self.run_test_with_backend(backend="c10d", test_to_run=self.fail_rank_one_once)
import json import multiprocessing as mp import os import shutil import signal import socket import tempfile import time import unittest import uuid from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Tuple from unittest import mock from unittest.mock import Mock, patch import torch import torch.distributed as dist import torch.distributed.elastic.rendezvous.registry as rdzv_registry import torch.distributed.rpc as rpc from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerSpec, WorkerState, ) from torch.distributed.elastic.agent.server.local_elastic_agent import ( LocalElasticAgent, TORCHELASTIC_HEALTH_CHECK_PORT, TORCHELASTIC_TIMER_FILE, ) from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs, Std from torch.distributed.elastic.multiprocessing.errors import ChildFailedError, record from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.rendezvous.etcd_server import EtcdServer from torch.distributed.rpc.backend_registry import BackendType from torch.testing._internal.common_utils import ( skip_but_pass_in_sandcastle_if, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, ) class LocalElasticAgentTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/elastic/metrics/api_test.py
func
def func(self): raise NotImplementedError()
def func(self): raise NotImplementedError
import abc import unittest.mock as mock from torch.distributed.elastic.metrics.api import ( MetricData, MetricHandler, MetricStream, _get_metric_name, prof, ) from torch.testing._internal.common_utils import run_tests, TestCase class Parent(abc.ABC):
import abc import unittest.mock as mock from torch.distributed.elastic.metrics.api import ( _get_metric_name, MetricData, MetricHandler, MetricStream, prof, ) from torch.testing._internal.common_utils import run_tests, TestCase class Parent(abc.ABC):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/metrics/api_test.py
func
def func(self): raise NotImplementedError()
def func(self): raise NotImplementedError
import abc import unittest.mock as mock from torch.distributed.elastic.metrics.api import ( MetricData, MetricHandler, MetricStream, _get_metric_name, prof, ) from torch.testing._internal.common_utils import run_tests, TestCase class Parent(abc.ABC):
import abc import unittest.mock as mock from torch.distributed.elastic.metrics.api import ( _get_metric_name, MetricData, MetricHandler, MetricStream, prof, ) from torch.testing._internal.common_utils import run_tests, TestCase class Parent(abc.ABC):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_invalid_log_dir
def test_invalid_log_dir(self): with tempfile.NamedTemporaryFile(dir=self.test_dir) as not_a_dir: cases = { "does_not_exist": FileNotFoundError, not_a_dir.name: NotADirectoryError, # test_dir is not empty since we touched not_a_dir file self.test_dir: RuntimeError, } for (log_dir, expected_error) in cases.items(): with self.subTest(log_dir=log_dir, expected_error=expected_error): with self.assertRaises(expected_error): start_processes( name="echo", entrypoint=echo1, args={0: ("hello",)}, envs={0: {"RANK": "0"}}, log_dir=log_dir, )
def test_invalid_log_dir(self): with tempfile.NamedTemporaryFile(dir=self.test_dir) as not_a_dir: cases = { not_a_dir.name: NotADirectoryError, } for log_dir, expected_error in cases.items(): with self.subTest(log_dir=log_dir, expected_error=expected_error): with self.assertRaises(expected_error): pc = None try: pc = start_processes( name="echo", entrypoint=echo1, args={0: ("hello",)}, envs={0: {"RANK": "0"}}, logs_specs=DefaultLogsSpecs(log_dir=log_dir), ) finally: if pc: pc.close()
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_args_env_len_mismatch
def test_args_env_len_mismatch(self): cases = [ # 1 x args; 2 x envs { "args": {0: ("hello",)}, "envs": {0: {"RANK": "0"}, 1: {"RANK": "1"}}, }, # 2 x args; 1 x envs { "args": {0: ("hello",), 1: ("world",)}, "envs": {0: {"RANK": "0"}}, }, ] for kwds in cases: args = kwds["args"] envs = kwds["envs"] with self.subTest(args=args, envs=envs): with self.assertRaises(RuntimeError): start_processes( name="echo", entrypoint=echo1, args=args, envs=envs, log_dir=self.log_dir(), )
def test_args_env_len_mismatch(self): cases = [ # 1 x args; 2 x envs { "args": {0: ("hello",)}, "envs": {0: {"RANK": "0"}, 1: {"RANK": "1"}}, }, # 2 x args; 1 x envs { "args": {0: ("hello",), 1: ("world",)}, "envs": {0: {"RANK": "0"}}, }, ] for kwds in cases: args = kwds["args"] envs = kwds["envs"] with self.subTest(args=args, envs=envs): with self.assertRaises(RuntimeError): start_processes( name="echo", entrypoint=echo1, args=args, envs=envs, logs_specs=DefaultLogsSpecs(log_dir=self.log_dir()), )
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_pcontext_wait
def test_pcontext_wait(self): pc = start_processes( name="sleep", entrypoint=time.sleep, args={0: (1,)}, envs={0: {}}, log_dir=self.log_dir(), start_method="spawn", ) self.assertIsNone(pc.wait(timeout=0.1, period=0.01)) self.assertIsNotNone(pc.wait(period=0.1)) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
def test_pcontext_wait(self): pc = start_processes( name="sleep", entrypoint=time.sleep, args={0: (1,)}, envs={0: {}}, logs_specs=DefaultLogsSpecs(log_dir=self.log_dir()), start_method="spawn", ) self.assertIsNone(pc.wait(timeout=0.1, period=0.01)) self.assertIsNotNone(pc.wait(period=0.1)) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_pcontext_wait_on_a_child_thread
def test_pcontext_wait_on_a_child_thread(self): asyncio.run(asyncio.to_thread(self.test_pcontext_wait))
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/elastic/multiprocessing/api_test.py
test_multiprocess_context_close
def test_multiprocess_context_close(self): pc = start_processes( name="sleep", entrypoint=time.sleep, args={0: (1,)}, envs={0: {}}, log_dir=self.log_dir(), start_method="spawn", ) pids = pc.pids() pc.close() self.assert_pids_noexist(pids) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
def test_multiprocess_context_close(self): pc = start_processes( name="sleep", entrypoint=time.sleep, args={0: (1,)}, envs={0: {}}, logs_specs=DefaultLogsSpecs(log_dir=self.log_dir()), start_method="spawn", ) pids = pc.pids() pc.close() self.assert_pids_noexist(pids) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_subprocess_context_close
def test_subprocess_context_close(self): pc = start_processes( name="sleep", entrypoint=bin("zombie_test.py"), args={0: (1,)}, envs={0: {}}, log_dir=self.log_dir(), ) pids = pc.pids() pc.close() self.assert_pids_noexist(pids)
def test_subprocess_context_close(self): pc = start_processes( name="sleep", entrypoint=bin("zombie_test.py"), args={0: (1,)}, envs={0: {}}, logs_specs=DefaultLogsSpecs(log_dir=self.log_dir()), ) pids = pc.pids() pc.close() self.assert_pids_noexist(pids)
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsBinaryTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/metrics/api_test.py
foo_1
def foo_1(): pass class TestMetricsHandler(MetricHandler): def __init__(self): self.metric_data = {} def emit(self, metric_data: MetricData): self.metric_data[metric_data.name] = metric_data class Parent(abc.ABC): @abc.abstractmethod def func(self): raise NotImplementedError() def base_func(self): self.func() class Child(Parent): # need to decorate the implementation not the abstract method! @prof def func(self): pass class MetricsApiTest(TestCase): def foo_2(self): pass @prof def bar(self): pass @prof def throw(self): raise RuntimeError() @prof(group="torchelastic") def bar2(self): pass def test_get_metric_name(self): # Note: since pytorch uses main method to launch tests, # the module will be different between fb and oss, this # allows keeping the module name consistent. foo_1.__module__ = "api_test" self.assertEqual("api_test.foo_1", _get_metric_name(foo_1)) self.assertEqual("MetricsApiTest.foo_2", _get_metric_name(self.foo_2)) def test_profile(self): handler = TestMetricsHandler() stream = MetricStream("torchelastic", handler) # patch instead of configure to avoid conflicts when running tests in parallel with mock.patch( "torch.distributed.elastic.metrics.api.getStream", return_value=stream ): self.bar() self.assertEqual(1, handler.metric_data["MetricsApiTest.bar.success"].value) self.assertNotIn("MetricsApiTest.bar.failure", handler.metric_data) self.assertIn("MetricsApiTest.bar.duration.ms", handler.metric_data) with self.assertRaises(RuntimeError): self.throw() self.assertEqual( 1, handler.metric_data["MetricsApiTest.throw.failure"].value ) self.assertNotIn("MetricsApiTest.bar_raise.success", handler.metric_data) self.assertIn("MetricsApiTest.throw.duration.ms", handler.metric_data) self.bar2() self.assertEqual( "torchelastic", handler.metric_data["MetricsApiTest.bar2.success"].group_name, ) def test_inheritance(self): handler = TestMetricsHandler() stream = MetricStream("torchelastic", handler) # patch instead of configure to avoid conflicts when running tests in parallel with mock.patch( "torch.distributed.elastic.metrics.api.getStream", return_value=stream ): c = Child() c.base_func() self.assertEqual(1, handler.metric_data["Child.func.success"].value) self.assertIn("Child.func.duration.ms", handler.metric_data) if __name__ == "__main__": run_tests()
def foo_1(): pass class TestMetricsHandler(MetricHandler): def __init__(self) -> None: self.metric_data = {} def emit(self, metric_data: MetricData): self.metric_data[metric_data.name] = metric_data class Parent(abc.ABC): @abc.abstractmethod def func(self): raise NotImplementedError def base_func(self): self.func() class Child(Parent): # need to decorate the implementation not the abstract method! @prof def func(self): pass class MetricsApiTest(TestCase): def foo_2(self): pass @prof def bar(self): pass @prof def throw(self): raise RuntimeError @prof(group="torchelastic") def bar2(self): pass def test_get_metric_name(self): # Note: since pytorch uses main method to launch tests, # the module will be different between fb and oss, this # allows keeping the module name consistent. foo_1.__module__ = "api_test" self.assertEqual("api_test.foo_1", _get_metric_name(foo_1)) self.assertEqual("MetricsApiTest.foo_2", _get_metric_name(self.foo_2)) def test_profile(self): handler = TestMetricsHandler() stream = MetricStream("torchelastic", handler) # patch instead of configure to avoid conflicts when running tests in parallel with mock.patch( "torch.distributed.elastic.metrics.api.getStream", return_value=stream ): self.bar() self.assertEqual(1, handler.metric_data["MetricsApiTest.bar.success"].value) self.assertNotIn("MetricsApiTest.bar.failure", handler.metric_data) self.assertIn("MetricsApiTest.bar.duration.ms", handler.metric_data) with self.assertRaises(RuntimeError): self.throw() self.assertEqual( 1, handler.metric_data["MetricsApiTest.throw.failure"].value ) self.assertNotIn("MetricsApiTest.bar_raise.success", handler.metric_data) self.assertIn("MetricsApiTest.throw.duration.ms", handler.metric_data) self.bar2() self.assertEqual( "torchelastic", handler.metric_data["MetricsApiTest.bar2.success"].group_name, ) def test_inheritance(self): handler = TestMetricsHandler() stream = MetricStream("torchelastic", handler) # patch instead of configure to avoid conflicts when running tests in parallel with mock.patch( "torch.distributed.elastic.metrics.api.getStream", return_value=stream ): c = Child() c.base_func() self.assertEqual(1, handler.metric_data["Child.func.success"].value) self.assertIn("Child.func.duration.ms", handler.metric_data) if __name__ == "__main__": run_tests()
import abc import unittest.mock as mock from torch.distributed.elastic.metrics.api import ( MetricData, MetricHandler, MetricStream, _get_metric_name, prof, ) from torch.testing._internal.common_utils import run_tests, TestCase
import abc import unittest.mock as mock from torch.distributed.elastic.metrics.api import ( _get_metric_name, MetricData, MetricHandler, MetricStream, prof, ) from torch.testing._internal.common_utils import run_tests, TestCase
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/metrics/api_test.py
__init__
def __init__(self): self.metric_data = {}
def __init__(self) -> None: self.metric_data = {}
import abc import unittest.mock as mock from torch.distributed.elastic.metrics.api import ( MetricData, MetricHandler, MetricStream, _get_metric_name, prof, ) from torch.testing._internal.common_utils import run_tests, TestCase class TestMetricsHandler(MetricHandler):
import abc import unittest.mock as mock from torch.distributed.elastic.metrics.api import ( _get_metric_name, MetricData, MetricHandler, MetricStream, prof, ) from torch.testing._internal.common_utils import run_tests, TestCase class TestMetricsHandler(MetricHandler):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_function_with_tensor
def test_function_with_tensor(self): for start_method in self._start_methods: pc = start_processes( name="dummy_compute", entrypoint=dummy_compute, args={}, envs={}, log_dir=self.log_dir(), start_method=start_method, ) results = pc.wait() self.assert_pids_noexist(pc.pids()) for return_value in results.return_values.values(): self.assertIsInstance(return_value, torch.Tensor) self.assertEqual((100, 100), return_value.shape)
def test_function_with_tensor(self): for start_method in self._start_methods: pc = start_processes( name="dummy_compute", entrypoint=dummy_compute, args={0: ()}, envs={0: {}}, logs_specs=DefaultLogsSpecs(log_dir=self.log_dir()), start_method=start_method, ) results = pc.wait() self.assert_pids_noexist(pc.pids()) for return_value in results.return_values.values(): self.assertIsInstance(return_value, torch.Tensor) self.assertEqual((100, 100), return_value.shape)
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_function_large_ret_val
def test_function_large_ret_val(self): # python multiprocessing.queue module uses pipes and actually PipedQueues # This means that if a single object is greater than a pipe size # the writer process will block until reader process will start # reading the pipe. # This test makes a worker fn to return huge output, around ~10 MB size = 200000 for start_method in self._start_methods: with self.subTest(start_method=start_method): pc = start_processes( name="echo", entrypoint=echo_large, args={0: (size,), 1: (size,), 2: (size,), 3: (size,)}, envs={0: {}, 1: {}, 2: {}, 3: {}}, log_dir=self.log_dir(), start_method=start_method, ) results = pc.wait(period=0.1) for i in range(pc.nprocs): self.assertEqual(size, len(results.return_values[i]))
def test_function_large_ret_val(self): # python multiprocessing.queue module uses pipes and actually PipedQueues # This means that if a single object is greater than a pipe size # the writer process will block until reader process will start # reading the pipe. # This test makes a worker fn to return huge output, around ~10 MB size = 200000 for start_method in self._start_methods: with self.subTest(start_method=start_method): pc = start_processes( logs_specs=DefaultLogsSpecs(log_dir=self.log_dir()), name="echo", entrypoint=echo_large, args={0: (size,), 1: (size,), 2: (size,), 3: (size,)}, envs={0: {}, 1: {}, 2: {}, 3: {}}, start_method=start_method, ) results = pc.wait(period=0.1) for i in range(pc.nprocs): self.assertEqual(size, len(results.return_values[i]))
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_function_raise
def test_function_raise(self): """ run 2x copies of echo2, raise an exception on the first """ RAISE = True for start_method in self._start_methods: with self.subTest(start_method=start_method): log_dir = self.log_dir() pc = start_processes( name="echo", entrypoint=echo2, args={0: ("hello", RAISE), 1: ("world",)}, envs={0: {}, 1: {}}, log_dir=log_dir, start_method=start_method, ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertEqual(1, len(results.failures)) self.assertFalse(results.return_values) failure = results.failures[0] error_file = failure.error_file error_file_data = failure.error_file_data self.assertEqual(1, failure.exitcode) self.assertEqual("<N/A>", failure.signal_name()) self.assertEqual(pc.pids()[0], failure.pid) self.assertEqual( os.path.join(log_dir, "0", "error.json"), error_file ) self.assertEqual( int(error_file_data["message"]["extraInfo"]["timestamp"]), int(failure.timestamp), ) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped()) ######################################## # start_processes as binary tests ########################################
def test_function_raise(self): """ run 2x copies of echo2, raise an exception on the first """ RAISE = True for start_method in self._start_methods: with self.subTest(start_method=start_method): log_dir = self.log_dir() pc = start_processes( name="echo", entrypoint=echo2, args={0: ("hello", RAISE), 1: ("world",)}, envs={ 0: {"TORCHELASTIC_RUN_ID": "run_id"}, 1: {"TORCHELASTIC_RUN_ID": "run_id"}, }, logs_specs=DefaultLogsSpecs(log_dir=log_dir), start_method=start_method, ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertEqual(1, len(results.failures)) self.assertFalse(results.return_values) failure = results.failures[0] error_file = failure.error_file error_file_data = failure.error_file_data self.assertEqual(1, failure.exitcode) self.assertEqual("<N/A>", failure.signal_name()) self.assertEqual(pc.pids()[0], failure.pid) self.assertTrue( error_file.startswith(os.path.join(log_dir, "run_id_")) ) self.assertTrue(error_file.endswith("attempt_0/0/error.json")) self.assertEqual( int(error_file_data["message"]["extraInfo"]["timestamp"]), int(failure.timestamp), ) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_multiprocessing_context_poll_raises_exception
def test_multiprocessing_context_poll_raises_exception(self): mp_context = MultiprocessContext( name="test_mp", entrypoint=echo0, args={0: (0, 1)}, envs={}, stdouts={0: {}}, stderrs={0: {}}, tee_stdouts={0: "tee_stdout"}, tee_stderrs={0: "tee_stderr"}, error_files={0: "test_file"}, start_method="spawn", ) mp_context._pc = mock.Mock() # Using mock since we cannot just set exitcode on process mock_process = mock.Mock() mock_process.exitcode = -1 mp_context._pc.processes = [mock_process] e = mp.ProcessRaisedException(msg="test msg", error_index=0, error_pid=123) mp_context._pc.join.side_effect = e with mock.patch.object(mp_context, "close"): run_result = mp_context._poll() self.assertEqual(1, len(run_result.failures)) failure = run_result.failures[0] self.assertEqual( "Signal 1 (SIGHUP) received by PID 123", failure.message ) # tests incompatible with tsan or asan, the redirect functionality does not work on macos or windows
def test_multiprocessing_context_poll_raises_exception(self): mp_context = MultiprocessContext( name="test_mp", entrypoint=echo0, args={0: (0, 1)}, envs={0: {}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), redirects=Std.ALL, tee=Std.ALL ), start_method="spawn", ) mp_context._pc = mock.Mock() # Using mock since we cannot just set exitcode on process mock_process = mock.Mock() mock_process.exitcode = -1 mp_context._pc.processes = [mock_process] e = mp.ProcessRaisedException(msg="test msg", error_index=0, error_pid=123) mp_context._pc.join.side_effect = e with mock.patch.object(mp_context, "close"): run_result = mp_context._poll() self.assertEqual(1, len(run_result.failures)) failure = run_result.failures[0] self.assertEqual( "Signal 1 (SIGHUP) received by PID 123", failure.message )
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_subprocess_context_close
def test_subprocess_context_close(self): pc = start_processes( name="sleep", entrypoint=bin("zombie_test.py"), args={0: (1,)}, envs={0: {}}, log_dir=self.log_dir(), ) pids = pc.pids() pc.close() self.assert_pids_noexist(pids)
def test_subprocess_context_close(self): pc = start_processes( name="sleep", entrypoint=bin("zombie_test.py"), args={0: (1,)}, envs={0: {}}, logs_specs=DefaultLogsSpecs(log_dir=self.log_dir()), ) pids = pc.pids() pc.close() self.assert_pids_noexist(pids)
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsBinaryTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_binary_exit
def test_binary_exit(self): FAIL = 138 pc = start_processes( name="echo", entrypoint=bin("echo1.py"), args={0: ("--exitcode", FAIL, "foo"), 1: ("--exitcode", 0, "bar")}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=self.log_dir(), redirects={0: Std.ALL}, ) results = pc.wait(period=0.1) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) failure = results.failures[0] self.assertEqual(138, failure.exitcode) self.assertEqual("<N/A>", failure.signal_name()) self.assertEqual("<NONE>", failure.error_file_data["message"]) self.assert_in_file([f"exit {FAIL} from 0"], results.stderrs[0]) self.assert_in_file([], results.stdouts[0]) self.assertFalse(results.stderrs[1]) self.assertFalse(results.stdouts[1]) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
def test_binary_exit(self): FAIL = 138 pc = start_processes( name="echo", entrypoint=bin("echo1.py"), args={0: ("--exitcode", FAIL, "foo"), 1: ("--exitcode", 0, "bar")}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), redirects={0: Std.ALL}, ), ) results = pc.wait(period=0.1) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) failure = results.failures[0] self.assertEqual(138, failure.exitcode) self.assertEqual("<N/A>", failure.signal_name()) self.assertEqual("<NONE>", failure.error_file_data["message"]) self.assert_in_file([f"exit {FAIL} from 0"], results.stderrs[0]) self.assert_in_file([], results.stdouts[0]) self.assertFalse(results.stderrs[1]) self.assertFalse(results.stdouts[1]) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsBinaryTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_binary_raises
def test_binary_raises(self): pc = start_processes( name="echo", entrypoint=bin("echo2.py"), args={0: ("--raises", "true", "foo"), 1: ("bar",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=self.log_dir(), ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) failure = results.failures[0] self.assertEqual(1, failure.exitcode) self.assertEqual("<NONE>", failure.error_file_data["message"]) self.assertEqual("<N/A>", failure.signal_name())
def test_binary_raises(self): pc = start_processes( name="echo", entrypoint=bin("echo2.py"), args={0: ("--raises", "true", "foo"), 1: ("bar",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs(log_dir=self.log_dir()), ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) failure = results.failures[0] self.assertEqual(1, failure.exitcode) self.assertEqual("<NONE>", failure.error_file_data["message"]) self.assertEqual("<N/A>", failure.signal_name())
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsBinaryTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_binary_incorrect_entrypoint
def test_binary_incorrect_entrypoint(self): with self.assertRaises(FileNotFoundError): start_processes( name="echo", entrypoint="does_not_exist.py", args={0: ("foo"), 1: ("bar",)}, envs={0: {}, 1: {}}, log_dir=self.log_dir(), )
def test_binary_incorrect_entrypoint(self): with self.assertRaises(FileNotFoundError): start_processes( name="echo", entrypoint="does_not_exist.py", args={0: ("foo"), 1: ("bar",)}, envs={0: {}, 1: {}}, logs_specs=DefaultLogsSpecs(log_dir=self.log_dir()), )
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsBinaryTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_binary_signal
def test_binary_signal(self): pc = start_processes( name="echo", entrypoint=bin("echo3.py"), args={0: ("--segfault", "true", "foo"), 1: ("bar",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=self.log_dir(), ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) failure = results.failures[0] self.assertNotEqual(signal.SIGSEGV, failure.exitcode) if TEST_WITH_ASAN or TEST_WITH_TSAN: # ASAN/TSAN exit code is 1. self.assertEqual("<N/A>", failure.signal_name()) else: self.assertEqual("SIGSEGV", failure.signal_name()) self.assertEqual("<NONE>", failure.error_file_data["message"])
def test_binary_signal(self): pc = start_processes( name="echo", entrypoint=bin("echo3.py"), args={0: ("--segfault", "true", "foo"), 1: ("bar",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), ), ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) failure = results.failures[0] self.assertNotEqual(signal.SIGSEGV, failure.exitcode) if TEST_WITH_ASAN or TEST_WITH_TSAN: # ASAN/TSAN exit code is 1. self.assertEqual("<N/A>", failure.signal_name()) else: self.assertEqual("SIGSEGV", failure.signal_name()) self.assertEqual("<NONE>", failure.error_file_data["message"])
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesNotCITest(StartProcessesTest):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesNotCIAsBinaryTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_multiprocessing_context_poll_raises_exception
def test_multiprocessing_context_poll_raises_exception(self): mp_context = MultiprocessContext( name="test_mp", entrypoint=echo0, args={0: (0, 1)}, envs={}, stdouts={0: {}}, stderrs={0: {}}, tee_stdouts={0: "tee_stdout"}, tee_stderrs={0: "tee_stderr"}, error_files={0: "test_file"}, start_method="spawn", ) mp_context._pc = mock.Mock() # Using mock since we cannot just set exitcode on process mock_process = mock.Mock() mock_process.exitcode = -1 mp_context._pc.processes = [mock_process] e = mp.ProcessRaisedException(msg="test msg", error_index=0, error_pid=123) mp_context._pc.join.side_effect = e with mock.patch.object(mp_context, "close"): run_result = mp_context._poll() self.assertEqual(1, len(run_result.failures)) failure = run_result.failures[0] self.assertEqual( "Signal 1 (SIGHUP) received by PID 123", failure.message ) # tests incompatible with tsan or asan, the redirect functionality does not work on macos or windows
def test_multiprocessing_context_poll_raises_exception(self): mp_context = MultiprocessContext( name="test_mp", entrypoint=echo0, args={0: (0, 1)}, envs={0: {}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), redirects=Std.ALL, tee=Std.ALL ), start_method="spawn", ) mp_context._pc = mock.Mock() # Using mock since we cannot just set exitcode on process mock_process = mock.Mock() mock_process.exitcode = -1 mp_context._pc.processes = [mock_process] e = mp.ProcessRaisedException(msg="test msg", error_index=0, error_pid=123) mp_context._pc.join.side_effect = e with mock.patch.object(mp_context, "close"): run_result = mp_context._poll() self.assertEqual(1, len(run_result.failures)) failure = run_result.failures[0] self.assertEqual( "Signal 1 (SIGHUP) received by PID 123", failure.message )
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesTest(TestCase):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_function
def test_function(self): for start_method, redirs in product( self._start_methods, redirects_oss_test() ): with self.subTest(start_method=start_method, redirs=redirs): pc = start_processes( name="echo", entrypoint=echo1, args={0: ("hello",), 1: ("hello",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=self.log_dir(), start_method=start_method, redirects=redirs, ) results = pc.wait(period=0.1) nprocs = pc.nprocs self.assert_pids_noexist(pc.pids()) self.assertEqual( {i: f"hello_{i}" for i in range(nprocs)}, results.return_values ) for i in range(nprocs): if redirs & Std.OUT != Std.OUT: self.assertFalse(results.stdouts[i]) if redirs & Std.ERR != Std.ERR: self.assertFalse(results.stderrs[i]) if redirs & Std.OUT == Std.OUT: self.assert_in_file( [f"hello stdout from {i}"], results.stdouts[i] ) if redirs & Std.ERR == Std.ERR: self.assert_in_file( [f"hello stderr from {i}"], results.stderrs[i] )
def test_function(self): for start_method, redirs in product( self._start_methods, redirects_oss_test() ): with self.subTest(start_method=start_method, redirs=redirs): pc = start_processes( name="echo", entrypoint=echo1, args={0: ("hello",), 1: ("hello",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), redirects=redirs, ), start_method=start_method, ) results = pc.wait(period=0.1) nprocs = pc.nprocs self.assert_pids_noexist(pc.pids()) self.assertEqual( {i: f"hello_{i}" for i in range(nprocs)}, results.return_values ) for i in range(nprocs): if redirs & Std.OUT != Std.OUT: self.assertFalse(results.stdouts[i]) if redirs & Std.ERR != Std.ERR: self.assertFalse(results.stderrs[i]) if redirs & Std.OUT == Std.OUT: self.assert_in_file( [f"hello stdout from {i}"], results.stdouts[i] ) if redirs & Std.ERR == Std.ERR: self.assert_in_file( [f"hello stderr from {i}"], results.stderrs[i] )
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesListTest(StartProcessesTest):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesListAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_binary
def test_binary(self): for redirs in redirects_oss_test(): with self.subTest(redirs=redirs): pc = start_processes( name="echo", entrypoint=bin("echo1.py"), args={0: ("hello",), 1: ("hello",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=self.log_dir(), redirects=redirs, ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) # currently binaries return {rank: None} self.assertEqual(2, len(results.return_values)) self.assertFalse(results.is_failed()) nprocs = pc.nprocs for i in range(nprocs): if redirs & Std.OUT != Std.OUT: self.assertFalse(results.stdouts[i]) if redirs & Std.ERR != Std.ERR: self.assertFalse(results.stderrs[i]) if redirs & Std.OUT == Std.OUT: self.assert_in_file( [f"hello stdout from {i}"], results.stdouts[i] ) if redirs & Std.ERR == Std.ERR: self.assert_in_file( [f"hello stderr from {i}"], results.stderrs[i] )
def test_binary(self): for redirs in redirects_oss_test(): with self.subTest(redirs=redirs): pc = start_processes( name="echo", entrypoint=bin("echo1.py"), args={0: ("hello",), 1: ("hello",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), redirects=redirs, ), log_line_prefixes={0: "[rank0]:", 1: "[rank1]:"}, ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) # currently binaries return {rank: None} self.assertEqual(2, len(results.return_values)) self.assertFalse(results.is_failed()) nprocs = pc.nprocs for i in range(nprocs): if redirs & Std.OUT != Std.OUT: self.assertFalse(results.stdouts[i]) if redirs & Std.ERR != Std.ERR: self.assertFalse(results.stderrs[i]) if redirs & Std.OUT == Std.OUT: self.assert_in_file( [f"hello stdout from {i}"], results.stdouts[i] ) if redirs & Std.ERR == Std.ERR: self.assert_in_file( [f"hello stderr from {i}"], results.stderrs[i] )
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesListTest(StartProcessesTest):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesListAsBinaryTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_binary_redirect_and_tee
def test_binary_redirect_and_tee(self): pc = start_processes( name="trainer", entrypoint=bin("echo1.py"), args={0: ("hello",), 1: ("world",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=self.log_dir(), start_method="spawn", redirects={0: Std.ERR, 1: Std.NONE}, tee={0: Std.OUT, 1: Std.ERR}, ) result = pc.wait() self.assertFalse(result.is_failed()) self.assert_in_file(["hello stdout from 0"], pc.stdouts[0]) self.assert_in_file(["hello stderr from 0"], pc.stderrs[0]) self.assert_in_file(["world stderr from 1"], pc.stderrs[1]) self.assertFalse(pc.stdouts[1]) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped()) # tests incompatible with tsan or asan, the redirect functionality does not work on macos or windows
def test_binary_redirect_and_tee(self): pc = start_processes( name="trainer", entrypoint=bin("echo1.py"), args={0: ("hello",), 1: ("world",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), redirects={0: Std.ERR, 1: Std.NONE}, tee={0: Std.OUT, 1: Std.ERR}, ), log_line_prefixes={0: "[rank0]:", 1: "[rank1]:"}, start_method="spawn", ) result = pc.wait() self.assertFalse(result.is_failed()) self.assert_in_file(["hello stdout from 0"], pc.stdouts[0]) self.assert_in_file(["hello stderr from 0"], pc.stderrs[0]) self.assert_in_file(["world stderr from 1"], pc.stderrs[1]) self.assertFalse(pc.stdouts[1]) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped()) # tests incompatible with tsan or asan, the redirect functionality does not work on macos or windows
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesListTest(StartProcessesTest):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesListAsBinaryTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_binary_signal
def test_binary_signal(self): pc = start_processes( name="echo", entrypoint=bin("echo3.py"), args={0: ("--segfault", "true", "foo"), 1: ("bar",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=self.log_dir(), ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) failure = results.failures[0] self.assertNotEqual(signal.SIGSEGV, failure.exitcode) if TEST_WITH_ASAN or TEST_WITH_TSAN: # ASAN/TSAN exit code is 1. self.assertEqual("<N/A>", failure.signal_name()) else: self.assertEqual("SIGSEGV", failure.signal_name()) self.assertEqual("<NONE>", failure.error_file_data["message"])
def test_binary_signal(self): pc = start_processes( name="echo", entrypoint=bin("echo3.py"), args={0: ("--segfault", "true", "foo"), 1: ("bar",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), ), ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) failure = results.failures[0] self.assertNotEqual(signal.SIGSEGV, failure.exitcode) if TEST_WITH_ASAN or TEST_WITH_TSAN: # ASAN/TSAN exit code is 1. self.assertEqual("<N/A>", failure.signal_name()) else: self.assertEqual("SIGSEGV", failure.signal_name()) self.assertEqual("<NONE>", failure.error_file_data["message"])
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesNotCITest(StartProcessesTest):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesNotCIAsBinaryTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_function_redirect_and_tee
def test_function_redirect_and_tee(self): for start_method in self._start_methods: with self.subTest(start_method=start_method): log_dir = self.log_dir() pc = start_processes( name="trainer", entrypoint=echo1, args={0: ("hello",), 1: ("world",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=log_dir, start_method="spawn", redirects={0: Std.ERR, 1: Std.NONE}, tee={0: Std.OUT, 1: Std.ERR}, ) result = pc.wait() self.assertFalse(result.is_failed()) self.assert_in_file(["hello stdout from 0"], pc.stdouts[0]) self.assert_in_file(["hello stderr from 0"], pc.stderrs[0]) self.assert_in_file(["world stderr from 1"], pc.stderrs[1]) self.assertFalse(pc.stdouts[1]) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
def test_function_redirect_and_tee(self): for start_method in self._start_methods: with self.subTest(start_method=start_method): pc = start_processes( name="trainer", entrypoint=echo1, args={0: ("hello",), 1: ("world",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), redirects={0: Std.ERR, 1: Std.NONE}, tee={0: Std.OUT, 1: Std.ERR}, ), start_method="spawn", ) result = pc.wait() self.assertFalse(result.is_failed()) self.assert_in_file(["hello stdout from 0"], pc.stdouts[0]) self.assert_in_file(["hello stderr from 0"], pc.stderrs[0]) self.assert_in_file(["world stderr from 1"], pc.stderrs[1]) self.assertFalse(pc.stdouts[1]) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesNotCITest(StartProcessesTest):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesNotCIAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_function
def test_function(self): for start_method, redirs in product( self._start_methods, redirects_oss_test() ): with self.subTest(start_method=start_method, redirs=redirs): pc = start_processes( name="echo", entrypoint=echo1, args={0: ("hello",), 1: ("hello",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=self.log_dir(), start_method=start_method, redirects=redirs, ) results = pc.wait(period=0.1) nprocs = pc.nprocs self.assert_pids_noexist(pc.pids()) self.assertEqual( {i: f"hello_{i}" for i in range(nprocs)}, results.return_values ) for i in range(nprocs): if redirs & Std.OUT != Std.OUT: self.assertFalse(results.stdouts[i]) if redirs & Std.ERR != Std.ERR: self.assertFalse(results.stderrs[i]) if redirs & Std.OUT == Std.OUT: self.assert_in_file( [f"hello stdout from {i}"], results.stdouts[i] ) if redirs & Std.ERR == Std.ERR: self.assert_in_file( [f"hello stderr from {i}"], results.stderrs[i] )
def test_function(self): for start_method, redirs in product( self._start_methods, redirects_oss_test() ): with self.subTest(start_method=start_method, redirs=redirs): pc = start_processes( name="echo", entrypoint=echo1, args={0: ("hello",), 1: ("hello",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), redirects=redirs, ), start_method=start_method, ) results = pc.wait(period=0.1) nprocs = pc.nprocs self.assert_pids_noexist(pc.pids()) self.assertEqual( {i: f"hello_{i}" for i in range(nprocs)}, results.return_values ) for i in range(nprocs): if redirs & Std.OUT != Std.OUT: self.assertFalse(results.stdouts[i]) if redirs & Std.ERR != Std.ERR: self.assertFalse(results.stderrs[i]) if redirs & Std.OUT == Std.OUT: self.assert_in_file( [f"hello stdout from {i}"], results.stdouts[i] ) if redirs & Std.ERR == Std.ERR: self.assert_in_file( [f"hello stderr from {i}"], results.stderrs[i] )
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesListTest(StartProcessesTest):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesListAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/api_test.py
test_function_exit
def test_function_exit(self): """ run 2x copies of echo1 fail (exit) the first functions that exit from python do not generate an error file (even if they are decorated with @record) """ FAIL = 138 for start_method in self._start_methods: with self.subTest(start_method=start_method): log_dir = self.log_dir() pc = start_processes( name="echo", entrypoint=echo1, args={0: ("hello", FAIL), 1: ("hello",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, log_dir=log_dir, start_method=start_method, redirects={0: Std.ERR}, ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) self.assertFalse(results.return_values) failure = results.failures[0] error_file = failure.error_file self.assertEqual(FAIL, failure.exitcode) self.assertEqual("<N/A>", failure.signal_name()) self.assertEqual(pc.pids()[0], failure.pid) self.assertEqual("<N/A>", error_file) self.assertEqual( "To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html", failure.message, ) self.assertLessEqual(failure.timestamp, int(time.time())) self.assert_in_file([f"exit {FAIL} from 0"], results.stderrs[0]) self.assertFalse(results.stdouts[0]) self.assertFalse(results.stderrs[1]) self.assertFalse(results.stdouts[1]) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
def test_function_exit(self): """ run 2x copies of echo1 fail (exit) the first functions that exit from python do not generate an error file (even if they are decorated with @record) """ FAIL = 138 for start_method in self._start_methods: with self.subTest(start_method=start_method): pc = start_processes( name="echo", entrypoint=echo1, args={0: ("hello", FAIL), 1: ("hello",)}, envs={0: {"RANK": "0"}, 1: {"RANK": "1"}}, logs_specs=DefaultLogsSpecs( log_dir=self.log_dir(), redirects={0: Std.ERR}, ), start_method=start_method, ) results = pc.wait(period=0.1) self.assert_pids_noexist(pc.pids()) self.assertTrue(results.is_failed()) self.assertEqual(1, len(results.failures)) self.assertFalse(results.return_values) failure = results.failures[0] error_file = failure.error_file self.assertEqual(FAIL, failure.exitcode) self.assertEqual("<N/A>", failure.signal_name()) self.assertEqual(pc.pids()[0], failure.pid) self.assertEqual("<N/A>", error_file) self.assertEqual( "To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html", failure.message, ) self.assertLessEqual(failure.timestamp, int(time.time())) self.assert_in_file([f"exit {FAIL} from 0"], results.stderrs[0]) self.assertFalse(results.stdouts[0]) self.assertFalse(results.stderrs[1]) self.assertFalse(results.stdouts[1]) self.assertTrue(pc._stderr_tail.stopped()) self.assertTrue(pc._stdout_tail.stopped())
import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( MultiprocessContext, RunProcsResult, SignalException, Std, _validate_full_rank, _wrap, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, run_tests, sandcastle_skip_if, ) class StartProcessesNotCITest(StartProcessesTest):
import asyncio import ctypes import multiprocessing import os import shutil import signal import sys import tempfile import time from itertools import product from typing import Callable, Dict, List, Union from unittest import mock import torch import torch.multiprocessing as mp from torch.distributed.elastic.multiprocessing import ProcessFailure, start_processes from torch.distributed.elastic.multiprocessing.api import ( _validate_full_rank, _wrap, DefaultLogsSpecs, MultiprocessContext, RunProcsResult, SignalException, Std, to_map, ) from torch.distributed.elastic.multiprocessing.errors import ErrorHandler from torch.testing._internal.common_utils import ( IS_CI, IS_MACOS, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, skip_if_pytest, TEST_WITH_ASAN, TEST_WITH_DEV_DBG_ASAN, TEST_WITH_TSAN, TestCase, ) class StartProcessesNotCIAsFuncTest(_StartProcessesTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/errors/api_test.py
test_record
def test_record(self): with mock.patch.dict( os.environ, {"TORCHELASTIC_ERROR_FILE": self.test_error_file} ): with self.assertRaises(SentinelError): raise_exception_fn() with open(self.test_error_file, "r") as fp: err = json.load(fp) self.assertIsNotNone(err["message"]["message"]) self.assertIsNotNone(err["message"]["extraInfo"]["py_callstack"]) self.assertIsNotNone(err["message"]["extraInfo"]["timestamp"])
def test_record(self): with mock.patch.dict( os.environ, {"TORCHELASTIC_ERROR_FILE": self.test_error_file} ): with self.assertRaises(SentinelError): raise_exception_fn() with open(self.test_error_file) as fp: err = json.load(fp) self.assertIsNotNone(err["message"]["message"]) self.assertIsNotNone(err["message"]["extraInfo"]["py_callstack"]) self.assertIsNotNone(err["message"]["extraInfo"]["timestamp"])
import json import os import shutil import signal import tempfile import unittest from unittest import mock from torch.distributed.elastic.multiprocessing.errors import ( ChildFailedError, ProcessFailure, record, ) from torch.distributed.elastic.multiprocessing.errors.error_handler import ErrorHandler class ApiTest(unittest.TestCase):
import json import os import shutil import signal import tempfile import unittest from unittest import mock from torch.distributed.elastic.multiprocessing.errors import ( ChildFailedError, ProcessFailure, record, ) from torch.distributed.elastic.multiprocessing.errors.error_handler import ErrorHandler class ApiTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/errors/api_test.py
test_record_system_exit
def test_record_system_exit(self): with mock.patch.dict(os.environ, {}): raise_system_exit_exception_fn(exit_code=0) # no error file should have been generated self.assertFalse(os.path.isfile(self.test_error_file))
import json import os import shutil import signal import tempfile import unittest from unittest import mock from torch.distributed.elastic.multiprocessing.errors import ( ChildFailedError, ProcessFailure, record, ) from torch.distributed.elastic.multiprocessing.errors.error_handler import ErrorHandler class ApiTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/elastic/multiprocessing/errors/api_test.py
test_record_system_exit_erronr
def test_record_system_exit_erronr(self): with mock.patch.dict(os.environ, {}): with self.assertRaises(SystemExit): raise_system_exit_exception_fn() # no error file should have been generated self.assertFalse(os.path.isfile(self.test_error_file))
import json import os import shutil import signal import tempfile import unittest from unittest import mock from torch.distributed.elastic.multiprocessing.errors import ( ChildFailedError, ProcessFailure, record, ) from torch.distributed.elastic.multiprocessing.errors.error_handler import ErrorHandler class ApiTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/elastic/multiprocessing/errors/api_test.py
test_record_child_failure
def test_record_child_failure(self): trainer_log_dir = os.path.join(self.test_dir, "trainer", "0") os.makedirs(trainer_log_dir) trainer_error_file = os.path.join(trainer_log_dir, "error.json") with mock.patch.dict( os.environ, {"TORCHELASTIC_ERROR_FILE": self.test_error_file} ): with self.assertRaises(ChildFailedError) as cm: raise_child_failure_error_fn("trainer", trainer_error_file) pf = cm.exception.get_first_failure()[1] # compare worker error file with reply file and overridden error code expect = json.load(open(pf.error_file, "r")) expect["message"]["errorCode"] = pf.exitcode actual = json.load(open(self.test_error_file, "r")) self.assertTrue( json.dumps(expect, sort_keys=True), json.dumps(actual, sort_keys=True), )
def test_record_child_failure(self): trainer_log_dir = os.path.join(self.test_dir, "trainer", "0") os.makedirs(trainer_log_dir) trainer_error_file = os.path.join(trainer_log_dir, "error.json") with mock.patch.dict( os.environ, {"TORCHELASTIC_ERROR_FILE": self.test_error_file} ): with self.assertRaises(ChildFailedError) as cm: raise_child_failure_error_fn("trainer", trainer_error_file) pf = cm.exception.get_first_failure()[1] # compare worker error file with reply file and overridden error code expect = json.load(open(pf.error_file)) expect["message"]["errorCode"] = pf.exitcode actual = json.load(open(self.test_error_file)) self.assertTrue( json.dumps(expect, sort_keys=True), json.dumps(actual, sort_keys=True), )
import json import os import shutil import signal import tempfile import unittest from unittest import mock from torch.distributed.elastic.multiprocessing.errors import ( ChildFailedError, ProcessFailure, record, ) from torch.distributed.elastic.multiprocessing.errors.error_handler import ErrorHandler class ApiTest(unittest.TestCase):
import json import os import shutil import signal import tempfile import unittest from unittest import mock from torch.distributed.elastic.multiprocessing.errors import ( ChildFailedError, ProcessFailure, record, ) from torch.distributed.elastic.multiprocessing.errors.error_handler import ErrorHandler class ApiTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/errors/error_handler_test.py
test_record_exception
def test_record_exception(self): with patch.dict(os.environ, {"TORCHELASTIC_ERROR_FILE": self.test_error_file}): eh = ErrorHandler() eh.initialize() try: raise_exception_fn() except Exception as e: eh.record_exception(e) with open(self.test_error_file, "r") as fp: err = json.load(fp) # error file content example: # { # "message": { # "message": "RuntimeError: foobar", # "extraInfo": { # "py_callstack": "Traceback (most recent call last):\n <... OMITTED ...>", # "timestamp": "1605774851" # } # } self.assertIsNotNone(err["message"]["message"]) self.assertIsNotNone(err["message"]["extraInfo"]["py_callstack"]) self.assertIsNotNone(err["message"]["extraInfo"]["timestamp"])
def test_record_exception(self): with patch.dict(os.environ, {"TORCHELASTIC_ERROR_FILE": self.test_error_file}): eh = ErrorHandler() eh.initialize() try: raise_exception_fn() except Exception as e: eh.record_exception(e) with open(self.test_error_file) as fp: err = json.load(fp) # error file content example: # { # "message": { # "message": "RuntimeError: foobar", # "extraInfo": { # "py_callstack": "Traceback (most recent call last):\n <... OMITTED ...>", # "timestamp": "1605774851" # } # } self.assertIsNotNone(err["message"]["message"]) self.assertIsNotNone(err["message"]["extraInfo"]["py_callstack"]) self.assertIsNotNone(err["message"]["extraInfo"]["timestamp"])
import filecmp import json import os import shutil import tempfile import unittest from unittest.mock import patch from torch.distributed.elastic.multiprocessing.errors.error_handler import ErrorHandler from torch.distributed.elastic.multiprocessing.errors.handlers import get_error_handler class ErrorHandlerTest(unittest.TestCase):
import filecmp import json import os import shutil import tempfile import unittest from unittest.mock import patch from torch.distributed.elastic.multiprocessing.errors.error_handler import ErrorHandler from torch.distributed.elastic.multiprocessing.errors.handlers import get_error_handler class ErrorHandlerTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/redirects_test.py
test_redirect_stdout
def test_redirect_stdout(self): stdout_log = os.path.join(self.test_dir, "stdout.log") # printing to stdout before redirect should go to console not stdout.log print("foo first from python") libc.printf(b"foo first from c\n") os.system("echo foo first from cmd") with redirect_stdout(stdout_log): print("foo from python") libc.printf(b"foo from c\n") os.system("echo foo from cmd") # make sure stdout is restored print("foo again from python") libc.printf(b"foo again from c\n") os.system("echo foo again from cmd") with open(stdout_log, "r") as f: # since we print from python, c, cmd -> the stream is not ordered # do a set comparison lines = set(f.readlines()) self.assertEqual( {"foo from python\n", "foo from c\n", "foo from cmd\n"}, lines )
def test_redirect_stdout(self): stdout_log = os.path.join(self.test_dir, "stdout.log") # printing to stdout before redirect should go to console not stdout.log print("foo first from python") libc.printf(b"foo first from c\n") os.system("echo foo first from cmd") with redirect_stdout(stdout_log): print("foo from python") libc.printf(b"foo from c\n") os.system("echo foo from cmd") # make sure stdout is restored print("foo again from python") libc.printf(b"foo again from c\n") os.system("echo foo again from cmd") with open(stdout_log) as f: # since we print from python, c, cmd -> the stream is not ordered # do a set comparison lines = set(f.readlines()) self.assertEqual( {"foo from python\n", "foo from c\n", "foo from cmd\n"}, lines )
import ctypes import os import shutil import sys import tempfile import unittest from torch.distributed.elastic.multiprocessing.redirects import ( redirect, redirect_stderr, redirect_stdout, ) libc = ctypes.CDLL("libc.so.6") c_stderr = ctypes.c_void_p.in_dll(libc, "stderr") class RedirectsTest(unittest.TestCase):
import ctypes import os import shutil import sys import tempfile import unittest from torch.distributed.elastic.multiprocessing.redirects import ( redirect, redirect_stderr, redirect_stdout, ) libc = ctypes.CDLL("libc.so.6") c_stderr = ctypes.c_void_p.in_dll(libc, "stderr") class RedirectsTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/redirects_test.py
test_redirect_stderr
def test_redirect_stderr(self): stderr_log = os.path.join(self.test_dir, "stderr.log") print("bar first from python") libc.fprintf(c_stderr, b"bar first from c\n") os.system("echo bar first from cmd 1>&2") with redirect_stderr(stderr_log): print("bar from python", file=sys.stderr) libc.fprintf(c_stderr, b"bar from c\n") os.system("echo bar from cmd 1>&2") print("bar again from python") libc.fprintf(c_stderr, b"bar again from c\n") os.system("echo bar again from cmd 1>&2") with open(stderr_log, "r") as f: lines = set(f.readlines()) self.assertEqual( {"bar from python\n", "bar from c\n", "bar from cmd\n"}, lines )
def test_redirect_stderr(self): stderr_log = os.path.join(self.test_dir, "stderr.log") print("bar first from python") libc.fprintf(c_stderr, b"bar first from c\n") os.system("echo bar first from cmd 1>&2") with redirect_stderr(stderr_log): print("bar from python", file=sys.stderr) libc.fprintf(c_stderr, b"bar from c\n") os.system("echo bar from cmd 1>&2") print("bar again from python") libc.fprintf(c_stderr, b"bar again from c\n") os.system("echo bar again from cmd 1>&2") with open(stderr_log) as f: lines = set(f.readlines()) self.assertEqual( {"bar from python\n", "bar from c\n", "bar from cmd\n"}, lines )
import ctypes import os import shutil import sys import tempfile import unittest from torch.distributed.elastic.multiprocessing.redirects import ( redirect, redirect_stderr, redirect_stdout, ) libc = ctypes.CDLL("libc.so.6") c_stderr = ctypes.c_void_p.in_dll(libc, "stderr") class RedirectsTest(unittest.TestCase):
import ctypes import os import shutil import sys import tempfile import unittest from torch.distributed.elastic.multiprocessing.redirects import ( redirect, redirect_stderr, redirect_stdout, ) libc = ctypes.CDLL("libc.so.6") c_stderr = ctypes.c_void_p.in_dll(libc, "stderr") class RedirectsTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/elastic/multiprocessing/redirects_test.py
test_redirect_both
def test_redirect_both(self): stdout_log = os.path.join(self.test_dir, "stdout.log") stderr_log = os.path.join(self.test_dir, "stderr.log") print("first stdout from python") libc.printf(b"first stdout from c\n") print("first stderr from python", file=sys.stderr) libc.fprintf(c_stderr, b"first stderr from c\n") with redirect_stdout(stdout_log), redirect_stderr(stderr_log): print("redir stdout from python") print("redir stderr from python", file=sys.stderr) libc.printf(b"redir stdout from c\n") libc.fprintf(c_stderr, b"redir stderr from c\n") print("again stdout from python") libc.fprintf(c_stderr, b"again stderr from c\n") with open(stdout_log, "r") as f: lines = set(f.readlines()) self.assertEqual( {"redir stdout from python\n", "redir stdout from c\n"}, lines ) with open(stderr_log, "r") as f: lines = set(f.readlines()) self.assertEqual( {"redir stderr from python\n", "redir stderr from c\n"}, lines )
def test_redirect_both(self): stdout_log = os.path.join(self.test_dir, "stdout.log") stderr_log = os.path.join(self.test_dir, "stderr.log") print("first stdout from python") libc.printf(b"first stdout from c\n") print("first stderr from python", file=sys.stderr) libc.fprintf(c_stderr, b"first stderr from c\n") with redirect_stdout(stdout_log), redirect_stderr(stderr_log): print("redir stdout from python") print("redir stderr from python", file=sys.stderr) libc.printf(b"redir stdout from c\n") libc.fprintf(c_stderr, b"redir stderr from c\n") print("again stdout from python") libc.fprintf(c_stderr, b"again stderr from c\n") with open(stdout_log) as f: lines = set(f.readlines()) self.assertEqual( {"redir stdout from python\n", "redir stdout from c\n"}, lines ) with open(stderr_log) as f: lines = set(f.readlines()) self.assertEqual( {"redir stderr from python\n", "redir stderr from c\n"}, lines )
import ctypes import os import shutil import sys import tempfile import unittest from torch.distributed.elastic.multiprocessing.redirects import ( redirect, redirect_stderr, redirect_stdout, ) libc = ctypes.CDLL("libc.so.6") c_stderr = ctypes.c_void_p.in_dll(libc, "stderr") class RedirectsTest(unittest.TestCase):
import ctypes import os import shutil import sys import tempfile import unittest from torch.distributed.elastic.multiprocessing.redirects import ( redirect, redirect_stderr, redirect_stdout, ) libc = ctypes.CDLL("libc.so.6") c_stderr = ctypes.c_void_p.in_dll(libc, "stderr") class RedirectsTest(unittest.TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified