library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/distributed/_tensor/test_op_strategy.py
test_mm_1d_mesh
def test_mm_1d_mesh(self): mesh = self.build_device_mesh() all_strats = gen_einsum_strategies("mk,kn->mn", mesh) self.assertEqual(len(all_strats.strategies), 4)
from itertools import chain import torch from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import ( DTensorSpec, Partial, Replicate, Shard, TensorMeta, ) from torch.distributed.tensor._collective_utils import redistribute_cost from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy from torch.distributed.tensor._ops._einsum_strategy import ( EinsumDims, gen_einsum_strategies, ) from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase class TestEinsumStrategies(DTensorOpTestBase): from torch.distributed.tensor._ops._matrix_ops import addmm_strategy from torch.distributed.tensor._ops._matrix_ops import mm_strategy from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_op_strategy.py
test_mm_2d_mesh
def test_mm_2d_mesh(self): mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2)) all_strats = gen_einsum_strategies("mk,kn->mn", mesh) self.assertEqual(len(all_strats.strategies), 16)
from itertools import chain import torch from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import ( DTensorSpec, Partial, Replicate, Shard, TensorMeta, ) from torch.distributed.tensor._collective_utils import redistribute_cost from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy from torch.distributed.tensor._ops._einsum_strategy import ( EinsumDims, gen_einsum_strategies, ) from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase class TestEinsumStrategies(DTensorOpTestBase): from torch.distributed.tensor._ops._matrix_ops import addmm_strategy from torch.distributed.tensor._ops._matrix_ops import mm_strategy from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_op_strategy.py
test_bmm_1d_mesh
def test_bmm_1d_mesh(self): mesh = self.build_device_mesh() all_strats = gen_einsum_strategies("bmk,bkn->bmn", mesh) self.assertEqual(len(all_strats.strategies), 5)
from itertools import chain import torch from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor.placement_types import ( DTensorSpec, Partial, Replicate, Shard, TensorMeta, ) from torch.distributed.tensor._collective_utils import redistribute_cost from torch.distributed.tensor._op_schema import OpSchema, OpStrategy, PlacementStrategy from torch.distributed.tensor._ops._einsum_strategy import ( EinsumDims, gen_einsum_strategies, ) from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import DTensorOpTestBase class TestEinsumStrategies(DTensorOpTestBase): from torch.distributed.tensor._ops._matrix_ops import addmm_strategy from torch.distributed.tensor._ops._matrix_ops import mm_strategy from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_optimizers.py
output_fn
def output_fn(mod, outputs, device_mesh): assert isinstance(outputs, DTensor) return outputs.redistribute(placements=[Replicate()] * device_mesh.ndim).to_local() class TestDTensorOptimizer(DTensorTestBase): def _assert_optimizer( self, mesh, model, optim, dist_model, dist_optim, inputs, *, rtol: float = 1.3e-6, atol: float = 1e-5, ): for iter_idx in range(2): # run forward/backward/optim for original model optim.zero_grad(set_to_none=(iter_idx % 2 == 0)) out = model(inputs) loss = out.sum() loss.backward() optim.step() # run forward/backward/optim for distributed model dist_optim.zero_grad(set_to_none=(iter_idx % 2 == 0)) dist_out = dist_model(inputs) dist_loss = dist_out.sum() dist_loss.backward() dist_optim.step() # check that the optimizer update parameters with same numerics for p1, p2 in zip(model.parameters(), dist_model.parameters()): p2 = p2.full_tensor() # Default 'rtol' and 'atol' for attr:`~torch.float32` are ``1.3e-6`` and ``1e-5`` self.assertEqual(p1, p2, atol=atol, rtol=rtol) def test_optimizer_foreach_supported_types_include_DTensor(self): from torch.optim.optimizer import _foreach_supported_types self.assertTrue(DTensor in _foreach_supported_types) @with_comms def test_adam_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) # lr as a Tensor is not supported for capturable=False and foreach=True adam_float_lr_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05}, {"lr": 0.1, "weight_decay": 0.05, "amsgrad": True}, { "lr": 0.1, "weight_decay": 0.05, "maximize": True, "amsgrad": True, }, ] fused_adam_float_lr_configs = [ {"lr": 0.1, "fused": True}, {"lr": 0.1, "weight_decay": 0.05, "amsgrad": True, "fused": True}, { "lr": 0.1, "weight_decay": 0.05, "maximize": True, "amsgrad": True, "fused": True, }, ] # lr could be a Tensor or a float when fused=True for adam optimizer fused_adam_tensor_lr_configs = [ {**config, "lr": torch.tensor(0.1)} for config in fused_adam_float_lr_configs ] fused_adam_tensor_lr_configs.extend( [ {**config, "lr": torch.tensor([0.1])} for config in fused_adam_float_lr_configs ] ) adam_configs = [ *adam_float_lr_configs, *fused_adam_float_lr_configs, *fused_adam_tensor_lr_configs, ] for config in adam_configs: mod = MLPModule(self.device_type) opt = torch.optim.Adam(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.Adam(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_adamw_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) # lr as a Tensor is not supported for capturable=False and foreach=True adamw_float_lr_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05}, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "amsgrad": True, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "maximize": True, "amsgrad": True, }, ] fused_adamw_float_lr_configs = [ {"lr": 0.1, "weight_decay": 0.05, "fused": True}, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "amsgrad": True, "fused": True, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "maximize": True, "amsgrad": True, "fused": True, }, ] # lr could be a Tensor or a float when fused=True for adamW optimizer fused_adamw_tensor_lr_configs = [ {**config, "lr": torch.tensor(0.1)} for config in fused_adamw_float_lr_configs ] fused_adamw_tensor_lr_configs.extend( [ {**config, "lr": torch.tensor([0.1])} for config in fused_adamw_float_lr_configs ] ) adamw_configs = [ *adamw_float_lr_configs, *fused_adamw_float_lr_configs, *fused_adamw_tensor_lr_configs, ] for config in adamw_configs: mod = MLPModule(self.device_type) opt = torch.optim.AdamW(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.AdamW(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_sgd_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) sgd_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "momentum": 0.05, "foreach": False}, {"lr": 0.1, "momentum": 0.05}, {"lr": 0.1, "momentum": 0.06, "dampening": 0.07}, { "lr": 0.1, "momentum": 0.08, "weight_decay": 0.05, "nesterov": True, "maximize": True, "foreach": False, }, { "lr": 0.1, "momentum": 0.08, "weight_decay": 0.05, "nesterov": True, "maximize": True, }, ] for config in sgd_configs: mod = MLPModule(self.device_type) opt = torch.optim.SGD(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.SGD(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_adagrad_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) adagrad_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "lr_decay": 0.05, "foreach": False}, {"lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "foreach": False}, { "lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "initial_accumulator_value": 0.03, "foreach": False, }, { "lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "initial_accumulator_value": 0.03, "eps": 1e-6, "foreach": False, }, { "lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "initial_accumulator_value": 0.03, "eps": 1e-6, "maximize": True, "foreach": False, }, { "lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "initial_accumulator_value": 0.03, "eps": 1e-6, "maximize": True, }, ] for config in adagrad_configs: mod = MLPModule(self.device_type) opt = torch.optim.Adagrad(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.Adagrad(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_RMSprop_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) RMSprop_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "alpha": 0.85, "foreach": False}, {"lr": 0.1, "alpha": 0.88, "eps": 1e-6, "foreach": False}, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "foreach": False, }, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "momentum": 0.9, "foreach": False, }, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "momentum": 0.9, "centered": True, "foreach": False, }, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "momentum": 0.9, "centered": True, "maximize": True, "foreach": False, }, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "momentum": 0.9, "centered": True, "maximize": True, }, ] for config in RMSprop_configs: mod = MLPModule(self.device_type) opt = torch.optim.RMSprop(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.RMSprop(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_adadelta_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) adadelta_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "rho": 0.85, "foreach": False}, {"lr": 0.1, "rho": 0.88, "eps": 1e-5, "foreach": False}, { "lr": 0.1, "rho": 0.88, "eps": 1e-6, "weight_decay": 0.05, "foreach": False, }, { "lr": 0.1, "rho": 0.88, "eps": 1e-6, "weight_decay": 0.05, }, { "lr": 0.1, "rho": 0.88, "eps": 1e-6, "weight_decay": 0.05, "maximize": True, }, ] for config in adadelta_configs: mod = MLPModule(self.device_type) opt = torch.optim.Adadelta(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.Adadelta(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_nadam_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) nadam_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05}, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "decoupled_weight_decay": True, }, ] for config in nadam_configs: mod = MLPModule(self.device_type) opt = torch.optim.NAdam(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.NAdam(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_radam_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) radam_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05, "foreach": False}, { "lr": 0.1, "weight_decay": 0.05, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "decoupled_weight_decay": True, }, ] for config in radam_configs: mod = MLPModule(self.device_type) opt = torch.optim.RAdam(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.RAdam(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_adamax_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) adamax_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "betas": (0.6, 0.66), "foreach": False}, {"lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "foreach": False}, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "foreach": False, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "maximize": True, }, ] for config in adamax_configs: mod = MLPModule(self.device_type) opt = torch.optim.Adamax(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.Adamax(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_asgd_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) asgd_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "lambd": 0.001, "foreach": False}, {"lr": 0.1, "lambd": 0.001, "alpha": 0.85, "foreach": False}, {"lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "foreach": False}, { "lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "weight_decay": 0.05, "foreach": False, }, { "lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "weight_decay": 0.05, "foreach": True, }, { "lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "weight_decay": 0.05, "foreach": True, "maximize": True, }, ] for config in asgd_configs: mod = MLPModule(self.device_type) opt = torch.optim.ASGD(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.ASGD(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) # TODO: We want to keep a unit test for ASGD optimizer for the time being, but we need to look into why # when using ASGD we need higher atol and rtol when comparing model parameters. # Default 'rtol' and 'atol' for attr:`~torch.float32` are ``1.3e-6`` and ``1e-5`` # Pointer here: https://github.com/pytorch/pytorch/blob/main/torch/testing/_comparison.py#L65 self._assert_optimizer( mesh, mod, opt, dist_mod, dist_opt, inp, atol=1.3e-5, rtol=1e-4 ) if __name__ == "__main__": run_tests()
from copy import deepcopy import torch import torch.nn as nn from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, DTensor, Replicate, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, with_comms, ) from torch.optim.optimizer import _foreach_supported_types
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_embedding_ops.py
test_multiple_embeddings_rowwise
def test_multiple_embeddings_rowwise(self): mesh = self.build_device_mesh() inp = torch.randint(0, 10, (4, 4), device=self.device_type) replicated_inp = DTensor.from_local(inp, mesh, [Replicate()], run_check=False) from torch.distributed.tensor._ops._embedding_ops import _MaskPartial # case 1: two embeddings with the same shape, thus sharing the underying _MaskPartial # and MaskBuffer, because of cache hit from sharding propagation emb1 = torch.nn.Embedding(10, 23, device=self.device_type) sharded_emb1 = self._apply_sharding(emb1, 0, mesh) output1 = sharded_emb1(replicated_inp) emb2 = torch.nn.Embedding(10, 29, device=self.device_type) sharded_emb2 = self._apply_sharding(emb2, 0, mesh) output2 = sharded_emb2(replicated_inp) partial_placement1 = output1.placements[0] self.assertIsInstance(partial_placement1, _MaskPartial) output1.full_tensor() partial_placement2 = output2.placements[0] self.assertIsInstance(partial_placement2, _MaskPartial) output2.full_tensor() self.assertTrue(id(partial_placement1), id(partial_placement2)) # case 2: two embeddings with the same logical_dim_size, but different logical_shape # thus they will have different _MaskPartial placements (with no cache hit) emb3 = torch.nn.Embedding(10, 29, device=self.device_type) sharded_emb3 = self._apply_sharding(emb3, 0, mesh) output3 = sharded_emb3(replicated_inp) partial_placement3 = output3.placements[0] self.assertIsInstance(partial_placement3, _MaskPartial) output2.full_tensor() # not equal because of different logical_shape, despite of same logical_dim_size self.assertNotEqual(partial_placement1, partial_placement3)
import sys import torch from torch.distributed._tensor import ( distribute_module, distribute_tensor, DTensor, Replicate, Shard, ) from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) funcol = torch.ops.c10d_functional class TestEmbeddingOp(DTensorTestBase): from torch.distributed.tensor._ops._embedding_ops import _MaskPartial from torch.distributed.tensor._ops._embedding_ops import _MaskPartial
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_experimental_ops.py
test_nll
def test_nll(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) shard_spec = [Replicate()] pred_list = torch.rand(ITER_TIME, 1024, 10) target_list = torch.randint(0, 10, (ITER_TIME, 1024), dtype=torch.long) criterion = torch.nn.CrossEntropyLoss() for i in range(ITER_TIME): pred = pred_list[i].to(self.device_type).requires_grad_() target = target_list[i].to(self.device_type) # nll with dtensor pred_dtensor = distribute_tensor(pred, device_mesh, shard_spec) target_dtensor = distribute_tensor(target, device_mesh, shard_spec) loss = criterion(pred_dtensor, target_dtensor) loss.backward() # nll with plain tensor loss_gt = criterion(pred, target) loss_gt.backward() loss_diff_abs = loss.to_local() - loss_gt loss_diff_rel = loss_diff_abs / (torch.abs(loss_gt) + 1e-8) loss_mse_abs = torch.mean(loss_diff_abs * loss_diff_abs).item() loss_mse_rel = torch.mean(loss_diff_rel * loss_diff_rel).item() grad_diff_abs = pred_dtensor.grad.to_local() - pred.grad grad_diff_rel = grad_diff_abs / (torch.abs(pred.grad) + 1e-8) grad_mse_abs = torch.mean(grad_diff_abs * grad_diff_abs).item() grad_mse_rel = torch.mean(grad_diff_rel * grad_diff_rel).item() self.assertTrue( loss_mse_abs <= 1e-6, f"Too large absolute mse for loss, expected less equal 1e-6, got {loss_mse_abs}", ) self.assertTrue( loss_mse_rel <= 1e-6, f"Too large relative mse for loss, expected less equal 1e-6, got {loss_mse_rel}", ) self.assertTrue( grad_mse_abs <= 1e-6, f"Too large absolute mse for gradient, expected less equal 1e-6, got {grad_mse_abs}", ) self.assertTrue( grad_mse_rel <= 1e-6, f"Too large relative mse for gradient, expected less equal 1e-6, got {grad_mse_rel}", )
import torch import torch.distributed as dist from torch.distributed._tensor import DeviceMesh, distribute_tensor, Replicate from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) ITER_TIME = 10 LR = 0.001 class DistOtherOpsTest(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_init.py
test_init_ops
def test_init_ops(self): self._run_init_op( torch.nn.init.kaiming_uniform_, a=0, mode="fan_in", nonlinearity="leaky_relu", ) self._run_init_op(torch.nn.init.normal_, mean=1.5, std=0.8) self._run_init_op(torch.nn.init.uniform_, a=0, b=1.2) self._run_init_op(torch.nn.init.constant_, 2.4)
def test_init_ops(self): # NOTE: random init tests are moved to test_random_ops.py self._run_init_op(torch.nn.init.constant_, 2.4)
import torch from torch.distributed._tensor import ( DTensor, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) class DTensorInitOpsTest(DTensorTestBase):
import torch from torch.distributed._tensor import DeviceMesh, DTensor, Replicate, Shard, zeros from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) class DTensorInitOpsTest(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_tensor/test_init.py
world_size
def world_size(self): return 4
import torch from torch.distributed._tensor import DeviceMesh, DTensor, Replicate, Shard, zeros from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) class DTensorConstructorTest(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_pointwise_ops.py
test_dropout_errors
def test_dropout_errors(self): device_mesh = self.build_device_mesh() with self.assertRaisesRegex(RuntimeError, "supported"): self._run_sharded_elementwise_ops( device_mesh=device_mesh, placements=[_Partial(ReduceOp.SUM)], input_size=(8, 5), op=torch.nn.functional.dropout, )
def test_dropout_errors(self): device_mesh = self.build_device_mesh() with self.assertRaisesRegex(RuntimeError, "supported"): self._run_sharded_elementwise_ops( device_mesh=device_mesh, placements=[Partial("sum")], input_size=(8, 5), op=torch.nn.functional.dropout, )
from typing import Any, Callable, Dict, Optional, Sequence from unittest import skip import torch import torch.utils._pytree as pytree from torch import Tensor from torch.distributed._tensor import DeviceMesh, distribute_tensor, DTensor from torch.distributed._tensor.placement_types import ( _Partial, Placement, Replicate, Shard, ) from torch.distributed.distributed_c10d import ReduceOp from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorOpTestBase, skip_unless_torch_gpu, ) class DistElementwiseOpsTest(DTensorOpTestBase):
from typing import Any, Callable, Dict, Optional, Sequence from unittest import skip import torch import torch.utils._pytree as pytree from torch import Tensor from torch.distributed._tensor import DeviceMesh, distribute_tensor, DTensor from torch.distributed._tensor.placement_types import ( Partial, Placement, Replicate, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorOpTestBase, skip_unless_torch_gpu, ) class DistElementwiseOpsTest(DTensorOpTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_tensor/test_random_ops.py
test_init_ops
def test_init_ops(self): self._run_init_op( torch.nn.init.kaiming_uniform_, a=0, mode="fan_in", nonlinearity="leaky_relu", ) self._run_init_op(torch.nn.init.normal_, mean=1.5, std=0.8) self._run_init_op(torch.nn.init.uniform_, a=0, b=1.2) for dtype in (torch.float32, torch.float16): self._run_init_op(torch.rand_like, dtype=dtype) self._run_init_op(torch.randn_like, dtype=dtype) self._run_init_op(torch.randint_like, low=0, high=100, dtype=dtype)
import itertools import torch import torch.distributed._functional_collectives as funcol import torch.distributed.tensor._random as random from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor._utils import compute_local_shape_and_global_offset from torch.distributed._tensor.api import distribute_tensor from torch.distributed._tensor.placement_types import Replicate, Shard from torch.distributed.distributed_c10d import broadcast_object_list from torch.distributed.tensor._random import is_rng_supported_mesh, manual_seed from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, skip_unless_torch_gpu, with_comms, ) class DistTensorRandomInitTest(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_dtensor_ops.py
assert_ref_dtensor_equal
def assert_ref_dtensor_equal(self, dtensor_rs, rs): flat_dtensor_rs, _ = tree_flatten(dtensor_rs) flat_rs, _ = tree_flatten(rs) self.assertEqual(len(flat_dtensor_rs), len(flat_rs)) for dtensor_r, r in zip(flat_dtensor_rs, flat_rs): if not isinstance(r, torch.Tensor): continue self.assertIsInstance(dtensor_r, torch.Tensor) self.assertEqualOnRank( dtensor_r.shape, r.shape, f"Shape mismatch! original shape:{r.shape}, dtensor shape: {dtensor_r.shape}", ) self.assertEqualOnRank( dtensor_r.requires_grad, r.requires_grad, "op result requires_grad mismatch!" f"original requires_grad: {r.requires_grad}, " f"dtensor requires_grad: {dtensor_r.requires_grad}", ) self.assertEqualOnRank(dtensor_r.to_local(), r)
def assert_ref_dtensor_equal(self, dtensor_rs, rs): flat_dtensor_rs = pytree.tree_leaves(dtensor_rs) flat_rs = pytree.tree_leaves(rs) self.assertEqual(len(flat_dtensor_rs), len(flat_rs)) for dtensor_r, r in zip(flat_dtensor_rs, flat_rs): if not isinstance(r, torch.Tensor): continue self.assertIsInstance(dtensor_r, torch.Tensor) self.assertEqualOnRank( dtensor_r.shape, r.shape, f"Shape mismatch! original shape:{r.shape}, dtensor shape: {dtensor_r.shape}", ) self.assertEqualOnRank( dtensor_r.requires_grad, r.requires_grad, "op result requires_grad mismatch!" f"original requires_grad: {r.requires_grad}, " f"dtensor requires_grad: {dtensor_r.requires_grad}", ) self.assertEqualOnRank(dtensor_r, r)
import unittest import warnings import torch import torch.distributed as dist import torch.testing._internal.common_methods_invocations as common_ops from torch.distributed._tensor import DeviceMesh, DTensor, Replicate from torch.overrides import resolve_name from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, ops, ) from torch.testing._internal.common_methods_invocations import ( DecorateInfo, op_db, ) from torch.testing._internal.common_utils import ( run_tests, suppress_warnings, TEST_WITH_ASAN, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorConverter, DTensorOpTestBase, ) from torch.utils._pytree import tree_flatten, tree_map common_ops.L = 24 common_ops.M = 12 common_ops.S = 4 common_ops.XS = 2 dtensor_fails = { # these sometimes pass and sometimes fail # we need to remove many of them from list once op # get full support with varying sharding specs xfail("__getitem__"), xfail("__rsub__"), xfail("_native_batch_norm_legit"), xfail("_softmax_backward_data"), xfail("addbmm"), xfail("addmv"), xfail("addr"), xfail("all"), xfail("allclose"), xfail("amax"), xfail("amin"), xfail("aminmax"), xfail("any"), xfail("arange"), xfail("argmax"), xfail("argmin"), xfail("argsort"), xfail("as_strided"), xfail("as_strided", "partial_views"), xfail("as_strided_scatter"), xfail("baddbmm"), xfail("bernoulli"), xfail("block_diag"), xfail("broadcast_shapes"), xfail("cauchy"), xfail("cartesian_prod"), xfail("cdist"), xfail("cholesky"), xfail("cholesky_inverse"), xfail("cholesky_solve"), xfail("chunk"), xfail("clamp"), xfail("clamp_max"), xfail("clamp_min"), xfail("combinations"), xfail("complex"), xfail("constant_pad_nd"), xfail("corrcoef"), xfail("count_nonzero"), xfail("cov"), xfail("cross"), xfail("cummax"), xfail("cummin"), xfail("cumsum"), xfail("cumulative_trapezoid"), xfail("diag"), xfail("diag_embed"), xfail("diagflat"), xfail("diagonal"), xfail("diagonal_copy"), xfail("diagonal_scatter"), xfail("dist"), xfail("dot"), xfail("einsum"), xfail("empty"), xfail("empty_like"), xfail("exponential"), xfail("eye"), xfail("fft.fft2"), xfail("fft.fft"), xfail("fft.fftn"), xfail("fft.fftshift"), xfail("fft.ifft2"), xfail("fft.ifft"), xfail("fft.ifftshift"), xfail("fft.ihfft2"), xfail("fft.ihfft"), xfail("fft.ihfftn"), xfail("fft.irfft2"), xfail("fft.irfftn"), xfail("fft.rfft2"), xfail("fft.rfft"), xfail("fft.rfftn"), xfail("fill"), xfail("flip"), xfail("fliplr"), xfail("flipud"), xfail("floor_divide"), xfail("fmax"), xfail("fmin"), xfail("frexp"), xfail("full"), xfail("full_like"), xfail("gather"), xfail("geometric"), xfail("geqrf"), xfail("grid_sampler_2d"), xfail("gradient"), xfail("heaviside"), xfail("histc"), xfail("histogram"), xfail("histogramdd"), xfail("index_add"), xfail("index_copy"), xfail("index_fill"), xfail("index_put"), xfail("index_reduce"), xfail("index_select"), xfail("isin"), xfail("isinf"), xfail("isneginf"), xfail("isposinf"), xfail("kthvalue"), xfail("linalg.cholesky"), xfail("linalg.cholesky_ex"), xfail("linalg.cond"), xfail("linalg.cross"), xfail("linalg.det"), xfail("linalg.det", "singular"), xfail("linalg.eig"), xfail("linalg.eigh"), xfail("linalg.eigvals"), xfail("linalg.eigvalsh"), xfail("linalg.householder_product"), xfail("linalg.inv"), xfail("linalg.inv_ex"), xfail("linalg.ldl_factor"), xfail("linalg.ldl_factor_ex"), xfail("linalg.ldl_solve"), xfail("linalg.lstsq"), xfail("linalg.lstsq", "grad_oriented"), xfail("linalg.lu"), xfail("linalg.lu_factor"), xfail("linalg.lu_factor_ex"), xfail("linalg.lu_solve"), xfail("linalg.matrix_norm"), xfail("linalg.matrix_power"), xfail("linalg.matrix_rank"), xfail("linalg.matrix_rank", "hermitian"), xfail("linalg.multi_dot"), xfail("linalg.norm"), xfail("linalg.norm", "subgradients_at_zero"), xfail("linalg.pinv"), xfail("linalg.pinv", "hermitian"), xfail("linalg.qr"), xfail("linalg.slogdet"), xfail("linalg.solve"), xfail("linalg.solve_ex"), xfail("linalg.solve_triangular"), xfail("linalg.svd"), xfail("linalg.svdvals"), xfail("linalg.tensorinv"), xfail("linalg.tensorsolve"), xfail("linalg.vander"), xfail("linalg.vecdot"), xfail("linalg.vector_norm"), xfail("linspace"), xfail("log_normal"), xfail("log_softmax"), xfail("log_softmax", "with_dtype"), xfail("logcumsumexp"), xfail("logdet"), xfail("logspace"), xfail("logsumexp"), xfail("lt"), xfail("lu"), xfail("lu_solve"), xfail("lu_unpack"), xfail("masked_fill"), xfail("masked_scatter"), xfail("masked_select"), xfail("masked.amax"), xfail("masked.amin"), xfail("masked.argmax"), xfail("masked.argmin"), xfail("masked.cumprod"), xfail("masked.cumsum"), xfail("masked.log_softmax"), xfail("masked.logaddexp"), xfail("masked.logsumexp"), xfail("masked.median"), xfail("masked.norm"), xfail("masked.prod"), xfail("masked.softmin"), xfail("masked.softmax"), xfail("masked.sum"), xfail("matrix_exp"), xfail("max", "binary"), xfail("max", "reduction_no_dim"), xfail("max", "reduction_with_dim"), xfail("maximum"), xfail("median"), xfail("min", "binary"), xfail("min", "reduction_no_dim"), xfail("min", "reduction_with_dim"), xfail("minimum"), xfail("mode"), xfail("msort"), xfail("multinomial"), xfail("mv"), xfail("max_pool2d_with_indices_backward", ""), xfail("nanmean"), xfail("nanmedian"), xfail("nanquantile"), xfail("nansum"), xfail("native_batch_norm"), xfail("native_dropout_backward"), xfail("native_layer_norm"), xfail("narrow_copy"), xfail("ne"), xfail("new_empty"), xfail("new_empty_strided"), xfail("transpose"), xfail("nn.functional.adaptive_avg_pool1d"), xfail("nn.functional.adaptive_avg_pool2d"), xfail("nn.functional.adaptive_avg_pool3d"), xfail("nn.functional.adaptive_max_pool1d"), xfail("nn.functional.adaptive_max_pool2d"), xfail("nn.functional.adaptive_max_pool3d"), xfail("nn.functional.alpha_dropout"), xfail("nn.functional.avg_pool1d"), xfail("nn.functional.avg_pool2d"), xfail("nn.functional.avg_pool3d"), xfail("nn.functional.batch_norm"), xfail("nn.functional.batch_norm", "without_cudnn"), xfail("nn.functional.bilinear"), xfail("nn.functional.binary_cross_entropy"), xfail("nn.functional.binary_cross_entropy_with_logits"), xfail("nn.functional.celu"), xfail("nn.functional.conv1d"), xfail("nn.functional.conv2d"), xfail("nn.functional.conv_transpose1d"), xfail("nn.functional.conv_transpose2d"), xfail("nn.functional.conv_transpose3d"), xfail("nn.functional.cosine_similarity"), xfail("nn.functional.cross_entropy"), xfail("nn.functional.ctc_loss"), xfail("nn.functional.dropout"), xfail("nn.functional.dropout2d"), xfail("nn.functional.dropout3d"), xfail("nn.functional.elu"), xfail("nn.functional.fractional_max_pool2d"), xfail("nn.functional.fractional_max_pool3d"), xfail("nn.functional.gaussian_nll_loss"), xfail("nn.functional.glu"), xfail("nn.functional.grid_sample"), xfail("nn.functional.group_norm"), xfail("nn.functional.hardshrink"), xfail("nn.functional.hardsigmoid"), xfail("nn.functional.hardswish"), xfail("nn.functional.hardtanh"), xfail("nn.functional.huber_loss"), xfail("nn.functional.instance_norm"), xfail("nn.functional.interpolate", "area"), xfail("nn.functional.interpolate", "bicubic"), xfail("nn.functional.interpolate", "bilinear"), xfail("nn.functional.interpolate", "linear"), xfail("nn.functional.interpolate", "nearest"), xfail("nn.functional.interpolate", "trilinear"), xfail("nn.functional.layer_norm"), xfail("nn.functional.leaky_relu"), xfail("nn.functional.linear"), xfail("nn.functional.local_response_norm"), xfail("nn.functional.logsigmoid"), xfail("nn.functional.margin_ranking_loss"), xfail("nn.functional.max_pool1d"), xfail("nn.functional.max_pool2d"), xfail("nn.functional.max_pool3d"), xfail("nn.functional.max_unpool1d"), xfail("nn.functional.max_unpool1d", "grad"), xfail("nn.functional.max_unpool2d"), xfail("nn.functional.max_unpool2d", "grad"), xfail("nn.functional.max_unpool3d"), xfail("nn.functional.max_unpool3d", "grad"), xfail("nn.functional.mish"), xfail("nn.functional.mse_loss"), xfail("nn.functional.multi_margin_loss"), xfail("nn.functional.multilabel_margin_loss"), xfail("nn.functional.multilabel_soft_margin_loss"), xfail("nn.functional.nll_loss"), xfail("nn.functional.normalize"), xfail("nn.functional.pad", "circular"), xfail("nn.functional.pad", "constant"), xfail("nn.functional.pad", "reflect"), xfail("nn.functional.pad", "replicate"), xfail("nn.functional.pairwise_distance"), xfail("nn.functional.pdist"), xfail("nn.functional.pixel_shuffle"), xfail("nn.functional.pixel_unshuffle"), xfail("nn.functional.poisson_nll_loss"), xfail("nn.functional.prelu"), xfail("nn.functional.relu6"), xfail("nn.functional.rrelu"), xfail("nn.functional.selu"), xfail("nn.functional.silu"), xfail("nn.functional.smooth_l1_loss"), xfail("nn.functional.soft_margin_loss"), xfail("nn.functional.softplus"), xfail("nn.functional.softshrink"), xfail("nn.functional.threshold"), xfail("nn.functional.triplet_margin_loss"), xfail("nn.functional.triplet_margin_with_distance_loss"), xfail("nn.functional.unfold"), xfail("nn.functional.upsample_bilinear"), xfail("nn.functional.upsample_nearest"), xfail("nonzero"), xfail("norm"), xfail("norm", "fro"), xfail("norm", "inf"), xfail("norm", "nuc"), xfail("normal"), xfail("normal", "number_mean"), xfail("ormqr"), xfail("ones"), xfail("pca_lowrank"), xfail("pinverse"), xfail("polar"), xfail("put"), xfail("qr"), xfail("quantile"), xfail("rand_like"), xfail("randint_like"), xfail("randint"), xfail("randn"), xfail("randn_like"), xfail("renorm"), xfail("repeat_interleave"), xfail("resize_"), xfail("resize_as_"), xfail("roll"), xfail("rot90"), xfail("rsub"), xfail("scalar_tensor"), xfail("scatter_add"), xfail("scatter"), xfail("scatter_reduce", "amax"), xfail("scatter_reduce", "amin"), xfail("scatter_reduce", "mean"), xfail("scatter_reduce", "prod"), xfail("scatter_reduce", "sum"), xfail("searchsorted"), xfail("select"), xfail("select_scatter"), xfail("sort"), xfail("sparse.sampled_addmm"), xfail("sparse.mm", "reduce"), xfail("special.airy_ai"), xfail("special.bessel_j0"), xfail("special.bessel_j1"), xfail("special.bessel_y0"), xfail("special.bessel_y1"), xfail("special.chebyshev_polynomial_t"), xfail("special.chebyshev_polynomial_u"), xfail("special.entr"), xfail("special.erfcx"), xfail("special.hermite_polynomial_h"), xfail("special.hermite_polynomial_he"), xfail("special.i0e"), xfail("special.i1"), xfail("special.i1e"), xfail("special.laguerre_polynomial_l"), xfail("special.log_ndtr"), xfail("special.modified_bessel_i0"), xfail("special.modified_bessel_i1"), xfail("special.modified_bessel_k0"), xfail("special.modified_bessel_k1"), xfail("special.ndtri"), xfail("special.scaled_modified_bessel_k0"), xfail("special.scaled_modified_bessel_k1"), xfail("special.spherical_bessel_j0"), xfail("special.xlog1py"), xfail("special.zeta"), xfail("squeeze", "multiple"), xfail("signal.windows.bartlett"), xfail("signal.windows.blackman"), xfail("signal.windows.cosine"), xfail("signal.windows.exponential"), xfail("signal.windows.gaussian"), xfail("signal.windows.general_cosine"), xfail("signal.windows.general_hamming"), xfail("signal.windows.hamming"), xfail("signal.windows.hann"), xfail("signal.windows.nuttall"), xfail("signal.windows.kaiser"), xfail("stack"), xfail("std"), xfail("std", "unbiased"), xfail("std_mean"), xfail("std_mean", "unbiased"), xfail("stft"), xfail("svd"), xfail("svd_lowrank"), xfail("t"), xfail("take_along_dim"), xfail("take"), xfail("tensor_split"), xfail("to_sparse"), xfail("topk"), xfail("trace"), xfail("trapezoid"), xfail("trapz"), xfail("triangular_solve"), xfail("tril"), xfail("triu"), xfail("unbind"), xfail("unfold"), xfail("unfold_copy"), xfail("uniform"), xfail("unflatten"), xfail("unique_consecutive"), xfail("unique"), xfail("unsafe_split"), xfail("var_mean"), xfail("var_mean", "unbiased"), xfail("vdot"), xfail("view_copy"), xfail("view_as_complex"), xfail("where"), xfail("zeros"), # ops inside this might even fail without dtensor # tests, as we rescale op db common test size factor (i.e. L, M, S) # which triggered the orignal function run failures with input # generation becomes wrong, we skip them for now but should enable later. # TODO: need to clean this list and remove all cases skip("argwhere"), skip("cumprod"), skip("__rmatmul__"), skip("meshgrid", "list_of_tensors"), skip("meshgrid", "variadic_tensors"), skip("nn.functional.scaled_dot_product_attention"), skip("nn.functional.softmin"), skip("nn.functional.embedding"), skip("nn.functional.embedding_bag"), skip("nn.functional.feature_alpha_dropout", "with_train"), skip("nn.functional.feature_alpha_dropout", "without_train"), skip("nn.functional.hinge_embedding_loss"), skip("nn.functional.cosine_embedding_loss"), skip("fft.hfft"), skip("fft.hfft2"), skip("fft.hfft2"), skip("fft.hfftn"), skip("fft.ifftn"), skip("fft.irfft"), skip("istft"), skip("isclose"), skip("isreal"), skip("matmul"), skip("masked.mean"), skip("masked.var"), skip("masked.std"), skip("masked.normalize"), skip("prod"), skip("_segment_reduce", "lengths"), skip("_segment_reduce", "offsets"), # TODO: fix the following ops skip("squeeze"), } skip_bw = [ None, # corresponds to the transpose ops 'H' and 'T' "torch.bucketize", "torch.conj_physical", "torch.eq", "torch.isfinite", "torch.isnan", ] OP_DB_WORLD_SIZE = 4 DEVICE_TYPE = "cpu" class TestDTensorOps(DTensorOpTestBase):
import unittest import warnings import torch import torch.distributed as dist import torch.testing._internal.common_methods_invocations as common_ops from torch.distributed._tensor import DeviceMesh, DTensor from torch.overrides import resolve_name from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, ops, ) from torch.testing._internal.common_methods_invocations import DecorateInfo, op_db from torch.testing._internal.common_utils import ( run_tests, suppress_warnings, TEST_WITH_ASAN, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorConverter, DTensorOpTestBase, ) from torch.utils import _pytree as pytree from torch.utils._pytree import tree_map common_ops.L = 24 common_ops.M = 12 common_ops.S = 4 common_ops.XS = 2 dtensor_fails = { # these sometimes pass and sometimes fail # we need to remove many of them from list once op # get full support with varying sharding specs xfail("__getitem__"), xfail("__rsub__"), xfail("_chunk_cat"), xfail("_native_batch_norm_legit"), xfail("_upsample_bilinear2d_aa"), xfail("addbmm"), xfail("addmv"), xfail("addr"), xfail("all"), xfail("allclose"), xfail("alias_copy"), xfail("amax"), xfail("amin"), xfail("aminmax"), xfail("any"), xfail("arange"), xfail("argmax"), xfail("argmin"), xfail("argsort"), xfail("as_strided"), xfail("as_strided", "partial_views"), xfail("as_strided_copy"), xfail("as_strided_scatter"), xfail("bernoulli"), xfail("_batch_norm_with_update"), xfail("block_diag"), xfail("broadcast_shapes"), xfail("cauchy"), xfail("cdist"), xfail("cholesky"), xfail("cholesky_inverse"), xfail("cholesky_solve"), xfail("chunk"), xfail("clamp"), xfail("clamp_max"), xfail("clamp_min"), xfail("combinations"), xfail("complex"), xfail("constant_pad_nd"), xfail("count_nonzero"), xfail("cross"), xfail("cummax"), xfail("cummin"), xfail("cumsum"), xfail("cumulative_trapezoid"), xfail("diagonal_scatter"), xfail("dist"), xfail("dot"), xfail("empty"), xfail("empty_strided"), xfail("empty_like"), xfail("empty_permuted"), xfail("expand_copy"), xfail("exponential"), xfail("equal"), xfail("eye"), xfail("fft.fft2"), xfail("fft.fft"), xfail("fft.fftn"), xfail("fft.fftshift"), xfail("fft.ifft2"), xfail("fft.ifft"), xfail("fft.ifftshift"), xfail("fft.ihfft2"), xfail("fft.ihfft"), xfail("fft.ihfftn"), xfail("fft.irfft2"), xfail("fft.irfftn"), xfail("fft.rfft2"), xfail("fft.rfft"), xfail("fft.rfftn"), xfail("fill"), xfail("flip"), xfail("fliplr"), xfail("flipud"), xfail("floor_divide"), xfail("fmax"), xfail("fmin"), xfail("frexp"), xfail("full"), xfail("full_like"), xfail("gather"), xfail("geometric"), xfail("geqrf"), xfail("grid_sampler_2d"), xfail("gradient"), xfail("heaviside"), xfail("histc"), xfail("histogram"), xfail("histogramdd"), xfail("index_add"), xfail("index_copy"), xfail("index_fill"), xfail("index_put"), xfail("index_reduce", "prod"), xfail("index_reduce", "mean"), xfail("index_reduce", "amax"), xfail("index_reduce", "amin"), xfail("index_select"), xfail("isin"), xfail("kthvalue"), xfail("linalg.cholesky"), xfail("linalg.cholesky_ex"), xfail("linalg.cross"), xfail("linalg.det"), xfail("linalg.det", "singular"), xfail("linalg.eig"), xfail("linalg.eigvals"), xfail("linalg.householder_product"), xfail("linalg.inv"), xfail("linalg.inv_ex"), xfail("linalg.ldl_factor"), xfail("linalg.ldl_factor_ex"), xfail("linalg.ldl_solve"), xfail("linalg.lstsq"), xfail("linalg.lstsq", "grad_oriented"), xfail("linalg.lu"), xfail("linalg.lu_factor"), xfail("linalg.lu_factor_ex"), xfail("linalg.lu_solve"), xfail("linalg.matrix_norm"), xfail("linalg.matrix_power"), xfail("linalg.matrix_rank"), xfail("linalg.matrix_rank", "hermitian"), xfail("linalg.multi_dot"), xfail("linalg.norm"), xfail("linalg.norm", "subgradients_at_zero"), xfail("linalg.pinv"), xfail("linalg.pinv", "hermitian"), xfail("linalg.slogdet"), xfail("linalg.solve"), xfail("linalg.solve_ex"), xfail("linalg.solve_triangular"), xfail("linalg.tensorinv"), xfail("linalg.tensorsolve"), xfail("linalg.vander"), xfail("linalg.vecdot"), xfail("linspace"), xfail("linspace", "tensor_overload"), xfail("log_normal"), xfail("logcumsumexp"), xfail("logdet"), xfail("logspace"), xfail("logspace", "tensor_overload"), xfail("logsumexp"), xfail("lu"), xfail("lu_solve"), xfail("lu_unpack"), xfail("masked_fill"), xfail("masked_scatter"), xfail("masked_select"), xfail("masked.amax"), xfail("masked.amin"), xfail("masked.argmax"), xfail("masked.argmin"), xfail("masked.cumprod"), xfail("masked.cumsum"), xfail("masked.logsumexp"), xfail("masked.median"), xfail("matrix_exp"), xfail("max", "binary"), xfail("max", "reduction_with_dim"), xfail("maximum"), xfail("median"), xfail("min", "binary"), xfail("min", "reduction_with_dim"), xfail("minimum"), xfail("mode"), xfail("msort"), xfail("multinomial"), xfail("mv"), xfail("max_pool2d_with_indices_backward", ""), xfail("nanmean"), xfail("nanmedian"), xfail("nanquantile"), xfail("nansum"), xfail("native_batch_norm"), xfail("native_dropout_backward"), xfail("narrow_copy"), xfail("ne"), xfail("new_empty"), xfail("new_empty_strided"), xfail("transpose"), xfail("nn.functional.adaptive_avg_pool1d"), xfail("nn.functional.adaptive_avg_pool2d"), xfail("nn.functional.adaptive_avg_pool3d"), xfail("nn.functional.adaptive_max_pool1d"), xfail("nn.functional.adaptive_max_pool2d"), xfail("nn.functional.adaptive_max_pool3d"), xfail("nn.functional.alpha_dropout"), xfail("nn.functional.avg_pool1d"), xfail("nn.functional.avg_pool2d"), xfail("nn.functional.avg_pool3d"), xfail("nn.functional.batch_norm"), xfail("nn.functional.batch_norm", "without_cudnn"), xfail("nn.functional.bilinear"), xfail("nn.functional.binary_cross_entropy"), xfail("nn.functional.binary_cross_entropy_with_logits"), xfail("nn.functional.celu"), xfail("nn.functional.conv1d"), xfail("nn.functional.conv2d"), xfail("nn.functional.conv3d"), xfail("nn.functional.conv_transpose1d"), xfail("nn.functional.conv_transpose2d"), xfail("nn.functional.conv_transpose3d"), xfail("nn.functional.cosine_similarity"), xfail("nn.functional.ctc_loss"), xfail("nn.functional.dropout"), xfail("nn.functional.dropout2d"), xfail("nn.functional.dropout3d"), xfail("nn.functional.elu"), xfail("nn.functional.fractional_max_pool2d"), xfail("nn.functional.fractional_max_pool3d"), xfail("nn.functional.glu"), xfail("nn.functional.grid_sample"), xfail("nn.functional.group_norm"), xfail("nn.functional.hardshrink"), xfail("nn.functional.hardsigmoid"), xfail("nn.functional.hardswish"), xfail("nn.functional.hardtanh"), xfail("nn.functional.huber_loss"), xfail("nn.functional.instance_norm"), xfail("nn.functional.interpolate", "area"), xfail("nn.functional.interpolate", "bicubic"), xfail("nn.functional.interpolate", "bilinear"), xfail("nn.functional.interpolate", "linear"), xfail("nn.functional.interpolate", "nearest"), xfail("nn.functional.interpolate", "nearest-exact"), xfail("nn.functional.interpolate", "trilinear"), xfail("nn.functional.leaky_relu"), xfail("nn.functional.linear"), xfail("nn.functional.local_response_norm"), xfail("nn.functional.logsigmoid"), xfail("nn.functional.margin_ranking_loss"), xfail("nn.functional.max_pool1d"), xfail("nn.functional.max_pool2d"), xfail("nn.functional.max_pool3d"), xfail("nn.functional.max_unpool1d"), xfail("nn.functional.max_unpool1d", "grad"), xfail("nn.functional.max_unpool2d"), xfail("nn.functional.max_unpool2d", "grad"), xfail("nn.functional.max_unpool3d"), xfail("nn.functional.max_unpool3d", "grad"), xfail("nn.functional.mish"), xfail("nn.functional.mse_loss"), xfail("nn.functional.multi_margin_loss"), xfail("nn.functional.multi_head_attention_forward"), xfail("nn.functional.multilabel_margin_loss"), xfail("nn.functional.multilabel_soft_margin_loss"), xfail("nn.functional.normalize"), xfail("nn.functional.pad", "constant"), xfail("nn.functional.pad", "reflect"), xfail("nn.functional.pad", "replicate"), xfail("nn.functional.pad", "replicate_negative"), xfail("nn.functional.pairwise_distance"), xfail("nn.functional.pdist"), xfail("nn.functional.pixel_shuffle"), xfail("nn.functional.pixel_unshuffle"), xfail("nn.functional.prelu"), xfail("nn.functional.relu6"), xfail("nn.functional.rrelu"), xfail("nn.functional.selu"), xfail("nn.functional.smooth_l1_loss"), xfail("nn.functional.soft_margin_loss"), xfail("nn.functional.softplus"), xfail("nn.functional.softshrink"), xfail("nn.functional.threshold"), xfail("nn.functional.triplet_margin_loss"), xfail("nn.functional.triplet_margin_with_distance_loss"), xfail("nn.functional.unfold"), xfail("nn.functional.upsample_bilinear"), xfail("nn.functional.upsample_nearest"), xfail("nonzero"), xfail("normal"), xfail("normal", "number_mean"), xfail("normal", "in_place"), xfail("ormqr"), xfail("ones"), xfail("pca_lowrank"), xfail("pinverse"), xfail("polar"), xfail("put"), xfail("quantile"), xfail("rand_like"), xfail("randint_like"), xfail("randint"), xfail("randn"), xfail("randn_like"), xfail("renorm"), xfail("repeat_interleave"), xfail("resize_"), xfail("resize_as_"), xfail("roll"), xfail("rot90"), xfail("rsub"), xfail("scalar_tensor"), xfail("scatter_add"), xfail("scatter_reduce", "amax"), xfail("scatter_reduce", "amin"), xfail("scatter_reduce", "mean"), xfail("scatter_reduce", "prod"), xfail("scatter_reduce", "sum"), xfail("searchsorted"), xfail("select"), xfail("select_scatter"), xfail("sort"), xfail("sparse.sampled_addmm"), xfail("sparse.mm", "reduce"), xfail("special.airy_ai"), xfail("special.bessel_j0"), xfail("special.bessel_j1"), xfail("special.bessel_y0"), xfail("special.bessel_y1"), xfail("special.chebyshev_polynomial_t"), xfail("special.chebyshev_polynomial_u"), xfail("special.entr"), xfail("special.erfcx"), xfail("special.hermite_polynomial_h"), xfail("special.hermite_polynomial_he"), xfail("special.i0e"), xfail("special.i1"), xfail("special.i1e"), xfail("special.laguerre_polynomial_l"), xfail("special.log_ndtr"), xfail("special.modified_bessel_i0"), xfail("special.modified_bessel_i1"), xfail("special.modified_bessel_k0"), xfail("special.modified_bessel_k1"), xfail("special.ndtri"), xfail("special.scaled_modified_bessel_k0"), xfail("special.scaled_modified_bessel_k1"), xfail("special.spherical_bessel_j0"), xfail("special.xlog1py"), xfail("special.zeta"), xfail("squeeze", "multiple"), xfail("signal.windows.bartlett"), xfail("signal.windows.blackman"), xfail("signal.windows.cosine"), xfail("signal.windows.exponential"), xfail("signal.windows.gaussian"), xfail("signal.windows.general_cosine"), xfail("signal.windows.general_hamming"), xfail("signal.windows.hamming"), xfail("signal.windows.hann"), xfail("signal.windows.nuttall"), xfail("signal.windows.kaiser"), xfail("stack"), xfail("std"), xfail("std", "unbiased"), xfail("std_mean"), xfail("std_mean", "unbiased"), xfail("stft"), xfail("svd_lowrank"), xfail("t_copy"), xfail("take"), xfail("tensor_split"), xfail("to_sparse"), xfail("trace"), xfail("trapezoid"), xfail("trapz"), xfail("triangular_solve"), xfail("unbind"), xfail("unfold"), xfail("unfold_copy"), xfail("uniform"), xfail("unflatten"), xfail("unique_consecutive"), xfail("unique"), xfail("unsafe_split"), xfail("unsafe_chunk"), xfail("_unsafe_masked_index"), xfail("_unsafe_masked_index_put_accumulate"), xfail("var_mean"), xfail("var_mean", "unbiased"), xfail("vdot"), xfail("view_copy"), xfail("zeros"), # ops inside this might even fail without dtensor # tests, as we rescale op db common test size factor (i.e. L, M, S) # which triggered the original function run failures with input # generation becomes wrong, we skip them for now but should enable later. # TODO: need to clean this list and remove all cases skip("argwhere"), skip("cumprod"), skip("__rmatmul__"), skip("meshgrid", "list_of_tensors"), skip("meshgrid", "variadic_tensors"), skip("nn.functional.scaled_dot_product_attention"), skip("nn.functional.softmin"), skip("nn.functional.embedding"), skip("nn.functional.embedding_bag"), skip("nn.functional.feature_alpha_dropout", "with_train"), skip("nn.functional.feature_alpha_dropout", "without_train"), skip("nn.functional.hinge_embedding_loss"), skip("nn.functional.cosine_embedding_loss"), skip("fft.hfft"), skip("fft.hfft2"), skip("fft.hfft2"), skip("fft.hfftn"), skip("fft.ifftn"), skip("fft.irfft"), skip("istft"), skip("isclose"), skip("isreal"), skip("matmul"), skip("masked.mean"), skip("masked.var"), skip("masked.std"), skip("masked.normalize"), skip("prod"), skip("_segment_reduce", "lengths"), skip("_segment_reduce", "offsets"), # TODO: fix the following ops skip("squeeze"), } skip_bw = [ None, # corresponds to the transpose ops 'H' and 'T' "torch.bucketize", "torch.conj_physical", "torch.eq", "torch.isfinite", "torch.isnan", ] OP_DB_WORLD_SIZE = 4 DEVICE_TYPE = "cpu" class TestDTensorOps(DTensorOpTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_tensor/test_dtensor_ops.py
run_dtensor_crossref
def run_dtensor_crossref(self, func, args, kwargs): to_dtensor = DTensorConverter(self.mesh, args, kwargs) def concat_res_if_necessary(func, res: object) -> object: # concat the result on corresponding dim for ops like # split, so that we can call backward on a single tensor if ( (resolve_name(func) is not None) and ("split" in resolve_name(func)) ): dim = args[2] if len(args) == 3 else 0 return torch.cat(res, dim=dim) else: return res # TODO: also handle cases where func raise an exception rs = func(*args, **kwargs) rs = concat_res_if_necessary(func, rs) def to_replicate(e: object) -> object: return ( e.redistribute(self.mesh, self.mesh.ndim * [Replicate()]) if isinstance(e, DTensor) else e ) try: # Suppress warnings, this doesn't matter for test_meta.py # but it does matter if you want to use this decorator # for cross-ref testing, as some tests may be looking at # errors with warnings.catch_warnings(): warnings.simplefilter("ignore") # for every comb of sharding choices, we test if it works for dtensor_args, dtensor_kwargs in to_dtensor: # Only attempt if we managed to convert all tensors to DTensor # (if any of them failed, we're in a mixed tensor situation and # this is not allowed in DTensor) if to_dtensor.successful(): # Handle special cases first if there's any # Suppress warnings, this doesn't matter for test_meta.py # but it does matter if you want to use this decorator # for cross-ref testing, as some tests may be looking at # errors dtensor_rs = func(*dtensor_args, **dtensor_kwargs) # we need to skip tests containing tensors of zero elmeents for now. # see issue: https://github.com/pytorch/tau/issues/470 # TODO remove this once issue above fixed. flat_args, _ = tree_flatten(dtensor_rs) if any( isinstance(e, torch.Tensor) and e.numel() == 0 for e in flat_args ): continue # redistribute/all_gather the results to compare with normal output dtensor_rs = tree_map(to_replicate, dtensor_rs) dtensor_rs = concat_res_if_necessary(func, dtensor_rs) try: if resolve_name(func) not in skip_bw: if isinstance(dtensor_rs, DTensor): dtensor_rs.to_local().sum().backward() elif isinstance(dtensor_rs, tuple): dtensor_rs[0].to_local().sum().backward() except Exception as e: # TODO(anj): Remove this guard exception after gaining more confidence. if torch.distributed.get_rank() == 0: print( f"failed to run BW: {resolve_name(func)}, {func}, {str(e)})" ) self.assert_ref_dtensor_equal(dtensor_rs, rs) else: raise RuntimeError( f"failed to convert args to DTensor; " f"originally (*{args}, **{kwargs})" ) except Exception as e: raise RuntimeError( f"failed to run: {resolve_name(func)}, with (*{args}, **{kwargs})" ) from e return rs
def run_dtensor_crossref(self, func, args, kwargs): to_dtensor = DTensorConverter(self.mesh, args, kwargs) def concat_res_if_necessary(func, res: object) -> object: # concat the result on corresponding dim for ops like # split, so that we can call backward on a single tensor if (resolve_name(func) is not None) and ("split" in resolve_name(func)): dim = args[2] if len(args) == 3 else 0 return torch.cat(res, dim=dim) else: return res # TODO: also handle cases where func raise an exception rs = func(*args, **kwargs) rs = concat_res_if_necessary(func, rs) def to_replicate(e: object) -> object: return e.full_tensor() if isinstance(e, DTensor) else e try: # Suppress warnings, this doesn't matter for test_meta.py # but it does matter if you want to use this decorator # for cross-ref testing, as some tests may be looking at # errors with warnings.catch_warnings(): warnings.simplefilter("ignore") # for every comb of sharding choices, we test if it works for dtensor_args, dtensor_kwargs in to_dtensor: # Only attempt if we managed to convert all tensors to DTensor # (if any of them failed, we're in a mixed tensor situation and # this is not allowed in DTensor) if to_dtensor.successful(): # Handle special cases first if there's any # Suppress warnings, this doesn't matter for test_meta.py # but it does matter if you want to use this decorator # for cross-ref testing, as some tests may be looking at # errors dtensor_rs = func(*dtensor_args, **dtensor_kwargs) # we need to skip tests containing tensors of zero elements for now. # see issue: https://github.com/pytorch/tau/issues/470 # TODO remove this once issue above fixed. flat_args = pytree.tree_leaves(dtensor_rs) if any( isinstance(e, torch.Tensor) and e.numel() == 0 for e in flat_args ): continue # redistribute/all_gather the results to compare with normal output dtensor_rs = tree_map(to_replicate, dtensor_rs) dtensor_rs = concat_res_if_necessary(func, dtensor_rs) try: if resolve_name(func) not in skip_bw: if isinstance(dtensor_rs, DTensor): dtensor_rs.to_local().sum().backward() elif isinstance(dtensor_rs, tuple): dtensor_rs[0].to_local().sum().backward() except Exception as e: # TODO(anj): Remove this guard exception after gaining more confidence. if torch.distributed.get_rank() == 0: print( f"failed to run BW: {resolve_name(func)}, {func}, {str(e)})" ) self.assert_ref_dtensor_equal(dtensor_rs, rs) else: raise RuntimeError( f"failed to convert args to DTensor; " f"originally (*{args}, **{kwargs})" ) except Exception as e: raise RuntimeError( f"failed to run: {resolve_name(func)}, with (*{args}, **{kwargs})" ) from e return rs
import unittest import warnings import torch import torch.distributed as dist import torch.testing._internal.common_methods_invocations as common_ops from torch.distributed._tensor import DeviceMesh, DTensor, Replicate from torch.overrides import resolve_name from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, ops, ) from torch.testing._internal.common_methods_invocations import ( DecorateInfo, op_db, ) from torch.testing._internal.common_utils import ( run_tests, suppress_warnings, TEST_WITH_ASAN, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorConverter, DTensorOpTestBase, ) from torch.utils._pytree import tree_flatten, tree_map common_ops.L = 24 common_ops.M = 12 common_ops.S = 4 common_ops.XS = 2 dtensor_fails = { # these sometimes pass and sometimes fail # we need to remove many of them from list once op # get full support with varying sharding specs xfail("__getitem__"), xfail("__rsub__"), xfail("_native_batch_norm_legit"), xfail("_softmax_backward_data"), xfail("addbmm"), xfail("addmv"), xfail("addr"), xfail("all"), xfail("allclose"), xfail("amax"), xfail("amin"), xfail("aminmax"), xfail("any"), xfail("arange"), xfail("argmax"), xfail("argmin"), xfail("argsort"), xfail("as_strided"), xfail("as_strided", "partial_views"), xfail("as_strided_scatter"), xfail("baddbmm"), xfail("bernoulli"), xfail("block_diag"), xfail("broadcast_shapes"), xfail("cauchy"), xfail("cartesian_prod"), xfail("cdist"), xfail("cholesky"), xfail("cholesky_inverse"), xfail("cholesky_solve"), xfail("chunk"), xfail("clamp"), xfail("clamp_max"), xfail("clamp_min"), xfail("combinations"), xfail("complex"), xfail("constant_pad_nd"), xfail("corrcoef"), xfail("count_nonzero"), xfail("cov"), xfail("cross"), xfail("cummax"), xfail("cummin"), xfail("cumsum"), xfail("cumulative_trapezoid"), xfail("diag"), xfail("diag_embed"), xfail("diagflat"), xfail("diagonal"), xfail("diagonal_copy"), xfail("diagonal_scatter"), xfail("dist"), xfail("dot"), xfail("einsum"), xfail("empty"), xfail("empty_like"), xfail("exponential"), xfail("eye"), xfail("fft.fft2"), xfail("fft.fft"), xfail("fft.fftn"), xfail("fft.fftshift"), xfail("fft.ifft2"), xfail("fft.ifft"), xfail("fft.ifftshift"), xfail("fft.ihfft2"), xfail("fft.ihfft"), xfail("fft.ihfftn"), xfail("fft.irfft2"), xfail("fft.irfftn"), xfail("fft.rfft2"), xfail("fft.rfft"), xfail("fft.rfftn"), xfail("fill"), xfail("flip"), xfail("fliplr"), xfail("flipud"), xfail("floor_divide"), xfail("fmax"), xfail("fmin"), xfail("frexp"), xfail("full"), xfail("full_like"), xfail("gather"), xfail("geometric"), xfail("geqrf"), xfail("grid_sampler_2d"), xfail("gradient"), xfail("heaviside"), xfail("histc"), xfail("histogram"), xfail("histogramdd"), xfail("index_add"), xfail("index_copy"), xfail("index_fill"), xfail("index_put"), xfail("index_reduce"), xfail("index_select"), xfail("isin"), xfail("isinf"), xfail("isneginf"), xfail("isposinf"), xfail("kthvalue"), xfail("linalg.cholesky"), xfail("linalg.cholesky_ex"), xfail("linalg.cond"), xfail("linalg.cross"), xfail("linalg.det"), xfail("linalg.det", "singular"), xfail("linalg.eig"), xfail("linalg.eigh"), xfail("linalg.eigvals"), xfail("linalg.eigvalsh"), xfail("linalg.householder_product"), xfail("linalg.inv"), xfail("linalg.inv_ex"), xfail("linalg.ldl_factor"), xfail("linalg.ldl_factor_ex"), xfail("linalg.ldl_solve"), xfail("linalg.lstsq"), xfail("linalg.lstsq", "grad_oriented"), xfail("linalg.lu"), xfail("linalg.lu_factor"), xfail("linalg.lu_factor_ex"), xfail("linalg.lu_solve"), xfail("linalg.matrix_norm"), xfail("linalg.matrix_power"), xfail("linalg.matrix_rank"), xfail("linalg.matrix_rank", "hermitian"), xfail("linalg.multi_dot"), xfail("linalg.norm"), xfail("linalg.norm", "subgradients_at_zero"), xfail("linalg.pinv"), xfail("linalg.pinv", "hermitian"), xfail("linalg.qr"), xfail("linalg.slogdet"), xfail("linalg.solve"), xfail("linalg.solve_ex"), xfail("linalg.solve_triangular"), xfail("linalg.svd"), xfail("linalg.svdvals"), xfail("linalg.tensorinv"), xfail("linalg.tensorsolve"), xfail("linalg.vander"), xfail("linalg.vecdot"), xfail("linalg.vector_norm"), xfail("linspace"), xfail("log_normal"), xfail("log_softmax"), xfail("log_softmax", "with_dtype"), xfail("logcumsumexp"), xfail("logdet"), xfail("logspace"), xfail("logsumexp"), xfail("lt"), xfail("lu"), xfail("lu_solve"), xfail("lu_unpack"), xfail("masked_fill"), xfail("masked_scatter"), xfail("masked_select"), xfail("masked.amax"), xfail("masked.amin"), xfail("masked.argmax"), xfail("masked.argmin"), xfail("masked.cumprod"), xfail("masked.cumsum"), xfail("masked.log_softmax"), xfail("masked.logaddexp"), xfail("masked.logsumexp"), xfail("masked.median"), xfail("masked.norm"), xfail("masked.prod"), xfail("masked.softmin"), xfail("masked.softmax"), xfail("masked.sum"), xfail("matrix_exp"), xfail("max", "binary"), xfail("max", "reduction_no_dim"), xfail("max", "reduction_with_dim"), xfail("maximum"), xfail("median"), xfail("min", "binary"), xfail("min", "reduction_no_dim"), xfail("min", "reduction_with_dim"), xfail("minimum"), xfail("mode"), xfail("msort"), xfail("multinomial"), xfail("mv"), xfail("max_pool2d_with_indices_backward", ""), xfail("nanmean"), xfail("nanmedian"), xfail("nanquantile"), xfail("nansum"), xfail("native_batch_norm"), xfail("native_dropout_backward"), xfail("native_layer_norm"), xfail("narrow_copy"), xfail("ne"), xfail("new_empty"), xfail("new_empty_strided"), xfail("transpose"), xfail("nn.functional.adaptive_avg_pool1d"), xfail("nn.functional.adaptive_avg_pool2d"), xfail("nn.functional.adaptive_avg_pool3d"), xfail("nn.functional.adaptive_max_pool1d"), xfail("nn.functional.adaptive_max_pool2d"), xfail("nn.functional.adaptive_max_pool3d"), xfail("nn.functional.alpha_dropout"), xfail("nn.functional.avg_pool1d"), xfail("nn.functional.avg_pool2d"), xfail("nn.functional.avg_pool3d"), xfail("nn.functional.batch_norm"), xfail("nn.functional.batch_norm", "without_cudnn"), xfail("nn.functional.bilinear"), xfail("nn.functional.binary_cross_entropy"), xfail("nn.functional.binary_cross_entropy_with_logits"), xfail("nn.functional.celu"), xfail("nn.functional.conv1d"), xfail("nn.functional.conv2d"), xfail("nn.functional.conv_transpose1d"), xfail("nn.functional.conv_transpose2d"), xfail("nn.functional.conv_transpose3d"), xfail("nn.functional.cosine_similarity"), xfail("nn.functional.cross_entropy"), xfail("nn.functional.ctc_loss"), xfail("nn.functional.dropout"), xfail("nn.functional.dropout2d"), xfail("nn.functional.dropout3d"), xfail("nn.functional.elu"), xfail("nn.functional.fractional_max_pool2d"), xfail("nn.functional.fractional_max_pool3d"), xfail("nn.functional.gaussian_nll_loss"), xfail("nn.functional.glu"), xfail("nn.functional.grid_sample"), xfail("nn.functional.group_norm"), xfail("nn.functional.hardshrink"), xfail("nn.functional.hardsigmoid"), xfail("nn.functional.hardswish"), xfail("nn.functional.hardtanh"), xfail("nn.functional.huber_loss"), xfail("nn.functional.instance_norm"), xfail("nn.functional.interpolate", "area"), xfail("nn.functional.interpolate", "bicubic"), xfail("nn.functional.interpolate", "bilinear"), xfail("nn.functional.interpolate", "linear"), xfail("nn.functional.interpolate", "nearest"), xfail("nn.functional.interpolate", "trilinear"), xfail("nn.functional.layer_norm"), xfail("nn.functional.leaky_relu"), xfail("nn.functional.linear"), xfail("nn.functional.local_response_norm"), xfail("nn.functional.logsigmoid"), xfail("nn.functional.margin_ranking_loss"), xfail("nn.functional.max_pool1d"), xfail("nn.functional.max_pool2d"), xfail("nn.functional.max_pool3d"), xfail("nn.functional.max_unpool1d"), xfail("nn.functional.max_unpool1d", "grad"), xfail("nn.functional.max_unpool2d"), xfail("nn.functional.max_unpool2d", "grad"), xfail("nn.functional.max_unpool3d"), xfail("nn.functional.max_unpool3d", "grad"), xfail("nn.functional.mish"), xfail("nn.functional.mse_loss"), xfail("nn.functional.multi_margin_loss"), xfail("nn.functional.multilabel_margin_loss"), xfail("nn.functional.multilabel_soft_margin_loss"), xfail("nn.functional.nll_loss"), xfail("nn.functional.normalize"), xfail("nn.functional.pad", "circular"), xfail("nn.functional.pad", "constant"), xfail("nn.functional.pad", "reflect"), xfail("nn.functional.pad", "replicate"), xfail("nn.functional.pairwise_distance"), xfail("nn.functional.pdist"), xfail("nn.functional.pixel_shuffle"), xfail("nn.functional.pixel_unshuffle"), xfail("nn.functional.poisson_nll_loss"), xfail("nn.functional.prelu"), xfail("nn.functional.relu6"), xfail("nn.functional.rrelu"), xfail("nn.functional.selu"), xfail("nn.functional.silu"), xfail("nn.functional.smooth_l1_loss"), xfail("nn.functional.soft_margin_loss"), xfail("nn.functional.softplus"), xfail("nn.functional.softshrink"), xfail("nn.functional.threshold"), xfail("nn.functional.triplet_margin_loss"), xfail("nn.functional.triplet_margin_with_distance_loss"), xfail("nn.functional.unfold"), xfail("nn.functional.upsample_bilinear"), xfail("nn.functional.upsample_nearest"), xfail("nonzero"), xfail("norm"), xfail("norm", "fro"), xfail("norm", "inf"), xfail("norm", "nuc"), xfail("normal"), xfail("normal", "number_mean"), xfail("ormqr"), xfail("ones"), xfail("pca_lowrank"), xfail("pinverse"), xfail("polar"), xfail("put"), xfail("qr"), xfail("quantile"), xfail("rand_like"), xfail("randint_like"), xfail("randint"), xfail("randn"), xfail("randn_like"), xfail("renorm"), xfail("repeat_interleave"), xfail("resize_"), xfail("resize_as_"), xfail("roll"), xfail("rot90"), xfail("rsub"), xfail("scalar_tensor"), xfail("scatter_add"), xfail("scatter"), xfail("scatter_reduce", "amax"), xfail("scatter_reduce", "amin"), xfail("scatter_reduce", "mean"), xfail("scatter_reduce", "prod"), xfail("scatter_reduce", "sum"), xfail("searchsorted"), xfail("select"), xfail("select_scatter"), xfail("sort"), xfail("sparse.sampled_addmm"), xfail("sparse.mm", "reduce"), xfail("special.airy_ai"), xfail("special.bessel_j0"), xfail("special.bessel_j1"), xfail("special.bessel_y0"), xfail("special.bessel_y1"), xfail("special.chebyshev_polynomial_t"), xfail("special.chebyshev_polynomial_u"), xfail("special.entr"), xfail("special.erfcx"), xfail("special.hermite_polynomial_h"), xfail("special.hermite_polynomial_he"), xfail("special.i0e"), xfail("special.i1"), xfail("special.i1e"), xfail("special.laguerre_polynomial_l"), xfail("special.log_ndtr"), xfail("special.modified_bessel_i0"), xfail("special.modified_bessel_i1"), xfail("special.modified_bessel_k0"), xfail("special.modified_bessel_k1"), xfail("special.ndtri"), xfail("special.scaled_modified_bessel_k0"), xfail("special.scaled_modified_bessel_k1"), xfail("special.spherical_bessel_j0"), xfail("special.xlog1py"), xfail("special.zeta"), xfail("squeeze", "multiple"), xfail("signal.windows.bartlett"), xfail("signal.windows.blackman"), xfail("signal.windows.cosine"), xfail("signal.windows.exponential"), xfail("signal.windows.gaussian"), xfail("signal.windows.general_cosine"), xfail("signal.windows.general_hamming"), xfail("signal.windows.hamming"), xfail("signal.windows.hann"), xfail("signal.windows.nuttall"), xfail("signal.windows.kaiser"), xfail("stack"), xfail("std"), xfail("std", "unbiased"), xfail("std_mean"), xfail("std_mean", "unbiased"), xfail("stft"), xfail("svd"), xfail("svd_lowrank"), xfail("t"), xfail("take_along_dim"), xfail("take"), xfail("tensor_split"), xfail("to_sparse"), xfail("topk"), xfail("trace"), xfail("trapezoid"), xfail("trapz"), xfail("triangular_solve"), xfail("tril"), xfail("triu"), xfail("unbind"), xfail("unfold"), xfail("unfold_copy"), xfail("uniform"), xfail("unflatten"), xfail("unique_consecutive"), xfail("unique"), xfail("unsafe_split"), xfail("var_mean"), xfail("var_mean", "unbiased"), xfail("vdot"), xfail("view_copy"), xfail("view_as_complex"), xfail("where"), xfail("zeros"), # ops inside this might even fail without dtensor # tests, as we rescale op db common test size factor (i.e. L, M, S) # which triggered the orignal function run failures with input # generation becomes wrong, we skip them for now but should enable later. # TODO: need to clean this list and remove all cases skip("argwhere"), skip("cumprod"), skip("__rmatmul__"), skip("meshgrid", "list_of_tensors"), skip("meshgrid", "variadic_tensors"), skip("nn.functional.scaled_dot_product_attention"), skip("nn.functional.softmin"), skip("nn.functional.embedding"), skip("nn.functional.embedding_bag"), skip("nn.functional.feature_alpha_dropout", "with_train"), skip("nn.functional.feature_alpha_dropout", "without_train"), skip("nn.functional.hinge_embedding_loss"), skip("nn.functional.cosine_embedding_loss"), skip("fft.hfft"), skip("fft.hfft2"), skip("fft.hfft2"), skip("fft.hfftn"), skip("fft.ifftn"), skip("fft.irfft"), skip("istft"), skip("isclose"), skip("isreal"), skip("matmul"), skip("masked.mean"), skip("masked.var"), skip("masked.std"), skip("masked.normalize"), skip("prod"), skip("_segment_reduce", "lengths"), skip("_segment_reduce", "offsets"), # TODO: fix the following ops skip("squeeze"), } skip_bw = [ None, # corresponds to the transpose ops 'H' and 'T' "torch.bucketize", "torch.conj_physical", "torch.eq", "torch.isfinite", "torch.isnan", ] OP_DB_WORLD_SIZE = 4 DEVICE_TYPE = "cpu" class TestDTensorOps(DTensorOpTestBase):
import unittest import warnings import torch import torch.distributed as dist import torch.testing._internal.common_methods_invocations as common_ops from torch.distributed._tensor import DeviceMesh, DTensor from torch.overrides import resolve_name from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, ops, ) from torch.testing._internal.common_methods_invocations import DecorateInfo, op_db from torch.testing._internal.common_utils import ( run_tests, suppress_warnings, TEST_WITH_ASAN, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorConverter, DTensorOpTestBase, ) from torch.utils import _pytree as pytree from torch.utils._pytree import tree_map common_ops.L = 24 common_ops.M = 12 common_ops.S = 4 common_ops.XS = 2 dtensor_fails = { # these sometimes pass and sometimes fail # we need to remove many of them from list once op # get full support with varying sharding specs xfail("__getitem__"), xfail("__rsub__"), xfail("_chunk_cat"), xfail("_native_batch_norm_legit"), xfail("_upsample_bilinear2d_aa"), xfail("addbmm"), xfail("addmv"), xfail("addr"), xfail("all"), xfail("allclose"), xfail("alias_copy"), xfail("amax"), xfail("amin"), xfail("aminmax"), xfail("any"), xfail("arange"), xfail("argmax"), xfail("argmin"), xfail("argsort"), xfail("as_strided"), xfail("as_strided", "partial_views"), xfail("as_strided_copy"), xfail("as_strided_scatter"), xfail("bernoulli"), xfail("_batch_norm_with_update"), xfail("block_diag"), xfail("broadcast_shapes"), xfail("cauchy"), xfail("cdist"), xfail("cholesky"), xfail("cholesky_inverse"), xfail("cholesky_solve"), xfail("chunk"), xfail("clamp"), xfail("clamp_max"), xfail("clamp_min"), xfail("combinations"), xfail("complex"), xfail("constant_pad_nd"), xfail("count_nonzero"), xfail("cross"), xfail("cummax"), xfail("cummin"), xfail("cumsum"), xfail("cumulative_trapezoid"), xfail("diagonal_scatter"), xfail("dist"), xfail("dot"), xfail("empty"), xfail("empty_strided"), xfail("empty_like"), xfail("empty_permuted"), xfail("expand_copy"), xfail("exponential"), xfail("equal"), xfail("eye"), xfail("fft.fft2"), xfail("fft.fft"), xfail("fft.fftn"), xfail("fft.fftshift"), xfail("fft.ifft2"), xfail("fft.ifft"), xfail("fft.ifftshift"), xfail("fft.ihfft2"), xfail("fft.ihfft"), xfail("fft.ihfftn"), xfail("fft.irfft2"), xfail("fft.irfftn"), xfail("fft.rfft2"), xfail("fft.rfft"), xfail("fft.rfftn"), xfail("fill"), xfail("flip"), xfail("fliplr"), xfail("flipud"), xfail("floor_divide"), xfail("fmax"), xfail("fmin"), xfail("frexp"), xfail("full"), xfail("full_like"), xfail("gather"), xfail("geometric"), xfail("geqrf"), xfail("grid_sampler_2d"), xfail("gradient"), xfail("heaviside"), xfail("histc"), xfail("histogram"), xfail("histogramdd"), xfail("index_add"), xfail("index_copy"), xfail("index_fill"), xfail("index_put"), xfail("index_reduce", "prod"), xfail("index_reduce", "mean"), xfail("index_reduce", "amax"), xfail("index_reduce", "amin"), xfail("index_select"), xfail("isin"), xfail("kthvalue"), xfail("linalg.cholesky"), xfail("linalg.cholesky_ex"), xfail("linalg.cross"), xfail("linalg.det"), xfail("linalg.det", "singular"), xfail("linalg.eig"), xfail("linalg.eigvals"), xfail("linalg.householder_product"), xfail("linalg.inv"), xfail("linalg.inv_ex"), xfail("linalg.ldl_factor"), xfail("linalg.ldl_factor_ex"), xfail("linalg.ldl_solve"), xfail("linalg.lstsq"), xfail("linalg.lstsq", "grad_oriented"), xfail("linalg.lu"), xfail("linalg.lu_factor"), xfail("linalg.lu_factor_ex"), xfail("linalg.lu_solve"), xfail("linalg.matrix_norm"), xfail("linalg.matrix_power"), xfail("linalg.matrix_rank"), xfail("linalg.matrix_rank", "hermitian"), xfail("linalg.multi_dot"), xfail("linalg.norm"), xfail("linalg.norm", "subgradients_at_zero"), xfail("linalg.pinv"), xfail("linalg.pinv", "hermitian"), xfail("linalg.slogdet"), xfail("linalg.solve"), xfail("linalg.solve_ex"), xfail("linalg.solve_triangular"), xfail("linalg.tensorinv"), xfail("linalg.tensorsolve"), xfail("linalg.vander"), xfail("linalg.vecdot"), xfail("linspace"), xfail("linspace", "tensor_overload"), xfail("log_normal"), xfail("logcumsumexp"), xfail("logdet"), xfail("logspace"), xfail("logspace", "tensor_overload"), xfail("logsumexp"), xfail("lu"), xfail("lu_solve"), xfail("lu_unpack"), xfail("masked_fill"), xfail("masked_scatter"), xfail("masked_select"), xfail("masked.amax"), xfail("masked.amin"), xfail("masked.argmax"), xfail("masked.argmin"), xfail("masked.cumprod"), xfail("masked.cumsum"), xfail("masked.logsumexp"), xfail("masked.median"), xfail("matrix_exp"), xfail("max", "binary"), xfail("max", "reduction_with_dim"), xfail("maximum"), xfail("median"), xfail("min", "binary"), xfail("min", "reduction_with_dim"), xfail("minimum"), xfail("mode"), xfail("msort"), xfail("multinomial"), xfail("mv"), xfail("max_pool2d_with_indices_backward", ""), xfail("nanmean"), xfail("nanmedian"), xfail("nanquantile"), xfail("nansum"), xfail("native_batch_norm"), xfail("native_dropout_backward"), xfail("narrow_copy"), xfail("ne"), xfail("new_empty"), xfail("new_empty_strided"), xfail("transpose"), xfail("nn.functional.adaptive_avg_pool1d"), xfail("nn.functional.adaptive_avg_pool2d"), xfail("nn.functional.adaptive_avg_pool3d"), xfail("nn.functional.adaptive_max_pool1d"), xfail("nn.functional.adaptive_max_pool2d"), xfail("nn.functional.adaptive_max_pool3d"), xfail("nn.functional.alpha_dropout"), xfail("nn.functional.avg_pool1d"), xfail("nn.functional.avg_pool2d"), xfail("nn.functional.avg_pool3d"), xfail("nn.functional.batch_norm"), xfail("nn.functional.batch_norm", "without_cudnn"), xfail("nn.functional.bilinear"), xfail("nn.functional.binary_cross_entropy"), xfail("nn.functional.binary_cross_entropy_with_logits"), xfail("nn.functional.celu"), xfail("nn.functional.conv1d"), xfail("nn.functional.conv2d"), xfail("nn.functional.conv3d"), xfail("nn.functional.conv_transpose1d"), xfail("nn.functional.conv_transpose2d"), xfail("nn.functional.conv_transpose3d"), xfail("nn.functional.cosine_similarity"), xfail("nn.functional.ctc_loss"), xfail("nn.functional.dropout"), xfail("nn.functional.dropout2d"), xfail("nn.functional.dropout3d"), xfail("nn.functional.elu"), xfail("nn.functional.fractional_max_pool2d"), xfail("nn.functional.fractional_max_pool3d"), xfail("nn.functional.glu"), xfail("nn.functional.grid_sample"), xfail("nn.functional.group_norm"), xfail("nn.functional.hardshrink"), xfail("nn.functional.hardsigmoid"), xfail("nn.functional.hardswish"), xfail("nn.functional.hardtanh"), xfail("nn.functional.huber_loss"), xfail("nn.functional.instance_norm"), xfail("nn.functional.interpolate", "area"), xfail("nn.functional.interpolate", "bicubic"), xfail("nn.functional.interpolate", "bilinear"), xfail("nn.functional.interpolate", "linear"), xfail("nn.functional.interpolate", "nearest"), xfail("nn.functional.interpolate", "nearest-exact"), xfail("nn.functional.interpolate", "trilinear"), xfail("nn.functional.leaky_relu"), xfail("nn.functional.linear"), xfail("nn.functional.local_response_norm"), xfail("nn.functional.logsigmoid"), xfail("nn.functional.margin_ranking_loss"), xfail("nn.functional.max_pool1d"), xfail("nn.functional.max_pool2d"), xfail("nn.functional.max_pool3d"), xfail("nn.functional.max_unpool1d"), xfail("nn.functional.max_unpool1d", "grad"), xfail("nn.functional.max_unpool2d"), xfail("nn.functional.max_unpool2d", "grad"), xfail("nn.functional.max_unpool3d"), xfail("nn.functional.max_unpool3d", "grad"), xfail("nn.functional.mish"), xfail("nn.functional.mse_loss"), xfail("nn.functional.multi_margin_loss"), xfail("nn.functional.multi_head_attention_forward"), xfail("nn.functional.multilabel_margin_loss"), xfail("nn.functional.multilabel_soft_margin_loss"), xfail("nn.functional.normalize"), xfail("nn.functional.pad", "constant"), xfail("nn.functional.pad", "reflect"), xfail("nn.functional.pad", "replicate"), xfail("nn.functional.pad", "replicate_negative"), xfail("nn.functional.pairwise_distance"), xfail("nn.functional.pdist"), xfail("nn.functional.pixel_shuffle"), xfail("nn.functional.pixel_unshuffle"), xfail("nn.functional.prelu"), xfail("nn.functional.relu6"), xfail("nn.functional.rrelu"), xfail("nn.functional.selu"), xfail("nn.functional.smooth_l1_loss"), xfail("nn.functional.soft_margin_loss"), xfail("nn.functional.softplus"), xfail("nn.functional.softshrink"), xfail("nn.functional.threshold"), xfail("nn.functional.triplet_margin_loss"), xfail("nn.functional.triplet_margin_with_distance_loss"), xfail("nn.functional.unfold"), xfail("nn.functional.upsample_bilinear"), xfail("nn.functional.upsample_nearest"), xfail("nonzero"), xfail("normal"), xfail("normal", "number_mean"), xfail("normal", "in_place"), xfail("ormqr"), xfail("ones"), xfail("pca_lowrank"), xfail("pinverse"), xfail("polar"), xfail("put"), xfail("quantile"), xfail("rand_like"), xfail("randint_like"), xfail("randint"), xfail("randn"), xfail("randn_like"), xfail("renorm"), xfail("repeat_interleave"), xfail("resize_"), xfail("resize_as_"), xfail("roll"), xfail("rot90"), xfail("rsub"), xfail("scalar_tensor"), xfail("scatter_add"), xfail("scatter_reduce", "amax"), xfail("scatter_reduce", "amin"), xfail("scatter_reduce", "mean"), xfail("scatter_reduce", "prod"), xfail("scatter_reduce", "sum"), xfail("searchsorted"), xfail("select"), xfail("select_scatter"), xfail("sort"), xfail("sparse.sampled_addmm"), xfail("sparse.mm", "reduce"), xfail("special.airy_ai"), xfail("special.bessel_j0"), xfail("special.bessel_j1"), xfail("special.bessel_y0"), xfail("special.bessel_y1"), xfail("special.chebyshev_polynomial_t"), xfail("special.chebyshev_polynomial_u"), xfail("special.entr"), xfail("special.erfcx"), xfail("special.hermite_polynomial_h"), xfail("special.hermite_polynomial_he"), xfail("special.i0e"), xfail("special.i1"), xfail("special.i1e"), xfail("special.laguerre_polynomial_l"), xfail("special.log_ndtr"), xfail("special.modified_bessel_i0"), xfail("special.modified_bessel_i1"), xfail("special.modified_bessel_k0"), xfail("special.modified_bessel_k1"), xfail("special.ndtri"), xfail("special.scaled_modified_bessel_k0"), xfail("special.scaled_modified_bessel_k1"), xfail("special.spherical_bessel_j0"), xfail("special.xlog1py"), xfail("special.zeta"), xfail("squeeze", "multiple"), xfail("signal.windows.bartlett"), xfail("signal.windows.blackman"), xfail("signal.windows.cosine"), xfail("signal.windows.exponential"), xfail("signal.windows.gaussian"), xfail("signal.windows.general_cosine"), xfail("signal.windows.general_hamming"), xfail("signal.windows.hamming"), xfail("signal.windows.hann"), xfail("signal.windows.nuttall"), xfail("signal.windows.kaiser"), xfail("stack"), xfail("std"), xfail("std", "unbiased"), xfail("std_mean"), xfail("std_mean", "unbiased"), xfail("stft"), xfail("svd_lowrank"), xfail("t_copy"), xfail("take"), xfail("tensor_split"), xfail("to_sparse"), xfail("trace"), xfail("trapezoid"), xfail("trapz"), xfail("triangular_solve"), xfail("unbind"), xfail("unfold"), xfail("unfold_copy"), xfail("uniform"), xfail("unflatten"), xfail("unique_consecutive"), xfail("unique"), xfail("unsafe_split"), xfail("unsafe_chunk"), xfail("_unsafe_masked_index"), xfail("_unsafe_masked_index_put_accumulate"), xfail("var_mean"), xfail("var_mean", "unbiased"), xfail("vdot"), xfail("view_copy"), xfail("zeros"), # ops inside this might even fail without dtensor # tests, as we rescale op db common test size factor (i.e. L, M, S) # which triggered the original function run failures with input # generation becomes wrong, we skip them for now but should enable later. # TODO: need to clean this list and remove all cases skip("argwhere"), skip("cumprod"), skip("__rmatmul__"), skip("meshgrid", "list_of_tensors"), skip("meshgrid", "variadic_tensors"), skip("nn.functional.scaled_dot_product_attention"), skip("nn.functional.softmin"), skip("nn.functional.embedding"), skip("nn.functional.embedding_bag"), skip("nn.functional.feature_alpha_dropout", "with_train"), skip("nn.functional.feature_alpha_dropout", "without_train"), skip("nn.functional.hinge_embedding_loss"), skip("nn.functional.cosine_embedding_loss"), skip("fft.hfft"), skip("fft.hfft2"), skip("fft.hfft2"), skip("fft.hfftn"), skip("fft.ifftn"), skip("fft.irfft"), skip("istft"), skip("isclose"), skip("isreal"), skip("matmul"), skip("masked.mean"), skip("masked.var"), skip("masked.std"), skip("masked.normalize"), skip("prod"), skip("_segment_reduce", "lengths"), skip("_segment_reduce", "offsets"), # TODO: fix the following ops skip("squeeze"), } skip_bw = [ None, # corresponds to the transpose ops 'H' and 'T' "torch.bucketize", "torch.conj_physical", "torch.eq", "torch.isfinite", "torch.isnan", ] OP_DB_WORLD_SIZE = 4 DEVICE_TYPE = "cpu" class TestDTensorOps(DTensorOpTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_tensor/test_embedding_ops.py
shard_embedding_fn
def shard_embedding_fn(name, module, device_mesh): for name, param in module.named_parameters(): dist_param = torch.nn.Parameter( distribute_tensor(param, device_mesh, [Shard(shard_dim)]) ) module.register_parameter(name, dist_param) sharded_embedding = distribute_module( embedding_mod, device_mesh, shard_embedding_fn ) return sharded_embedding
import sys import torch from torch.distributed._tensor import ( distribute_module, distribute_tensor, DTensor, Replicate, Shard, ) from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) funcol = torch.ops.c10d_functional from torch.distributed.tensor._ops._embedding_ops import _MaskPartial from torch.distributed.tensor._ops._embedding_ops import _MaskPartial
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_init.py
test_zeros_submesh
if __name__ == "__main__": run_tests()
def test_zeros_submesh(self): # default world_size is 4 # construct a cuda device 1d mesh, with no sub pg initialized sub_mesh_list = [0, 3] mesh = DeviceMesh(self.device_type, sub_mesh_list) placements = [Shard(0)] size = [32, 3] dist_tensor = zeros(size, device_mesh=mesh, placements=placements) self.assertEqual(dist_tensor.size(), torch.Size(size)) local_tensor = dist_tensor.to_local() if self.rank in sub_mesh_list: self.assertEqual(local_tensor.size(), torch.Size([16, 3])) self.assertEqual(local_tensor, torch.zeros([16, 3])) else: self.assertEqual(local_tensor.size(), torch.Size([0])) self.assertEqual(local_tensor, torch.zeros(0)) # construct a cuda device 1d mesh: unevenly, with subpg initialized sub_mesh_list = [0, 1, 3] mesh = DeviceMesh(self.device_type, sub_mesh_list) placements = [Shard(0)] size = [32, 3] dist_tensor = zeros(size, device_mesh=mesh, placements=placements) self.assertEqual(dist_tensor.size(), torch.Size(size)) local_tensor = dist_tensor.to_local() if self.rank in sub_mesh_list: if self.rank != 3: self.assertEqual(local_tensor.size(), torch.Size([11, 3])) self.assertEqual(local_tensor, torch.zeros([11, 3])) else: self.assertEqual(local_tensor.size(), torch.Size([10, 3])) self.assertEqual(local_tensor, torch.zeros([10, 3])) else: self.assertEqual(local_tensor.size(), torch.Size([0])) self.assertEqual(local_tensor, torch.tensor([])) # construct a cuda device 2d mesh, with no subpg initialized sub_mesh_list = [[0], [3]] mesh = DeviceMesh(self.device_type, sub_mesh_list) placements = [Shard(0), Shard(1)] size = [32, 3] dist_tensor = zeros(size, device_mesh=mesh, placements=placements) self.assertEqual(dist_tensor.size(), torch.Size(size)) local_tensor = dist_tensor.to_local() if self.rank in [0, 3]: self.assertEqual(local_tensor.size(), torch.Size([16, 3])) self.assertEqual(local_tensor, torch.zeros([16, 3])) else: self.assertEqual(local_tensor.size(), torch.Size([0])) self.assertEqual(local_tensor, torch.tensor([]))
import torch from torch.distributed._tensor import DeviceMesh, DTensor, Replicate, Shard, zeros from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) class DTensorConstructorTest(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_math_ops.py
_check_module
def _check_module(self, m1, m2, check_grad=False): named_parameters = dict(m1.named_parameters()) for name, param_m2 in m2.named_parameters(): self.assertTrue(name in named_parameters) param_m1 = named_parameters[name] if check_grad: param_m2 = param_m2.grad param_m1 = param_m1.grad if isinstance(param_m2, DTensor): replicate = [Replicate()] param_m2 = param_m2.redistribute( device_mesh=param_m2.device_mesh, placements=replicate ).to_local() self.assertEqual(param_m2, param_m1)
import copy import itertools from pprint import pformat from typing import NamedTuple import torch from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, DTensor, ) from torch.distributed._tensor.placement_types import Replicate, Shard from torch.distributed.tensor._ops.utils import is_tensor_partial, normalize_dim from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, SequenceParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_unless_torch_gpu, with_comms, ) funcol = torch.ops.c10d_functional class DistMathOpsTest(DTensorTestBase): from torch.distributed._tensor.placement_types import TensorMeta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_math_ops.py
_replicate_fn
def _replicate_fn(name, module, device_mesh): for name, param in module.named_parameters(): if name in ["weight", "bias"]: param_dist = torch.nn.Parameter( distribute_tensor(param, device_mesh, [Replicate()]) ) module.register_parameter(name, param_dist) layer_norm_dist = distribute_module(layer_norm, device_mesh, _replicate_fn) x_local = x x_dist = distribute_tensor(x, device_mesh, [Shard(shard_dim)]) y_local = layer_norm_local(x_local) # make sure that forward layer norm does not introduce extra collectives comm_mode = CommDebugMode() with comm_mode: y_dist = layer_norm_dist(x_dist) self.assertLessEqual( comm_mode.get_total_counts(), 1, # TODO: This should be 0! f"comm count={comm_mode.get_total_counts()}, " f"shard_dim={shard_dim}, norm_shape={normalized_shape}, elem_affine={elementwise_affine}", ) from torch.distributed._tensor.placement_types import TensorMeta dtensor_meta = y_dist._spec.tensor_meta assert isinstance(dtensor_meta, TensorMeta) # make sure the right shape in sharding prop self.assertEqual(y_local.shape, dtensor_meta.shape) self.assertEqual(y_local, y_dist.full_tensor())
import copy import itertools from pprint import pformat from typing import NamedTuple import torch from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, DTensor, ) from torch.distributed._tensor.placement_types import Replicate, Shard from torch.distributed.tensor._ops.utils import is_tensor_partial, normalize_dim from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, SequenceParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_unless_torch_gpu, with_comms, ) funcol = torch.ops.c10d_functional from torch.distributed._tensor.placement_types import TensorMeta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_math_ops.py
_replicate_fn
def _replicate_fn(name, module, device_mesh): for name, param in module.named_parameters(): if name in ["weight", "bias"]: param_dist = torch.nn.Parameter( distribute_tensor(param, device_mesh, [Replicate()]) ) module.register_parameter(name, param_dist) layer_norm_dist = distribute_module(layer_norm, device_mesh, _replicate_fn) x_local = x x_dist = distribute_tensor(x, device_mesh, [Shard(shard_dim)]) y_local = layer_norm_local(x_local) # make sure that forward layer norm does not introduce extra collectives comm_mode = CommDebugMode() with comm_mode: y_dist = layer_norm_dist(x_dist) self.assertLessEqual( comm_mode.get_total_counts(), 1, # TODO: This should be 0! f"comm count={comm_mode.get_total_counts()}, " f"shard_dim={shard_dim}, norm_shape={normalized_shape}, elem_affine={elementwise_affine}", ) from torch.distributed._tensor.placement_types import TensorMeta dtensor_meta = y_dist._spec.tensor_meta assert isinstance(dtensor_meta, TensorMeta) # make sure the right shape in sharding prop self.assertEqual(y_local.shape, dtensor_meta.shape) self.assertEqual(y_local, y_dist.full_tensor())
import copy import itertools from pprint import pformat from typing import NamedTuple import torch from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, DTensor, ) from torch.distributed._tensor.placement_types import Replicate, Shard from torch.distributed.tensor._ops.utils import is_tensor_partial, normalize_dim from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, SequenceParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_unless_torch_gpu, with_comms, ) funcol = torch.ops.c10d_functional from torch.distributed._tensor.placement_types import TensorMeta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_math_ops.py
__init__
def __init__(self): super().__init__() self.preln_embeddings = torch.nn.Embedding( vocab_size, embedding_dim ) self.layer_norm = torch.nn.LayerNorm( normalized_shape, elementwise_affine=elementwise_affine ) self.postln_linear = torch.nn.Linear( embedding_dim, embedding_dim )
import copy import itertools from pprint import pformat from typing import NamedTuple import torch from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, DTensor, ) from torch.distributed._tensor.placement_types import Replicate, Shard from torch.distributed.tensor._ops.utils import is_tensor_partial, normalize_dim from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, SequenceParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_unless_torch_gpu, with_comms, ) funcol = torch.ops.c10d_functional from torch.distributed._tensor.placement_types import TensorMeta class LnTpBlock(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_math_ops.py
forward
def forward(self, tokens): h = self.preln_embeddings(tokens) h = self.layer_norm(h) output = self.postln_linear(h) return output
import copy import itertools from pprint import pformat from typing import NamedTuple import torch from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, DTensor, ) from torch.distributed._tensor.placement_types import Replicate, Shard from torch.distributed.tensor._ops.utils import is_tensor_partial, normalize_dim from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, SequenceParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_unless_torch_gpu, with_comms, ) funcol = torch.ops.c10d_functional from torch.distributed._tensor.placement_types import TensorMeta class LnTpBlock(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_optimizers.py
test_asgd_1d_sharding
def test_asgd_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) asgd_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "lambd": 0.001, "foreach": False}, {"lr": 0.1, "lambd": 0.001, "alpha": 0.85, "foreach": False}, {"lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "foreach": False}, { "lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "weight_decay": 0.05, "foreach": False, }, { "lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "weight_decay": 0.05, "foreach": True, }, { "lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "weight_decay": 0.05, "foreach": True, "maximize": True, }, ] for config in asgd_configs: mod = MLPModule(self.device_type) opt = torch.optim.ASGD(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.ASGD(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) # TODO: We want to keep a unit test for ASGD optimizer for the time being, but we need to look into why # when using ASGD we need higher atol and rtol when comparing model parameters. # Default 'rtol' and 'atol' for attr:`~torch.float32` are ``1.3e-6`` and ``1e-5`` # Pointer here: https://github.com/pytorch/pytorch/blob/main/torch/testing/_comparison.py#L65 self._assert_optimizer( mesh, mod, opt, dist_mod, dist_opt, inp, atol=1.3e-5, rtol=1e-4 )
from copy import deepcopy import torch import torch.nn as nn from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, DTensor, Replicate, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, with_comms, ) class TestDTensorOptimizer(DTensorTestBase): from torch.optim.optimizer import _foreach_supported_types
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_pointwise_ops.py
test_partial_add
def test_partial_add(self): device_mesh = self.build_device_mesh() d_1 = DTensor.from_local(torch.rand(2, 2), device_mesh, [Partial()]) d_2 = DTensor.from_local(torch.rand(2, 2), device_mesh, [Partial()]) d_3 = d_1 + d_2 self.assertTrue(d_3._spec.placements[0].is_partial())
from typing import Any, Callable, Dict, Optional, Sequence from unittest import skip import torch import torch.utils._pytree as pytree from torch import Tensor from torch.distributed._tensor import DeviceMesh, distribute_tensor, DTensor from torch.distributed._tensor.placement_types import ( Partial, Placement, Replicate, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorOpTestBase, skip_unless_torch_gpu, ) class DistElementwiseOpsTest(DTensorOpTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_pointwise_ops.py
test_partial_mul
def test_partial_mul(self): device_mesh = self.build_device_mesh() d_1 = DTensor.from_local(torch.ones(2, 2), device_mesh, [Partial()]) d_2 = DTensor.from_local(torch.ones(2, 2), device_mesh, [Partial()]) d_3 = d_1 * d_2 self.assertTrue(d_3._spec.placements[0].is_replicate()) self.assertEqual(d_3.to_local(), torch.ones(2, 2) * (self.world_size**2))
from typing import Any, Callable, Dict, Optional, Sequence from unittest import skip import torch import torch.utils._pytree as pytree from torch import Tensor from torch.distributed._tensor import DeviceMesh, distribute_tensor, DTensor from torch.distributed._tensor.placement_types import ( Partial, Placement, Replicate, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorOpTestBase, skip_unless_torch_gpu, ) class DistElementwiseOpsTest(DTensorOpTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_math_ops.py
test_linalg_eigh
if __name__ == "__main__": run_tests()
def test_linalg_eigh(self): A = torch.randn(2, 2, dtype=torch.float64) mesh = self.build_device_mesh() dtensor_A = distribute_tensor(A, device_mesh=mesh, placements=[Replicate()]) dtensor_A = dtensor_A + dtensor_A.mT dtensor_L, dtensor_Q = torch.linalg.eigh(dtensor_A) # TODO: we need to convert A, L, Q to local because we don't have a # sharding strategy registered for aten.dist.default yet. local_A, local_L, local_Q = ( dtensor_A.to_local(), dtensor_L.to_local(), dtensor_Q.to_local(), ) distance = torch.dist(local_Q @ torch.diag(local_L) @ local_Q.mT, local_A) self.assertEqual(distance.item(), 0.0)
import copy import itertools from pprint import pformat from typing import NamedTuple import torch from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, DTensor, ) from torch.distributed._tensor.placement_types import Replicate, Shard from torch.distributed.tensor._ops.utils import is_tensor_partial, normalize_dim from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, SequenceParallel, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_unless_torch_gpu, with_comms, ) funcol = torch.ops.c10d_functional class DistMathOpsTest(DTensorTestBase): from torch.distributed._tensor.placement_types import TensorMeta
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_tensor_ops.py
test_slice
if __name__ == "__main__": run_tests()
def test_slice(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) # 1D mesh comm_mode = CommDebugMode() shard_spec = [Shard(1)] global_tensor = torch.randn(8, 16, requires_grad=True) sharded_dtensor = distribute_tensor(global_tensor, mesh, shard_spec) global_out = global_tensor[:, 8:] with comm_mode: sharded_out = sharded_dtensor[:, 8:] self.assertEqual(comm_mode.get_total_counts(), 1) global_out.backward(gradient=torch.ones_like(global_out)) with comm_mode: sharded_out_grad = torch.distributed._tensor.ones( sharded_out.shape, device_mesh=mesh, placements=[Shard(1)] ) sharded_out.backward(gradient=sharded_out_grad) self.assertEqual(comm_mode.get_total_counts(), 1) self.assertEqual(sharded_out.full_tensor(), global_out) self.assertEqual(sharded_dtensor.grad.full_tensor(), global_tensor.grad)
import torch from torch.distributed._tensor import DeviceMesh, distribute_tensor, DTensor from torch.distributed._tensor.placement_types import Partial, Replicate, Shard from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorConverter, DTensorTestBase, with_comms, ) class DistTensorOpsTest(DTensorTestBase): from torch.distributed.tensor._ops._embedding_ops import _MaskPartial from torch.distributed.tensor.debug import _get_sharding_prop_cache_info
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_tp_sharding_ops.py
test_split_partial_tensor
def test_split_partial_tensor(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) tensor = torch.rand(3, 5, 6, device=self.device_type) dist_tensor = DTensor.from_local(tensor, device_mesh, [_Partial()]) with self.assertRaisesRegex( RuntimeError, "_Partial placement is not implemented", ): dist_tensor = dist_tensor.split(3)
import torch from torch.distributed._tensor import ( DeviceMesh, distribute_tensor, DTensor, Replicate, Shard, ) from torch.distributed._tensor.placement_types import _Partial from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) class TPShardingOpsTest(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_tensor/test_redistribute.py
test_redistribute_shard_dim_multi_dim_mesh
if __name__ == "__main__": run_tests()
def test_redistribute_shard_dim_multi_dim_mesh(self): mesh = init_device_mesh(self.device_type, (2, 2, 2)) input_data = torch.randn((8, 8, 8), device=self.device_type) sharding_src_dst_pairs_3d = [ ([Shard(0), Shard(0), Shard(0)], [Shard(1), Shard(1), Shard(1)]), ([Shard(0), Shard(1), Shard(0)], [Shard(1), Shard(0), Shard(0)]), ([Shard(0), Shard(1), Shard(2)], [Shard(2), Shard(1), Shard(0)]), ([Shard(1), Shard(0), Shard(0)], [Replicate(), Shard(0), Shard(0)]), ([Shard(1), Replicate(), Shard(0)], [Replicate(), Shard(0), Shard(0)]), ([Shard(0), Shard(0), Shard(1)], [Shard(0), Shard(1), Shard(2)]), ] comm_counts_3d = [ 3, # 2: S0 - R, 1: S1 -> R, 0: S0 -> S1 3, # 2: S0 -> R, 1: S1 -> R, 0: S0 -> S1, 1: R -> S0, 2: R -> S0 2, # 2: S2 -> R, 0: S1 -> S2 1, # 0: S1 -> R 2, # 2: S0 -> R, 1: R -> S0, 2: R -> S0, 0: S1 -> R 2, # 2: S1 -> S2, 1: S0 -> S1 ] comm_mode = CommDebugMode() for idx, (src_placement, dst_placement) in enumerate(sharding_src_dst_pairs_3d): expected_dt = distribute_tensor(input_data.clone(), mesh, dst_placement) sharded_dt = distribute_tensor(input_data, mesh, src_placement) with comm_mode: out_dt = sharded_dt.redistribute(mesh, dst_placement) self.assertEqual(out_dt.placements, expected_dt.placements) self.assertEqual(comm_mode.get_total_counts(), comm_counts_3d[idx]) local_out_dt = out_dt.to_local() local_expected_dt = expected_dt.to_local() self.assertEqual(local_out_dt, local_expected_dt)
import itertools import torch from torch.distributed._tensor import DeviceMesh, distribute_tensor, DTensor from torch.distributed._tensor.placement_types import Partial, Replicate, Shard from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor._collective_utils import shard_dim_alltoall from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) funcol = torch.ops.c10d_functional from torch.distributed.tensor._redistribute import Redistribute class MultiDimRedistributeTest(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_utils.py
test_strided_sharding_assumption_in_meta_compute
def test_strided_sharding_assumption_in_meta_compute(self): # current ``compute_local_shape_and_global_offset`` does not allow Shard(i) # placement to appear after the strided sharding part has ended. This test # check that ``compute_local_shape_and_global_offset`` does not allow placements # that violate the assumption and does not forbid the allowed ones. # Test 0: 2-D mesh mesh_size_0 = 2 mesh_size_1 = self.world_size // mesh_size_0 global_mesh = init_device_mesh( self.device_type, (mesh_size_0, mesh_size_1), mesh_dim_names=("mesh-0", "mesh-1"), ) global_tensor_shape = torch.Size([2 * self.world_size, 2 * self.world_size]) for shard_dim in [0, 1]: placements = [ _StridedShard(shard_dim, split_factor=mesh_size_1), Shard(shard_dim), ] _, _ = compute_local_shape_and_global_offset( global_tensor_shape, global_mesh, placements ) # Test 1: 3-D mesh mesh_size_0 = 2 mesh_size_1 = 2 mesh_size_2 = self.world_size // (mesh_size_0 * mesh_size_1) global_mesh = init_device_mesh( self.device_type, (mesh_size_0, mesh_size_1, mesh_size_2), mesh_dim_names=("mesh-0", "mesh-1", "mesh-2"), ) # legal placements: Shard() appear after the strided part but it's on another # tensor dimension. placements = [ _StridedShard(0, split_factor=mesh_size_1), Shard(0), Shard(1), ] _, _ = compute_local_shape_and_global_offset( global_tensor_shape, global_mesh, placements ) # illegal placements: Shard() appear after the strided part and it's on the # same tensor dimension. placements = [ _StridedShard(0, split_factor=mesh_size_1), Shard(0), Shard(0), ] with self.assertRaisesRegex(NotImplementedError, "the strided part has ended"): _, _ = compute_local_shape_and_global_offset( global_tensor_shape, global_mesh, placements ) # Test 2: 4-D mesh mesh_size_0 = 1 mesh_size_1 = 2 mesh_size_2 = 2 mesh_size_3 = self.world_size // (mesh_size_0 * mesh_size_1 * mesh_size_2) global_mesh = init_device_mesh( self.device_type, (mesh_size_0, mesh_size_1, mesh_size_2, mesh_size_3), mesh_dim_names=("mesh-0", "mesh-1", "mesh-2", "mesh-3"), ) # legal placements: Shard() appear after the strided part but it's on another # tensor dimension. placements = [ _StridedShard(0, split_factor=mesh_size_1), _StridedShard(1, split_factor=mesh_size_3), Shard(0), Shard(1), ] local_shape, _ = compute_local_shape_and_global_offset( global_tensor_shape, global_mesh, placements ) expected_local_shape = ( 2 * mesh_size_1 * mesh_size_3, 2 * mesh_size_0 * mesh_size_2, ) self.assertEqual(local_shape, expected_local_shape) # illegal placements: Shard() appear after the strided part and it's on the # same tensor dimension. placements = [ _StridedShard(0, split_factor=mesh_size_1), _StridedShard(1, split_factor=mesh_size_3), Shard(0), Shard(0), ] with self.assertRaisesRegex(NotImplementedError, "the strided part has ended"): _, _ = compute_local_shape_and_global_offset( global_tensor_shape, global_mesh, placements )
import itertools import torch from torch.distributed._tensor import distribute_tensor, DTensor from torch.distributed._tensor._utils import ( compute_local_shape, compute_local_shape_and_global_offset, ) from torch.distributed.device_mesh import DeviceMesh, init_device_mesh from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.placement_types import _StridedShard, Replicate, Shard from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) c10d_functional = torch.ops.c10d_functional class UtilTest(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_utils.py
test_2d_mesh_2d_tensor_strided_sharding
def test_2d_mesh_2d_tensor_strided_sharding(self): # Test 2: 1-d tensor over 2-d mesh mesh_2d = init_device_mesh( self.device_type, (2, self.world_size // 2), mesh_dim_names=("dim0", "dim1") ) mesh_dim0_size = mesh_2d["dim0"].size() mesh_dim1_size = mesh_2d["dim1"].size() mesh_dim0_local_rank = mesh_2d["dim0"].get_local_rank(mesh_dim=0) mesh_dim1_local_rank = mesh_2d["dim1"].get_local_rank(mesh_dim=0) x = torch.arange(2 * self.world_size, device=self.device_type).reshape(2, -1) """ strided sharding: rank 0: [[0], [4]] rank 1: [[2], [6]] rank 2: [[1], [5]] rank 3: [[3], [7]] """ split_factor = 2 # shard on mesh dim-0 shard_placement_dim0 = _StridedShard(1, split_factor=split_factor) tensor_list, _ = shard_placement_dim0._split_tensor(x, mesh_dim0_size) shard_x = tensor_list[mesh_dim0_local_rank] expected_shard_dim0 = ( torch.tensor([[0, 2], [4, 6]], device=self.device_type) if mesh_dim0_local_rank == 0 else torch.tensor([[1, 3], [5, 7]], device=self.device_type) ) self.assertEqual(shard_x, expected_shard_dim0) # shard on mesh dim-1 shard_placement_dim1 = _StridedShard(1, split_factor=1) # same as Shard(1) tensor_list, _ = shard_placement_dim1._split_tensor(shard_x, mesh_dim1_size) shard_x = tensor_list[mesh_dim1_local_rank] expected_shard_dim1 = [ torch.tensor(value, device=self.device_type) for value in [[[0], [4]], [[2], [6]], [[1], [5]], [[3], [7]]] ][self.rank] self.assertEqual(shard_x, expected_shard_dim1) # shard_to_replicate on mesh dim-1 full_tensor = shard_placement_dim1._to_replicate_tensor( shard_x, mesh_2d, mesh_dim=1, current_logical_shape=list(expected_shard_dim0.shape), ) self.assertEqual(full_tensor, expected_shard_dim0) # shard_to_replicate on mesh dim-0 full_tensor = shard_placement_dim0._to_replicate_tensor( full_tensor, mesh_2d, mesh_dim=0, current_logical_shape=list(x.shape), ) self.assertEqual(full_tensor, x)
import itertools import torch from torch.distributed._tensor import distribute_tensor, DTensor from torch.distributed._tensor._utils import ( compute_local_shape, compute_local_shape_and_global_offset, ) from torch.distributed.device_mesh import DeviceMesh, init_device_mesh from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.placement_types import _StridedShard, Replicate, Shard from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) c10d_functional = torch.ops.c10d_functional class TestStridedSharding(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_utils.py
test_fsdp2_tp_2d_dtensor_local_shards_and_offsets
def test_fsdp2_tp_2d_dtensor_local_shards_and_offsets(self): # We are mimicking the behavior of FSDP2 + TP. # Currently, the 2D DTensor's local shard is incorrect for resharding, since we want to avoid extra communication. # It's incorrect for resharding, since `compute_local_shape_and_global_offset` # doesn't know the correct offsets for resharding. # When we have a global_tensor of [0, 1, 2, 3, 4, 5, 6, 7], the local shard of 2D DTensor would be: # local tensor -- rank0: [0, 1], rank1: [4, 5], rank2: [2, 3], rank3: [6, 7] # current offsets -- rank0: [0, 0], rank1: [1, 0], rank2: [2, 0], rank3: [3, 0] # Ideally, with strided sharding, the offsets should be rank0: [0, 0], rank1: [2, 0], rank2: [1, 0], rank3: [3, 0] # TODO: to make the local shard of FSDP2 + TP correct for resharding, it would require strided_sharding # as well as let compute_local_shape_and_global_offset takes into consideration of strided_sharding. global_tensor = torch.arange(8).view(4, 2) with CommDebugMode() as comm_mode: mesh_2d = init_device_mesh( self.device_type, (2, 2), mesh_dim_names=("DP", "TP") ) tp_mesh = mesh_2d["TP"] dtensor_tp = distribute_tensor( global_tensor, tp_mesh, placements=[Shard(0)] ) chunks = list(torch.chunk(dtensor_tp.to_local(), 2, dim=0)) shard_rank = 0 if self.rank // 2 == 0 else 1 sharded_param = chunks[shard_rank] spec_2d = DTensorSpec( mesh=mesh_2d, placements=(_StridedShard(0, split_factor=2), Shard(0)), tensor_meta=TensorMeta( global_tensor.size(), global_tensor.stride(), global_tensor.dtype, ), ) dtensor_2d = DTensor( sharded_param, spec_2d, requires_grad=False, ) self.assertEqual( comm_mode.get_comm_counts()[c10d_functional.all_gather_into_tensor], 0 ) self.assertEqual(global_tensor, dtensor_2d.full_tensor())
import itertools import torch from torch.distributed._tensor import distribute_tensor, DTensor from torch.distributed._tensor._utils import ( compute_local_shape, compute_local_shape_and_global_offset, ) from torch.distributed.device_mesh import DeviceMesh, init_device_mesh from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta from torch.distributed.tensor.debug import CommDebugMode from torch.distributed.tensor.placement_types import _StridedShard, Replicate, Shard from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) c10d_functional = torch.ops.c10d_functional class Test2DStridedLocalShard(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_tensor_ops.py
test_equal
def test_equal(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) shard_spec = [Shard(0)] input_tensor_1 = torch.ones(4, 4) dist_tensor_1 = DTensor.from_local(input_tensor_1, device_mesh, shard_spec) # tensors are equal input_tensor_2 = torch.ones(4, 4) dist_tensor_2 = DTensor.from_local(input_tensor_2, device_mesh, shard_spec) eq_result = dist_tensor_1.equal(dist_tensor_2) self.assertTrue(eq_result) # tensors are different on some shards if self.rank == 0: input_tensor_2 = torch.ones(4, 4) else: input_tensor_2 = torch.randn(4, 4) dist_tensor_2 = DTensor.from_local(input_tensor_2, device_mesh, shard_spec) eq_result = dist_tensor_1.equal(dist_tensor_2) # equal op all reduces each shard's local result self.assertFalse(eq_result) self.assertTrue(dist_tensor_1.is_same_size(dist_tensor_2)) # test if sharding are different replica_spec = [Replicate()] global_input = torch.ones(4 * self.world_size, 4) dist_tensor_3 = DTensor.from_local( global_input, device_mesh, replica_spec, run_check=False ) self.assertTrue(dist_tensor_1.equal(dist_tensor_3)) self.assertTrue(dist_tensor_1.is_same_size(dist_tensor_3)) # test sharding difference with only some shards content difference self.assertFalse(dist_tensor_2.equal(dist_tensor_3)) self.assertTrue(dist_tensor_1.is_same_size(dist_tensor_3)) self.assertFalse(input_tensor_2.is_same_size(dist_tensor_3))
import torch from torch.distributed._tensor import DeviceMesh, distribute_tensor, DTensor from torch.distributed._tensor.placement_types import Partial, Replicate, Shard from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorConverter, DTensorTestBase, with_comms, ) class DistTensorOpsTest(DTensorTestBase): from torch.distributed.tensor._ops._embedding_ops import _MaskPartial from torch.distributed.tensor.debug import _get_sharding_prop_cache_info
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_random_ops.py
test_meta_tensor_init
def test_meta_tensor_init(self): # test suite sets each rank's seed to the same value but in actual # execution the default random seed will be different (a random value). # The DTensor random ops will use the same random seed even though the # torch random generator keeps different seeds on ranks. This ensures # that Replicate DTensor will have the same initialized results # across ranks. torch.cuda.manual_seed(self.rank) device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size)) size = [1024, 2048] meta_dtensor = distribute_tensor( torch.empty(*size, device="meta"), device_mesh, [Replicate()] ) self.assertTrue(meta_dtensor.is_meta) dtensor = torch.empty_like(meta_dtensor, device=self.device_type) # disable the distribute region for RNG random._rng_tracker.distribute_region_enabled = False dtensor.uniform_() # allgather the local tensors local_tensor = funcol.all_gather_tensor( dtensor.to_local(), gather_dim=0, group=(device_mesh, 0) ) # compare with local tensors from other ranks self_slice = slice(1024 * self.rank, 1024 * self.rank + 1024) for other_rank in range(self.world_size): # the RNG result on each rank differs even they're supposed # to be replicated if self.rank != other_rank: other_slice = slice(1024 * other_rank, 1024 * other_rank + 1024) self.assertNotEqual( local_tensor[self_slice, :], local_tensor[other_slice, :] ) # enable the distribute region for RNG random._rng_tracker.distribute_region_enabled = True self.assertTrue(meta_dtensor.is_meta) dtensor = torch.empty_like(meta_dtensor, device=self.device_type) dtensor.uniform_() # allgather the local tensors local_tensor = funcol.all_gather_tensor( dtensor.to_local(), gather_dim=0, group=(device_mesh, 0) ) # compare with local tensors from other ranks for other_rank in range(self.world_size): # the RNG result on each rank are the same because they're replicated if self.rank != other_rank: # other rank should have an identical local tensor other_slice = slice(1024 * other_rank, 1024 * other_rank + 1024) self.assertEqual( local_tensor[self_slice, :], local_tensor[other_slice, :] )
import itertools import torch import torch.distributed._functional_collectives as funcol import torch.distributed.tensor._random as random from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed._tensor._utils import compute_local_shape_and_global_offset from torch.distributed._tensor.api import distribute_tensor from torch.distributed._tensor.placement_types import Replicate, Shard from torch.distributed.distributed_c10d import broadcast_object_list from torch.distributed.tensor._random import is_rng_supported_mesh, manual_seed from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, skip_unless_torch_gpu, with_comms, ) class DistTensorRandomOpTest(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_xla_integration.py
text_xla_distribute_module
def text_xla_distribute_module(self): import torch_xla # type:ignore[import] import torch_xla.core.xla_model as xm # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import] model = self.SimpleLinear().to(xm.xla_device()) device_count = xr.global_runtime_device_count() device_mesh = DeviceMesh("xla", list(range(device_count))) def shard_params(mod_name, mod, mesh): shard_spec = [Shard(0)] # annoate fc1 and fc2 if isinstance(mod, nn.Linear): for name, param in mod.named_parameters(): # annotate the parameter tensors directly distribute_tensor(param, mesh, shard_spec) sharded_model = distribute_module(model, device_mesh, shard_params) self.assertTrue( torch_xla._XLAC._get_xla_sharding_spec(sharded_model.fc1.weight) != "" ) self.assertTrue( torch_xla._XLAC._get_xla_sharding_spec(sharded_model.fc2.weight) != "" )
import os import unittest from functools import wraps from typing import Any, Callable, Dict, Tuple import numpy as np import torch from torch import nn from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, Replicate, Shard, ) from torch.testing._internal.common_utils import run_tests, TestCase import torch_xla # type:ignore[import] # noqa: F401 class DTensorXLAIntegrationTest(TestCase): import torch_xla.runtime as xr # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import] import torch_xla # type:ignore[import] import torch_xla.core.xla_model as xm # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_xla_integration.py
shard_params
def shard_params(mod_name, mod, mesh): shard_spec = [Shard(0)] # annoate fc1 and fc2 if isinstance(mod, nn.Linear): for name, param in mod.named_parameters(): # annotate the parameter tensors directly distribute_tensor(param, mesh, shard_spec) sharded_model = distribute_module(model, device_mesh, shard_params) self.assertTrue( torch_xla._XLAC._get_xla_sharding_spec(sharded_model.fc1.weight) != "" ) self.assertTrue( torch_xla._XLAC._get_xla_sharding_spec(sharded_model.fc2.weight) != "" )
import os import unittest from functools import wraps from typing import Any, Callable, Dict, Tuple import numpy as np import torch from torch import nn from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, Replicate, Shard, ) from torch.testing._internal.common_utils import run_tests, TestCase import torch_xla # type:ignore[import] # noqa: F401 import torch_xla.runtime as xr # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import] import torch_xla # type:ignore[import] import torch_xla.core.xla_model as xm # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_fsdp2_mem_tracker.py
_init_cublas_workspace
def _init_cublas_workspace(dev: torch.device): lin = torch.nn.Linear(768, 768, device=dev) inp = torch.randn(1, 768, device=dev) lin(inp).sum().backward() del lin del inp
import functools import gc from typing import Union import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.distributed._composable.fsdp import ( CPUOffloadPolicy, fully_shard, MixedPrecisionPolicy, OffloadPolicy, ) from torch.distributed._tensor import init_device_mesh from torch.distributed._tools.fsdp2_mem_tracker import FSDPMemTracker from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, CheckpointWrapper, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( ModelArgs, Transformer, TransformerBlock, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_fsdp2_mem_tracker.py
_reset_mem_stats
def _reset_mem_stats(dev: torch.device): torch.cuda.empty_cache() torch.cuda.reset_accumulated_memory_stats(dev) torch.cuda.reset_peak_memory_stats(dev) class TestTrackerFullyShard1DTrainingCore(FSDPTest): @property def world_size(self) -> int: return min(4, torch.cuda.device_count()) @skip_if_lt_x_gpu(2) def test_tracker_multi_group_eager(self): """ Tests tracker accuracy when using multiple parameter groups for communication (for communication and computation overlap plus memory reduction) and different mixed precision policies. """ self.run_subtests( { "reshard_after_forward": [True, False], "offload_policy": [ CPUOffloadPolicy(pin_memory=False), OffloadPolicy(), ], "mp_policy": [ MixedPrecisionPolicy( param_dtype=torch.float16, reduce_dtype=torch.float32 ), ], }, self._test_tracker_multi_group, ) def _test_tracker_multi_group( self, reshard_after_forward: Union[bool, int], offload_policy: OffloadPolicy, mp_policy: MixedPrecisionPolicy, ): debug = False dev = torch.device(torch.cuda.current_device()) _init_cublas_workspace(dev) gc.collect() _reset_mem_stats(dev) mem_stats = torch.cuda.memory_stats(dev) pre_cuda_active = mem_stats["active_bytes.all.current"] torch.manual_seed(42) lin_dim, bsz = 2048, 8192 with torch.device(dev): model = nn.Sequential(*[MLP(dim=lin_dim, device=dev) for _ in range(4)]) mesh = init_device_mesh("cuda", (self.world_size,)) fully_shard_fn = functools.partial( fully_shard, mesh=mesh, reshard_after_forward=reshard_after_forward, offload_policy=offload_policy, mp_policy=mp_policy, ) for mlp in model: fully_shard_fn(mlp) fully_shard_fn(model) optim = torch.optim.Adam(model.parameters(), lr=1e-2) inp = torch.randn((bsz, lin_dim), device=dev) fmt = FSDPMemTracker(model, optim) fmt.track_inputs((inp,)) with fmt: for iter_idx in range(2): loss = model(inp).sum() loss.backward() optim.step() optim.zero_grad() if iter_idx == 0: fmt.reset_mod_stats() mem_stats = torch.cuda.memory_stats() tracker_max = fmt.get_tracker_snapshot("peak")[dev]["Total"] cuda_max = mem_stats["active_bytes.all.peak"] - pre_cuda_active accuracy = tracker_max / cuda_max if self.rank == 0 and debug: print(f"Accuracy: {accuracy} Tracker Max:{tracker_max} CUDA Max:{cuda_max}") self.assertAlmostEqual( accuracy, 1.0, delta=0.1, msg=f"Tracker Max:{tracker_max} CUDA Max:{cuda_max}", ) del model del inp del optim @skip_if_lt_x_gpu(2) def test_tracker_non_root_forward_backward(self): """ Tests tracker accracy when running forward/backward through a non-root. """ debug = False dev = torch.device(torch.cuda.current_device()) _init_cublas_workspace(dev) gc.collect() _reset_mem_stats(dev) mem_stats = torch.cuda.memory_stats(dev) pre_cuda_active = mem_stats["active_bytes.all.current"] torch.manual_seed(42) lin_dim, bsz = 2048, 8 model = nn.Sequential(*[MLP(lin_dim, dev) for _ in range(3)]) for mlp in model: fully_shard(mlp) fully_shard(model) optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True) torch.manual_seed(42 + self.rank) inp = torch.randn((bsz, lin_dim), device=dev) fmt = FSDPMemTracker(model, optim) fmt.track_inputs((inp,)) with fmt: for iter_idx in range(2): nonroot_loss = model[0](inp).sum() nonroot_loss.backward() optim.step() optim.zero_grad() if iter_idx == 0: fmt.reset_mod_stats() mem_stats = torch.cuda.memory_stats() tracker_max = fmt.get_tracker_snapshot("peak")[dev]["Total"] cuda_max = mem_stats["active_bytes.all.peak"] - pre_cuda_active accuracy = tracker_max / cuda_max if self.rank == 0 and debug: print(f"Accuracy: {accuracy} Tracker Max:{tracker_max} CUDA Max:{cuda_max}") self.assertAlmostEqual( accuracy, 1.0, delta=0.1, msg=f"Tracker Max:{tracker_max} CUDA Max:{cuda_max}", ) del inp del model del optim class TestTrackerFullyShard1DTrainingCompose(FSDPTest): @property def world_size(self) -> int: return min(torch.cuda.device_count(), 4) @skip_if_lt_x_gpu(2) def test_tracker_with_activation_checkpointing(self): """ Tests tracker accuracy when composing with activation checkpointing. """ self.run_subtests( { "reshard_after_forward": [True, False], "checkpoint_impl": ["composable", "wrapper"], }, self._test_tracker_with_activation_checkpointing, ) def _test_tracker_with_activation_checkpointing( self, reshard_after_forward: Union[bool, int], checkpoint_impl: str ): assert checkpoint_impl in ("composable", "wrapper") debug = False dev = torch.device(torch.cuda.current_device()) _init_cublas_workspace(dev) gc.collect() _reset_mem_stats(dev) mem_stats = torch.cuda.memory_stats(dev) pre_cuda_active = mem_stats["active_bytes.all.current"] torch.manual_seed(42) vocab_size = 8192 bsz, seq_len = 16, 512 with torch.device(dev): model_args = ModelArgs( n_layers=4, n_heads=4, vocab_size=vocab_size, max_seq_len=seq_len, dropout_p=0.1, ) model = Transformer(model_args) foreach = False fully_shard_fn = functools.partial( fully_shard, reshard_after_forward=reshard_after_forward, ) if checkpoint_impl == "wrapper": apply_activation_checkpointing( model, check_fn=lambda m: isinstance(m, TransformerBlock) ) for module in model.modules(): # Apply to `CheckpointWrapper`, which wraps `TransformerBlock` if isinstance(module, CheckpointWrapper): fully_shard_fn(module) else: for module in model.modules(): if isinstance(module, TransformerBlock): if checkpoint_impl == "composable": checkpoint(module) fully_shard_fn(module) fully_shard_fn(model) optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=foreach) torch.manual_seed(42 + self.rank) inp = torch.randint(0, vocab_size, (bsz, seq_len), device=dev) fmt = FSDPMemTracker(model, optim) fmt.track_inputs((inp,)) with fmt: for iter_idx in range(2): loss = model(inp).sum() loss.backward() optim.step() optim.zero_grad() if iter_idx == 0: fmt.reset_mod_stats() mem_stats = torch.cuda.memory_stats() tracker_max = fmt.get_tracker_snapshot("peak")[dev]["Total"] cuda_max = mem_stats["active_bytes.all.peak"] - pre_cuda_active accuracy = tracker_max / cuda_max if self.rank == 0 and debug: print(f"Accuracy: {accuracy} Tracker Max:{tracker_max} CUDA Max:{cuda_max}") self.assertAlmostEqual( accuracy, 1.0, delta=0.1, msg=f"Tracker Max:{tracker_max} CUDA Max:{cuda_max}", ) del inp del model del optim if __name__ == "__main__": run_tests()
import functools import gc from typing import Union import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.distributed._composable.fsdp import ( CPUOffloadPolicy, fully_shard, MixedPrecisionPolicy, OffloadPolicy, ) from torch.distributed._tensor import init_device_mesh from torch.distributed._tools.fsdp2_mem_tracker import FSDPMemTracker from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, CheckpointWrapper, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( ModelArgs, Transformer, TransformerBlock, )
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_fsdp2_mem_tracker.py
test_tracker_multi_group_eager
def test_tracker_multi_group_eager(self): """ Tests tracker accuracy when using multiple parameter groups for communication (for communication and computation overlap plus memory reduction) and different mixed precision policies. """ self.run_subtests( { "reshard_after_forward": [True, False], "offload_policy": [ CPUOffloadPolicy(pin_memory=False), OffloadPolicy(), ], "mp_policy": [ MixedPrecisionPolicy( param_dtype=torch.float16, reduce_dtype=torch.float32 ), ], }, self._test_tracker_multi_group, )
import functools import gc from typing import Union import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.distributed._composable.fsdp import ( CPUOffloadPolicy, fully_shard, MixedPrecisionPolicy, OffloadPolicy, ) from torch.distributed._tensor import init_device_mesh from torch.distributed._tools.fsdp2_mem_tracker import FSDPMemTracker from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, CheckpointWrapper, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( ModelArgs, Transformer, TransformerBlock, ) class TestTrackerFullyShard1DTrainingCore(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_fsdp2_mem_tracker.py
test_tracker_non_root_forward_backward
def test_tracker_non_root_forward_backward(self): """ Tests tracker accracy when running forward/backward through a non-root. """ debug = False dev = torch.device(torch.cuda.current_device()) _init_cublas_workspace(dev) gc.collect() _reset_mem_stats(dev) mem_stats = torch.cuda.memory_stats(dev) pre_cuda_active = mem_stats["active_bytes.all.current"] torch.manual_seed(42) lin_dim, bsz = 2048, 8 model = nn.Sequential(*[MLP(lin_dim, dev) for _ in range(3)]) for mlp in model: fully_shard(mlp) fully_shard(model) optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True) torch.manual_seed(42 + self.rank) inp = torch.randn((bsz, lin_dim), device=dev) fmt = FSDPMemTracker(model, optim) fmt.track_inputs((inp,)) with fmt: for iter_idx in range(2): nonroot_loss = model[0](inp).sum() nonroot_loss.backward() optim.step() optim.zero_grad() if iter_idx == 0: fmt.reset_mod_stats() mem_stats = torch.cuda.memory_stats() tracker_max = fmt.get_tracker_snapshot("peak")[dev]["Total"] cuda_max = mem_stats["active_bytes.all.peak"] - pre_cuda_active accuracy = tracker_max / cuda_max if self.rank == 0 and debug: print(f"Accuracy: {accuracy} Tracker Max:{tracker_max} CUDA Max:{cuda_max}") self.assertAlmostEqual( accuracy, 1.0, delta=0.1, msg=f"Tracker Max:{tracker_max} CUDA Max:{cuda_max}", ) del inp del model del optim
import functools import gc from typing import Union import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.distributed._composable.fsdp import ( CPUOffloadPolicy, fully_shard, MixedPrecisionPolicy, OffloadPolicy, ) from torch.distributed._tensor import init_device_mesh from torch.distributed._tools.fsdp2_mem_tracker import FSDPMemTracker from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, CheckpointWrapper, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( ModelArgs, Transformer, TransformerBlock, ) class TestTrackerFullyShard1DTrainingCore(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_fsdp2_mem_tracker.py
test_tracker_with_activation_checkpointing
def test_tracker_with_activation_checkpointing(self): """ Tests tracker accuracy when composing with activation checkpointing. """ self.run_subtests( { "reshard_after_forward": [True, False], "checkpoint_impl": ["composable", "wrapper"], }, self._test_tracker_with_activation_checkpointing, )
import functools import gc from typing import Union import torch import torch.nn as nn from torch.distributed._composable import checkpoint from torch.distributed._composable.fsdp import ( CPUOffloadPolicy, fully_shard, MixedPrecisionPolicy, OffloadPolicy, ) from torch.distributed._tensor import init_device_mesh from torch.distributed._tools.fsdp2_mem_tracker import FSDPMemTracker from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( apply_activation_checkpointing, CheckpointWrapper, ) from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest, MLP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( ModelArgs, Transformer, TransformerBlock, ) class TestTrackerFullyShard1DTrainingCompose(FSDPTest):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mem_tracker.py
_init_cublas_workspace
def _init_cublas_workspace(self, dev: torch.device): lin = torch.nn.Linear(768, 768, device=dev) inp = torch.randn(1, 768, device=dev) lin(inp).sum().backward() del lin del inp
import gc import unittest from typing import Tuple import torch import torch.nn as nn from torch.distributed._tools.mem_tracker import MemTracker from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.utils.checkpoint import checkpoint class TestMemTracker(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mem_tracker.py
__init__
def __init__(self, n_layers: int, dim: int, dtype: torch.dtype): super().__init__() self.linears = nn.ModuleList() for _ in range(n_layers): self.linears.append(nn.Linear(dim, dim, dtype=dtype)) self.linears.append(nn.ReLU())
import gc import unittest from typing import Tuple import torch import torch.nn as nn from torch.distributed._tools.mem_tracker import MemTracker from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.utils.checkpoint import checkpoint class DummyModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mem_tracker.py
forward
def forward(self, x): for layer in self.linears: x = layer(x) return x
import gc import unittest from typing import Tuple import torch import torch.nn as nn from torch.distributed._tools.mem_tracker import MemTracker from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.utils.checkpoint import checkpoint class DummyModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mem_tracker.py
__init__
def __init__(self, n_layers: int, dim: int, dtype: torch.dtype): super().__init__() self.linears = nn.ModuleList() for _ in range(n_layers): self.linears.append(nn.Linear(dim, dim, dtype=dtype)) self.linears.append(nn.ReLU())
import gc import unittest from typing import Tuple import torch import torch.nn as nn from torch.distributed._tools.mem_tracker import MemTracker from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.utils.checkpoint import checkpoint class DummyModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mem_tracker.py
forward
def forward(self, x): for layer in self.linears: x = layer(x) return x
import gc import unittest from typing import Tuple import torch import torch.nn as nn from torch.distributed._tools.mem_tracker import MemTracker from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.utils.checkpoint import checkpoint class DummyModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mem_tracker.py
forward
def forward(self, x): for layer in self.linears: x = layer(x) return x
import gc import unittest from typing import Tuple import torch import torch.nn as nn from torch.distributed._tools.mem_tracker import MemTracker from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.utils.checkpoint import checkpoint class DummyModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mem_tracker.py
test_tracker_attribution
def test_tracker_attribution(self): """ Tests that the tracker correctly categorizes params, gradients, and optimizer states. """ dev = torch.device(torch.get_default_device()) gc.collect(1) bsz, n_layers, dim, dtype = 16, 3, 128, torch.float32 def get_param_grad_optstate_actual_bytes( model: nn.Module, opt: torch.optim.Optimizer ) -> Tuple[int, int, int]: param_bytes = 0 grad_bytes = 0 opt_state_bytes = 0 for param in model.parameters(): if param.device == dev: param_bytes += param.numel() * param.element_size() if param.grad is not None and param.grad.device == dev: grad_bytes += param.grad.numel() * param.grad.element_size() for state in opt.state.values(): for v in state.values(): if isinstance(v, torch.Tensor) and v.device == dev: opt_state_bytes += v.numel() * v.element_size() return param_bytes, grad_bytes, opt_state_bytes def get_param_grad_optstate_bytes_from_tracker( tracker: MemTracker, ) -> Tuple[int, int, int]: snapshot = tracker.get_tracker_snapshot() param_bytes = snapshot[dev]["Parameter"] grad_bytes = snapshot[dev]["Gradient"] opt_state_bytes = snapshot[dev]["Optstate"] return param_bytes, grad_bytes, opt_state_bytes def test_attribution_equivalence( mt: MemTracker, model: nn.Module, opt: torch.optim.Optimizer, ) -> None: actual = get_param_grad_optstate_actual_bytes(model, opt) tracker = get_param_grad_optstate_bytes_from_tracker(mt) for a, b in zip(actual, tracker): if a == 0: self.assertEqual(b, 0) else: self.assertAlmostEqual(b / a, 1.0, delta=0.1) class DummyModel(nn.Module): def __init__(self, n_layers: int, dim: int, dtype: torch.dtype): super().__init__() self.MLP_layers = nn.ModuleList() for _ in range(n_layers): self.MLP_layers.extend( [nn.Linear(dim, 2 * dim, dtype=dtype), nn.GELU()] ) self.MLP_layers.extend( [nn.Linear(2 * dim, dim, dtype=dtype), nn.GELU()] ) def forward(self, x): for layer in self.MLP_layers: x = layer(x) return x with torch.device(dev): model = DummyModel(n_layers, dim, dtype=dtype) optim = torch.optim.Adam(model.parameters(), foreach=True) mem_tracker = MemTracker() mem_tracker.track_external(model, optim) with mem_tracker as mt: input_batch = torch.randn(bsz, dim, device=dev, dtype=dtype) # Before forward: Only parameters and input are allocated test_attribution_equivalence(mt, model, optim) output = model(input_batch) output.sum().backward() # After backward: Gradients are allocated test_attribution_equivalence(mt, model, optim) output = None optim.step() # After step: Optimizer state is allocated test_attribution_equivalence(mt, model, optim) optim.zero_grad() # After zero_grad: Gradients are deallocated test_attribution_equivalence(mt, model, optim)
import gc import unittest from typing import Tuple import torch import torch.nn as nn from torch.distributed._tools.mem_tracker import MemTracker from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.utils.checkpoint import checkpoint class TestMemTracker(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mem_tracker.py
__init__
def __init__(self, n_layers: int, dim: int, dtype: torch.dtype): super().__init__() self.linears = nn.ModuleList() for _ in range(n_layers): self.linears.append(nn.Linear(dim, dim, dtype=dtype)) self.linears.append(nn.ReLU())
import gc import unittest from typing import Tuple import torch import torch.nn as nn from torch.distributed._tools.mem_tracker import MemTracker from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.utils.checkpoint import checkpoint class DummyModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mem_tracker.py
forward
def forward(self, x): for layer in self.linears: x = layer(x) return x
import gc import unittest from typing import Tuple import torch import torch.nn as nn from torch.distributed._tools.mem_tracker import MemTracker from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.utils.checkpoint import checkpoint class DummyModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mod_tracker.py
test_module_hierarchy
def test_module_hierarchy(self): seen_fw = [] seen_bw = [] class Foo(torch.nn.Module): def forward(self, x): x = x["a"].relu_() seen_fw.append((copy(tracker.parents), tracker.is_bw)) x.register_hook( lambda grad: seen_bw.append((copy(tracker.parents), tracker.is_bw)) ) return {"a": torch.mm(x, x)} class Mod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = Foo() self.b = torch.nn.ModuleDict({"nest": Foo()}) self.c = torch.nn.ModuleList([Foo()]) def forward(self, x): x = self.c[0](x) return self.b["nest"](self.a(x)) mod = Mod() with ModTracker() as tracker: mod({"a": torch.randn(10, 10, requires_grad=True).clone()})[ "a" ].sum().backward() mod({"a": torch.randn(10, 10, requires_grad=True).clone()})[ "a" ].sum().backward() self.assertEqual( seen_fw, [ ({"Global", "Mod", "Mod.c.0"}, False), ({"Global", "Mod", "Mod.a"}, False), ({"Global", "Mod", "Mod.b.nest"}, False), ({"Global", "Mod", "Mod.c.0"}, False), ({"Global", "Mod", "Mod.a"}, False), ({"Global", "Mod", "Mod.b.nest"}, False), ], ) self.assertEqual( seen_bw, [ ({"Global", "Mod", "Mod.b.nest"}, True), ({"Global", "Mod", "Mod.a"}, True), ({"Global", "Mod", "Mod.c.0"}, True), ({"Global", "Mod", "Mod.b.nest"}, True), ({"Global", "Mod", "Mod.a"}, True), ({"Global", "Mod", "Mod.c.0"}, True), ], )
from copy import copy import torch from torch.distributed._tools.mod_tracker import ModTracker from torch.testing._internal.common_utils import run_tests, TestCase, xfailIfTorchDynamo from torch.utils.checkpoint import checkpoint class TestModTracker(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mod_tracker.py
forward
def forward(self, x): x = x["a"].relu_() seen_fw.append((copy(tracker.parents), tracker.is_bw)) x.register_hook( lambda grad: seen_bw.append((copy(tracker.parents), tracker.is_bw)) ) return {"a": torch.mm(x, x)}
from copy import copy import torch from torch.distributed._tools.mod_tracker import ModTracker from torch.testing._internal.common_utils import run_tests, TestCase, xfailIfTorchDynamo from torch.utils.checkpoint import checkpoint class Foo(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mod_tracker.py
forward
def forward(self, x): x = x["a"].relu_() seen_fw.append((copy(tracker.parents), tracker.is_bw)) x.register_hook( lambda grad: seen_bw.append((copy(tracker.parents), tracker.is_bw)) ) return {"a": torch.mm(x, x)}
from copy import copy import torch from torch.distributed._tools.mod_tracker import ModTracker from torch.testing._internal.common_utils import run_tests, TestCase, xfailIfTorchDynamo from torch.utils.checkpoint import checkpoint class Foo(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mod_tracker.py
forward
def forward(self, x): x = x["a"].relu_() seen_fw.append((copy(tracker.parents), tracker.is_bw)) x.register_hook( lambda grad: seen_bw.append((copy(tracker.parents), tracker.is_bw)) ) return {"a": torch.mm(x, x)}
from copy import copy import torch from torch.distributed._tools.mod_tracker import ModTracker from torch.testing._internal.common_utils import run_tests, TestCase, xfailIfTorchDynamo from torch.utils.checkpoint import checkpoint class Foo(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mod_tracker.py
hook
def hook(mod, hook_name): mfqn = mt.get_known_fqn(mod) if mod is not None else None test_op.append((hook_name, mfqn, mfqn in mt.parents, mt.is_bw)) mod = Bar() mt.register_user_hooks( lambda m, inp: hook(m, "pre_fw"), lambda m, inp, op: hook(m, "post_fw"), lambda m, gop: hook(m, "pre_bw"), lambda m, ginp: hook(m, "post_bw"), ) with mt: mod(torch.rand(10, 10, requires_grad=True)).sum().backward() expected_op = [ ("pre_fw", "Bar", True, False), ("pre_fw", "Bar.foo", True, False), ("post_fw", "Bar.foo", True, False), ("post_fw", "Bar", True, False), ("pre_bw", "Bar", True, True), ("pre_bw", "Bar.foo", True, True), ("post_bw", "Bar", True, True), ("post_bw", "Bar.foo", True, True), ] self.assertEqual(test_op, expected_op) with self.assertRaises(AssertionError): mt.register_user_hooks(lambda x, y: x, None, None, None) test_op.clear() with mt: loss = mod(torch.rand(10, 10, requires_grad=True)).sum() del mod loss.backward() expected_op = [ ("pre_fw", "Bar", True, False), ("pre_fw", "Bar.foo", True, False), ("post_fw", "Bar.foo", True, False), ("post_fw", "Bar", True, False), ("pre_bw", None, False, True), ("pre_bw", None, False, True), ("post_bw", None, False, True), ("post_bw", None, False, True), ] self.assertEqual(test_op, expected_op)
from copy import copy import torch from torch.distributed._tools.mod_tracker import ModTracker from torch.testing._internal.common_utils import run_tests, TestCase, xfailIfTorchDynamo from torch.utils.checkpoint import checkpoint
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mod_tracker.py
test_ac
def test_ac(self): class Foo(torch.nn.Module): def __init__(self, n_layers: int, dim: int, use_ac: bool = False): super().__init__() self.linears = torch.nn.ModuleList() self.use_ac = use_ac for _ in range(n_layers): self.linears.append(torch.nn.Linear(dim, dim)) def forward(self, x): for i, block in enumerate(self.linears): if i >= 1 and self.use_ac: x = checkpoint( block, x, preserve_rng_state=True, use_reentrant=False ) else: x = block(x) assert x is not None x = torch.nn.functional.relu(x) return x bsz = 2 dim = 8 n_layers = 2 test_op = [] def hook(mod, mt, hook_name): mfqn = mt.get_known_fqn(mod) if mod is not None else None test_op.append((hook_name, mfqn, mfqn in mt.parents, mt.is_bw)) mt = ModTracker() mt.register_user_hooks( lambda m, i: hook(m, mt, "pre_fw"), lambda m, i, o: hook(m, mt, "post_fw"), lambda m, go: hook(m, mt, "pre_bw"), lambda m, gi: hook(m, mt, "post_bw"), ) model = Foo(n_layers, dim, True) x = torch.randn(bsz, dim) with mt: model(x).sum().backward() expected_op = [ ("pre_fw", "Foo", True, False), ("pre_fw", "Foo.linears.0", True, False), ("post_fw", "Foo.linears.0", True, False), ("pre_fw", "Foo.linears.1", True, False), ("post_fw", "Foo.linears.1", True, False), ("post_fw", "Foo", True, False), ("pre_bw", "Foo", True, True), ("pre_bw", "Foo.linears.1", True, True), ("pre_fw", "Foo.linears.1", True, True), ("post_fw", "Foo.linears.1", True, True), ("post_bw", "Foo.linears.1", True, True), ("pre_bw", "Foo.linears.0", True, True), ] self.assertEqual(test_op, expected_op)
from copy import copy import torch from torch.distributed._tools.mod_tracker import ModTracker from torch.testing._internal.common_utils import run_tests, TestCase, xfailIfTorchDynamo from torch.utils.checkpoint import checkpoint class TestModTracker(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mod_tracker.py
__init__
def __init__(self) -> None: super().__init__() self.a = Foo() self.b = torch.nn.ModuleDict({"nest": Foo()}) self.c = torch.nn.ModuleList([Foo()])
from copy import copy import torch from torch.distributed._tools.mod_tracker import ModTracker from torch.testing._internal.common_utils import run_tests, TestCase, xfailIfTorchDynamo from torch.utils.checkpoint import checkpoint class Mod(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mod_tracker.py
forward
def forward(self, x): x = x["a"].relu_() seen_fw.append((copy(tracker.parents), tracker.is_bw)) x.register_hook( lambda grad: seen_bw.append((copy(tracker.parents), tracker.is_bw)) ) return {"a": torch.mm(x, x)}
from copy import copy import torch from torch.distributed._tools.mod_tracker import ModTracker from torch.testing._internal.common_utils import run_tests, TestCase, xfailIfTorchDynamo from torch.utils.checkpoint import checkpoint class Foo(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_mod_tracker.py
hook
def hook(mod, hook_name): mfqn = mt.get_known_fqn(mod) if mod is not None else None test_op.append((hook_name, mfqn, mfqn in mt.parents, mt.is_bw)) mod = Bar() mt.register_user_hooks( lambda m, inp: hook(m, "pre_fw"), lambda m, inp, op: hook(m, "post_fw"), lambda m, gop: hook(m, "pre_bw"), lambda m, ginp: hook(m, "post_bw"), ) with mt: mod(torch.rand(10, 10, requires_grad=True)).sum().backward() expected_op = [ ("pre_fw", "Bar", True, False), ("pre_fw", "Bar.foo", True, False), ("post_fw", "Bar.foo", True, False), ("post_fw", "Bar", True, False), ("pre_bw", "Bar", True, True), ("pre_bw", "Bar.foo", True, True), ("post_bw", "Bar", True, True), ("post_bw", "Bar.foo", True, True), ] self.assertEqual(test_op, expected_op) with self.assertRaises(AssertionError): mt.register_user_hooks(lambda x, y: x, None, None, None) test_op.clear() with mt: loss = mod(torch.rand(10, 10, requires_grad=True)).sum() del mod loss.backward() expected_op = [ ("pre_fw", "Bar", True, False), ("pre_fw", "Bar.foo", True, False), ("post_fw", "Bar.foo", True, False), ("post_fw", "Bar", True, False), ("pre_bw", None, False, True), ("pre_bw", None, False, True), ("post_bw", None, False, True), ("post_bw", None, False, True), ] self.assertEqual(test_op, expected_op)
from copy import copy import torch from torch.distributed._tools.mod_tracker import ModTracker from torch.testing._internal.common_utils import run_tests, TestCase, xfailIfTorchDynamo from torch.utils.checkpoint import checkpoint
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_runtime_estimator.py
__init__
def __init__(self, conv_args: ConvArgs): super().__init__() image_size = conv_args.image_size num_classes = conv_args.num_classes self.image_size = image_size self.conv1 = nn.Conv2d(3, 32, kernel_size=5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) self.conv4 = nn.Conv2d(128, 256, kernel_size=3) self.fc1_size = self._calculate_fc1_size() self.fc1 = nn.Linear(self.fc1_size, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, num_classes)
import unittest from dataclasses import dataclass from typing import Any, Callable, cast, Tuple, Union import torch from torch import nn, optim from torch._subclasses.fake_tensor import FakeTensorMode from torch.distributed._tools.runtime_estimator import RuntimeEstimator from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import ( ModelArgs, Transformer, ) class SimpleCNN(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_view_ops.py
call_dt_test
def call_dt_test(self, op, args, kwargs, device_mesh: DeviceMesh): spec = ops[op] rules = spec.dim_map(*args, **kwargs) outputs = op(*args, **kwargs) flat_args, _ = tree_flatten(args) in_shape = flat_args[0].shape no_shard_dims = set() for rule in rules: if isinstance(rule, Repeat): if isinstance(rule.input_dim, InputDim): no_shard_dims.add(rule.input_dim.input_dim) elif isinstance(rule, Flatten): for dim in rule.input_dims[1:]: if isinstance(dim, InputDim): no_shard_dims.add(dim.input_dim) elif isinstance(rule, Split): if isinstance(rule.input_dim, Flatten): for dim in rule.input_dim.input_dims[1:]: if isinstance(dim, InputDim): no_shard_dims.add(dim.input_dim) if op == torch.unbind: no_shard_dims.add(kwargs.get("dim", 0)) sharding_choices = cast(List[Placement], [Replicate()]) + [ Shard(i) for i, s in enumerate(in_shape) if s > 1 and i not in no_shard_dims ] all_sharding_choices = itertools.product( *(device_mesh.ndim * [sharding_choices]) ) for in_shard in all_sharding_choices: # print(f' |--- {in_shard}') in_dt = distribute_tensor(args[0], device_mesh, in_shard) with redistribute_profiler() as profiler: out_dt = op(in_dt, *args[1:], **kwargs) self.assertEqual(profiler.num_calls, 0, "Expected no redistribution.") full_out = out_dt.redistribute( device_mesh, device_mesh.ndim * [Replicate()] ).to_local() if dist.get_rank() == 0: self.assertEqual(outputs, full_out)
def call_dt_test(self, op, args, kwargs, device_mesh: DeviceMesh): dim_map = dim_maps[op] rules = dim_map(*args, **kwargs) outputs = op(*args, **kwargs) flat_args = pytree.arg_tree_leaves(*args) in_shape = flat_args[0].shape no_shard_dims = set() for rule in rules: if isinstance(rule, Repeat): if isinstance(rule.input_dim, InputDim): no_shard_dims.add(rule.input_dim.input_dim) elif isinstance(rule, Flatten): for dim in rule.input_dims[1:]: if isinstance(dim, InputDim): no_shard_dims.add(dim.input_dim) elif isinstance(rule, Split): if isinstance(rule.input_dim, Flatten): for dim in rule.input_dim.input_dims[1:]: if isinstance(dim, InputDim): no_shard_dims.add(dim.input_dim) if op == torch.unbind: no_shard_dims.add(kwargs.get("dim", 0)) sharding_choices = cast(List[Placement], [Replicate()]) + [ Shard(i) for i, s in enumerate(in_shape) if s > 1 and i not in no_shard_dims ] all_sharding_choices = itertools.product( *(device_mesh.ndim * [sharding_choices]) ) for in_shard in all_sharding_choices: in_dt = distribute_tensor(args[0], device_mesh, in_shard) comm_mode = CommDebugMode() with comm_mode: out_dt = op(in_dt, *args[1:], **kwargs) self.assertEqual( comm_mode.get_total_counts(), 0, "Expected no redistribution." ) full_out = out_dt.full_tensor() if dist.get_rank() == 0: self.assertEqual(outputs, full_out)
import itertools from typing import cast, List import torch import torch.distributed as dist from torch import rand, randn, Tensor from torch.distributed._tensor import DeviceMesh, distribute_tensor, Replicate, Shard from torch.distributed._tensor.ops.view_ops import ( Broadcast, Flatten, InputDim, ops, Repeat, Singleton, Split, view_groups, ) from torch.distributed._tensor.placement_types import Placement from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, redistribute_profiler, with_comms, ) from torch.utils._pytree import tree_flatten class TestViewOps(DTensorTestBase):
import itertools from typing import cast, List import torch import torch.distributed as dist from torch import rand, randn, Tensor from torch.distributed._tensor import ( DeviceMesh, distribute_tensor, init_device_mesh, Replicate, Shard, ) from torch.distributed._tensor.placement_types import Placement from torch.distributed.tensor._ops._view_ops import ( Broadcast, dim_maps, Flatten, InputDim, Repeat, Singleton, Split, view_groups, ) from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.utils import _pytree as pytree class TestViewOps(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/_tensor/test_view_ops.py
test_dtensor_view_op_uneven
if __name__ == "__main__": run_tests()
def test_dtensor_view_op_uneven(self): """ Test two uneven cases for view op: 1) the sharded tensor dim is 1 so that only the first rank has an non-empty shard. 2) the sharded tensor dim is uneven such that some ranks have full shards, smaller non-empty shards, and empty shards. """ dim0_sizes = [1, self.world_size + 1] for dim0_size in dim0_sizes: p = torch.randn(dim0_size, 2, 2, 2) mesh = init_device_mesh(self.device_type, (self.world_size,)) dtensor = distribute_tensor(p, mesh, [Shard(0)]) with CommDebugMode() as comm_mode: view = dtensor.view(dim0_size, 2, 4) self.assertEqual(len(comm_mode.get_comm_counts()), 0) # when no communication happens, the data pointer should be the same. self.assertEqual( view.to_local().data_ptr(), dtensor.to_local().data_ptr() ) view = dtensor.view(dim0_size, 4, 2) self.assertEqual( view.to_local().data_ptr(), dtensor.to_local().data_ptr() ) self.assertEqual(len(comm_mode.get_comm_counts()), 0) view = dtensor.view(dim0_size, 8) self.assertEqual( view.to_local().data_ptr(), dtensor.to_local().data_ptr() ) self.assertEqual(len(comm_mode.get_comm_counts()), 0) view = dtensor.view(dtensor.shape) self.assertEqual( view.to_local().data_ptr(), dtensor.to_local().data_ptr() ) self.assertEqual(len(comm_mode.get_comm_counts()), 0)
import itertools from typing import cast, List import torch import torch.distributed as dist from torch import rand, randn, Tensor from torch.distributed._tensor import ( DeviceMesh, distribute_tensor, init_device_mesh, Replicate, Shard, ) from torch.distributed._tensor.placement_types import Placement from torch.distributed.tensor._ops._view_ops import ( Broadcast, dim_maps, Flatten, InputDim, Repeat, Singleton, Split, view_groups, ) from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.utils import _pytree as pytree class TestViewOps(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tensor/test_xla_integration.py
forward
def forward(self, x): y = self.relu(self.fc1(x)) z = self.fc2(y) return z
import os import unittest from functools import wraps from typing import Any, Callable, Dict, Tuple import numpy as np import torch from torch import nn from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, Replicate, Shard, ) from torch.testing._internal.common_utils import run_tests, TestCase import torch_xla # type:ignore[import] # noqa: F401 class SimpleLinear(nn.Module): import torch_xla.runtime as xr # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import] import torch_xla # type:ignore[import] import torch_xla.core.xla_model as xm # type:ignore[import] import torch_xla.runtime as xr # type:ignore[import]
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
state_dict
def state_dict(self): return {"data": self.data}
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestStatefulObj:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
load_state_dict
def load_state_dict(self, state_dict): self.data = state_dict["data"]
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestStatefulObj:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
state_dict
def state_dict(self): return {"data": self.data}
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestStatefulObj:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
load_state_dict
def load_state_dict(self, state_dict): self.data = state_dict["data"]
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestStatefulObj:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
test_overwrite
def test_overwrite(self): t1, t2 = torch.randn(10), torch.randn(10) DCP.save({"random": t1}, checkpoint_id=self.temp_dir) DCP.save( {"random": t2}, storage_writer=DCP.FileSystemWriter(self.temp_dir, overwrite=True), ) sd = {"random": torch.zeros(10)} DCP.load(sd, checkpoint_id=self.temp_dir) self.assertTrue(torch.allclose(sd["random"], t2)) with self.assertRaisesRegex( CheckpointException, ".*Checkpoint already exists.*" ): DCP.save( {"random": t2}, storage_writer=DCP.FileSystemWriter(self.temp_dir, overwrite=False), )
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestE2ESaveAndLoad(DTensorTestBase, VerifyStateDictMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
backend
def backend(self): return "cpu:gloo,cuda:nccl"
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestE2ESaveAndLoad(DTensorTestBase, VerifyStateDictMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
test_no_cpu
def test_no_cpu(self): with self.assertRaisesRegex( AssertionError, r"A CPU backend must be enabled for async save;.*?" ): f = saver.async_save({}) f.result()
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestNoCPU(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
test_init_state_dict
def test_init_state_dict(self): temp_dir = self.temp_dir model = TestDummyModel() optim = torch.optim.Adam(model.parameters(), lr=0.1) state_dict_to_save = { "model": get_model_state_dict(model), "optimizer": get_optimizer_state_dict(model, optim), } DCP.save(state_dict_to_save, checkpoint_id=temp_dir) torch.manual_seed(0) model_2 = TestDummyModel() # Changing the learning rate for optimizer, which is not a tensor. optim_2 = torch.optim.Adam(model_2.parameters(), lr=0.2) msd = get_model_state_dict(model_2) osd = get_optimizer_state_dict(model_2, optim_2) state_dict_to_load = {"model": msd, "optimizer": osd} DCP.load(state_dict_to_load, checkpoint_id=temp_dir) # We need to check that the two variables point to the same object in memory, # since we claim DCP is in-place loading. self.assertTrue(msd is state_dict_to_load["model"]) self.assertTrue(osd is state_dict_to_load["optimizer"]) # set_state_dict calls load_state_dict for model and optimizer. # so we should see the optim_2.param_groups learning rate is 0.1 instead of 0.2 now. set_state_dict( model_2, optim_2, model_state_dict=state_dict_to_load["model"], optim_state_dict=state_dict_to_load["optimizer"], ) self.assertEqual(msd, get_model_state_dict(model_2)) self.assertEqual(osd, get_optimizer_state_dict(model_2, optim_2)) self.assertEqual(optim_2.param_groups[0]["lr"], 0.1)
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestInitStateDict(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
load_state_dict
def load_state_dict(self, state_dict): self.data = state_dict["data"]
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestStatefulObj:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
__eq__
def __eq__(self, other): return torch.equal(self.data, other.data)
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestStatefulObj:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
__eq__
def __eq__(self, other): return torch.equal(self.data, other.data)
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestStatefulObj:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
_train
def _train(model, optim, train_steps=1): torch.manual_seed(0) loss = None train_state = TestTrainState() for _ in range(train_steps): loss = model(model.get_input()).sum() loss.backward() # We usually sync the loss across dp ranks in real training. # This is just simulating for testing purpose. train_state.step += 1 train_state.current_loss = torch.rand(1).item() train_state.losses.append(train_state.current_loss) optim.step() optim.zero_grad() return loss, train_state class TestE2ESaveAndLoad(DTensorTestBase, VerifyStateDictMixin): @property def backend(self): return "cpu:gloo,cuda:nccl" def _create_model(self, compile, model_type, state_dict_options=None): dummy_model = TestDummyModel().cuda() assert model_type in ModelType, f"{model_type} is not supported." if model_type == ModelType.FSDP: device_mesh = init_device_mesh(self.device_type, (self.world_size,)) model = FSDP( dummy_model, device_mesh=device_mesh, use_orig_params=True, ) elif model_type == ModelType.HSDP: device_mesh = init_device_mesh(self.device_type, (2, self.world_size // 2)) model = FSDP( dummy_model, device_mesh=device_mesh, use_orig_params=True, sharding_strategy=ShardingStrategy.HYBRID_SHARD, ) elif model_type == ModelType.FSDP_TP: mesh_2d = init_device_mesh( self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp") ) tp_mesh = mesh_2d["tp"] dp_mesh = mesh_2d["dp"] parallelize_plan = { "net1": ColwiseParallel(), "net2": RowwiseParallel(), } model = parallelize_module(dummy_model, tp_mesh, parallelize_plan) model = FSDP(model, device_mesh=dp_mesh, use_orig_params=True) elif model_type == ModelType.DDP: model = DistributedDataParallel(dummy_model) model.get_input = partial(TestDummyModel.get_input, model) else: model = dummy_model if compile: # TODO: enable dynamic=True when dynamic shape support is enabled. # model = torch.compile(model) model = torch.compile(model, dynamic=False) optim = self._optim(model) if model_type is not ModelType.NONE: _patch_model_state_dict(model, options=state_dict_options) _patch_optimizer_state_dict( model, optimizers=optim, options=state_dict_options ) return model, optim def _optim(self, model): return torch.optim.Adam(model.parameters(), lr=0.1) @with_comms @skip_if_lt_x_gpu(4) @with_temp_dir @parametrize("compile", [True, False]) # TODO: Previously PairwiseParallel does not shard properly, passing ModelType.FSDP_TP test where it # should have failed. Disabling the failed test temporarily to unblock the deprecation of PairwiseParallel. @parametrize("model_type", [ModelType.FSDP, ModelType.HSDP, ModelType.DDP]) def test_e2e(self, compile, model_type): self._run_e2e_test(compile, model_type) @with_comms @skip_if_lt_x_gpu(4) @with_temp_dir @parametrize("cache_staged_state_dict", [False, True]) def test_e2e_async_cached(self, cache_staged_state_dict): self._run_e2e_test( compile=False, model_type=ModelType.FSDP, async_op=True, cache_staged_state_dict=cache_staged_state_dict, ) def _run_e2e_test( self, compile, model_type, async_op=False, cache_staged_state_dict=False ): model, optim = self._create_model(compile, ModelType.NONE) _train(model, optim, train_steps=2) dist_model, dist_optim = self._create_model(compile, model_type) _, original_train_state = _train(dist_model, dist_optim, train_steps=2) original_stateful_obj = TestStatefulObj() # tests arbitrary saving/loading sd = { "model": dist_model, "optimizer": dist_optim, "s": original_stateful_obj, "train_state": original_train_state, } if async_op: writer = DCP.FileSystemWriter( self.temp_dir, cache_staged_state_dict=cache_staged_state_dict ) f = saver.async_save(sd, storage_writer=writer) t = time.monotonic() while not f.done(): time.sleep(1) print(f"still waiting... {time.monotonic() - t}") f.result() else: DCP.save(sd, checkpoint_id=self.temp_dir) loaded_stateful_obj = TestStatefulObj() loaded_train_state = TestTrainState() dist_model, dist_optim = self._create_model(compile, model_type) DCP.load( state_dict={ "model": dist_model, "optimizer": dist_optim, "s": loaded_stateful_obj, "train_state": loaded_train_state, }, checkpoint_id=self.temp_dir, ) self.assertEqual(original_stateful_obj, loaded_stateful_obj) self.assertEqual(original_train_state, loaded_train_state) # train one more step on both models loss, _ = _train(model, optim, train_steps=1) dist_loss, _ = _train(dist_model, dist_optim, train_steps=1) self.assertEqual(loss, dist_loss) dist_msd, dist_osd = get_state_dict(dist_model, optimizers=dist_optim) model_sd, optim_sd = get_state_dict(model, optimizers=optim) self._verify_msd(model_sd, dist_msd) self._verify_osd_by_load(model, optim, self._optim(model), dist_osd) @with_comms @with_temp_dir @skip_if_lt_x_gpu(4) def test_different_ordered_state_dict_keys(self): """Tests that the order of keys in the state dict does not matter when loading If order was not accounted for, the following test would cause a deadlock. """ world_size = self.world_size class Foo: def state_dict(self): return {} def load_state_dict(self, state_dict): tl = [ torch.ones(2, dtype=torch.int64, device="cuda") for _ in range(world_size) ] t = ( torch.arange(2, dtype=torch.int64, device="cuda") + 1 + 2 * dist.get_rank() ) dist.all_gather(tl, t, async_op=False) class Bar: def state_dict(self): return {} def load_state_dict(self, state_dict): tensor = ( torch.arange(2, dtype=torch.int64, device="cuda") + 1 + 2 * dist.get_rank() ) dist.all_reduce(tensor, op=ReduceOp.SUM) if self.rank == 0: sd = { "A": Foo(), "B": Bar(), } else: sd = { "B": Bar(), "A": Foo(), } DCP.save(sd, checkpoint_id=self.temp_dir) DCP.load(sd, checkpoint_id=self.temp_dir) @with_temp_dir def test_no_dist(self): # since comm's are not initialized in this method, `no_dist` # is assumed False DCP.save({}, checkpoint_id=self.temp_dir) DCP.load({}, checkpoint_id=self.temp_dir) @with_comms @skip_if_lt_x_gpu(4) @with_temp_dir def test_partial_load(self): model, optim = self._create_model(compile=False, model_type=ModelType.NONE) _train(model, optim, train_steps=2) dist_model, dist_optim = self._create_model( compile=False, model_type=ModelType.FSDP ) _train(dist_model, dist_optim, train_steps=2) DCP.save( {"model": dist_model, "optimizer": dist_optim}, checkpoint_id=self.temp_dir ) dist_model, _ = self._create_model(compile=False, model_type=ModelType.FSDP) DCP.load({"model": dist_model}, checkpoint_id=self.temp_dir) dist_msd = get_model_state_dict(dist_model) model_sd = get_model_state_dict(model) self._verify_msd(model_sd, dist_msd) # another way loaded_model_sd = _load_state_dict_from_keys( "model", checkpoint_id=self.temp_dir )["model"] self._verify_msd(model_sd, loaded_model_sd, offload_to_cpu=True) loaded_optim_state = _load_state_dict_from_keys( "optimizer.state", checkpoint_id=self.temp_dir )["optimizer"]["state"] self.assertNotIn("param_groups", loaded_optim_state) for k, v in dist_optim.state_dict()["state"].items(): for optim_key in ["exp_avg", "exp_avg_sq", "step"]: self._compare_tensor( loaded_optim_state[k][optim_key], v[optim_key], offload_to_cpu=True ) @with_comms @skip_if_lt_x_gpu(4) @with_temp_dir def test_overwrite(self): t1, t2 = torch.randn(10), torch.randn(10) DCP.save({"random": t1}, checkpoint_id=self.temp_dir) DCP.save( {"random": t2}, storage_writer=DCP.FileSystemWriter(self.temp_dir, overwrite=True), ) sd = {"random": torch.zeros(10)} DCP.load(sd, checkpoint_id=self.temp_dir) self.assertTrue(torch.allclose(sd["random"], t2)) with self.assertRaisesRegex( CheckpointException, ".*Checkpoint already exists.*" ): DCP.save( {"random": t2}, storage_writer=DCP.FileSystemWriter(self.temp_dir, overwrite=False), ) class TestNoCPU(DTensorTestBase): @property def backend(self): return "nccl" @with_comms def test_no_cpu(self): with self.assertRaisesRegex( AssertionError, r"A CPU backend must be enabled for async save;.*?" ): f = saver.async_save({}) f.result() class TestInitStateDict(DTensorTestBase): @with_temp_dir def test_init_state_dict(self): temp_dir = self.temp_dir model = TestDummyModel() optim = torch.optim.Adam(model.parameters(), lr=0.1) state_dict_to_save = { "model": get_model_state_dict(model), "optimizer": get_optimizer_state_dict(model, optim), } DCP.save(state_dict_to_save, checkpoint_id=temp_dir) torch.manual_seed(0) model_2 = TestDummyModel() # Changing the learning rate for optimizer, which is not a tensor. optim_2 = torch.optim.Adam(model_2.parameters(), lr=0.2) msd = get_model_state_dict(model_2) osd = get_optimizer_state_dict(model_2, optim_2) state_dict_to_load = {"model": msd, "optimizer": osd} DCP.load(state_dict_to_load, checkpoint_id=temp_dir) # We need to check that the two variables point to the same object in memory, # since we claim DCP is in-place loading. self.assertTrue(msd is state_dict_to_load["model"]) self.assertTrue(osd is state_dict_to_load["optimizer"]) # set_state_dict calls load_state_dict for model and optimizer. # so we should see the optim_2.param_groups learning rate is 0.1 instead of 0.2 now. set_state_dict( model_2, optim_2, model_state_dict=state_dict_to_load["model"], optim_state_dict=state_dict_to_load["optimizer"], ) self.assertEqual(msd, get_model_state_dict(model_2)) self.assertEqual(osd, get_optimizer_state_dict(model_2, optim_2)) self.assertEqual(optim_2.param_groups[0]["lr"], 0.1) instantiate_parametrized_tests(TestE2ESaveAndLoad) if __name__ == "__main__": run_tests()
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
backend
def backend(self): return "cpu:gloo,cuda:nccl"
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestE2ESaveAndLoad(DTensorTestBase, VerifyStateDictMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
_create_model
def _create_model(self, compile, model_type, state_dict_options=None): dummy_model = TestDummyModel().cuda() assert model_type in ModelType, f"{model_type} is not supported." if model_type == ModelType.FSDP: device_mesh = init_device_mesh(self.device_type, (self.world_size,)) model = FSDP( dummy_model, device_mesh=device_mesh, use_orig_params=True, ) elif model_type == ModelType.HSDP: device_mesh = init_device_mesh(self.device_type, (2, self.world_size // 2)) model = FSDP( dummy_model, device_mesh=device_mesh, use_orig_params=True, sharding_strategy=ShardingStrategy.HYBRID_SHARD, ) elif model_type == ModelType.FSDP_TP: mesh_2d = init_device_mesh( self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp") ) tp_mesh = mesh_2d["tp"] dp_mesh = mesh_2d["dp"] parallelize_plan = { "net1": ColwiseParallel(), "net2": RowwiseParallel(), } model = parallelize_module(dummy_model, tp_mesh, parallelize_plan) model = FSDP(model, device_mesh=dp_mesh, use_orig_params=True) elif model_type == ModelType.DDP: model = DistributedDataParallel(dummy_model) model.get_input = partial(TestDummyModel.get_input, model) else: model = dummy_model if compile: # TODO: enable dynamic=True when dynamic shape support is enabled. # model = torch.compile(model) model = torch.compile(model, dynamic=False) optim = self._optim(model) if model_type is not ModelType.NONE: _patch_model_state_dict(model, options=state_dict_options) _patch_optimizer_state_dict( model, optimizers=optim, options=state_dict_options ) return model, optim
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestE2ESaveAndLoad(DTensorTestBase, VerifyStateDictMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
test_e2e_async_cached
def test_e2e_async_cached(self, cache_staged_state_dict): self._run_e2e_test( compile=False, model_type=ModelType.FSDP, async_op=True, cache_staged_state_dict=cache_staged_state_dict, )
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestE2ESaveAndLoad(DTensorTestBase, VerifyStateDictMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/test_2d_fsdp_dt_checkpoint.py
__init__
def __init__(self): super().__init__() self.net1 = torch.nn.Linear(5, 8) self.relu = torch.nn.ReLU() self.net2 = torch.nn.Linear(8, 4) self.net3 = torch.nn.Linear(4, 12)
import torch import torch.distributed as dist import torch.distributed.checkpoint as dist_cp import torch.distributed.distributed_c10d as distributed_c10d import torch.nn.functional as F from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed.checkpoint.default_planner import ( DefaultSavePlanner, DefaultLoadPlanner, ) from torch.distributed.checkpoint.optimizer import ( load_sharded_optimizer_state_dict, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.parallel import ( PairwiseParallel, parallelize_module, ) from torch.distributed.tensor.parallel.fsdp import enable_2d_with_fsdp from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) TP_DEGREE = 2 LR = 3e-5 class SimpleModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/checkpoint/test_2d_fsdp_dt_checkpoint.py
forward
def forward(self, x): x = F.relu(self.net1(x)) x = F.relu(self.net2(x)) x = F.relu(self.net3(x)) return x
import torch import torch.distributed as dist import torch.distributed.checkpoint as dist_cp import torch.distributed.distributed_c10d as distributed_c10d import torch.nn.functional as F from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed.checkpoint.default_planner import ( DefaultSavePlanner, DefaultLoadPlanner, ) from torch.distributed.checkpoint.optimizer import ( load_sharded_optimizer_state_dict, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.parallel import ( PairwiseParallel, parallelize_module, ) from torch.distributed.tensor.parallel.fsdp import enable_2d_with_fsdp from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) TP_DEGREE = 2 LR = 3e-5 class SimpleModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/checkpoint/test_2d_fsdp_dt_checkpoint.py
create_new_dist_group
def create_new_dist_group(): world_size = dist.get_world_size() group1 = [i for i in range(world_size) if i % 2 == 0] group2 = [i for i in range(world_size) if i % 2 != 0] # create new fsdp group for resharding fsdp_0 = dist.new_group(ranks=group1) fsdp_1 = dist.new_group(ranks=group2) if dist.get_rank() % 2 == 0: my_fsdp = fsdp_0 else: my_fsdp = fsdp_1 return my_fsdp
import torch import torch.distributed as dist import torch.distributed.checkpoint as dist_cp import torch.distributed.distributed_c10d as distributed_c10d import torch.nn.functional as F from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed.checkpoint.default_planner import ( DefaultSavePlanner, DefaultLoadPlanner, ) from torch.distributed.checkpoint.optimizer import ( load_sharded_optimizer_state_dict, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.parallel import ( PairwiseParallel, parallelize_module, ) from torch.distributed.tensor.parallel.fsdp import enable_2d_with_fsdp from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) TP_DEGREE = 2 LR = 3e-5
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/checkpoint/test_2d_fsdp_dt_checkpoint.py
opt_at
def opt_at(opt, idx): return list(opt.state.values())[idx] # Adam lazily creates its state self.assertEqual( opt_at(optim, 0)["exp_avg"], opt_at(optim_2, 0)["exp_avg"] ) self.assertEqual( opt_at(optim, 0)["exp_avg_sq"], opt_at(optim_2, 0)["exp_avg_sq"] )
import torch import torch.distributed as dist import torch.distributed.checkpoint as dist_cp import torch.distributed.distributed_c10d as distributed_c10d import torch.nn.functional as F from torch.distributed._tensor import DeviceMesh, DTensor from torch.distributed.checkpoint.default_planner import ( DefaultSavePlanner, DefaultLoadPlanner, ) from torch.distributed.checkpoint.optimizer import ( load_sharded_optimizer_state_dict, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType from torch.distributed.tensor.parallel import ( PairwiseParallel, parallelize_module, ) from torch.distributed.tensor.parallel.fsdp import enable_2d_with_fsdp from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) TP_DEGREE = 2 LR = 3e-5
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/_tools/test_runtime_estimator.py
_calculate_fc1_size
def _calculate_fc1_size(self): size = self.image_size size = (size - 5 + 1) // 2 # conv1 and pool size = (size - 5 + 1) // 2 # conv2 and pool size = size - 3 + 1 # conv3 size = (size - 3 + 1) // 2 # conv4 and pool return 512 * size * size
import unittest from dataclasses import dataclass from typing import Any, Callable, cast, Tuple, Union import torch from torch import nn, optim from torch._subclasses.fake_tensor import FakeTensorMode from torch.distributed._tools.runtime_estimator import RuntimeEstimator from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import ( ModelArgs, Transformer, ) class SimpleCNN(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/_tools/test_runtime_estimator.py
forward
def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = nn.functional.relu(self.conv3(x)) x = self.pool(nn.functional.relu(self.conv4(x))) x = x.view(-1, self.fc1_size) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x
import unittest from dataclasses import dataclass from typing import Any, Callable, cast, Tuple, Union import torch from torch import nn, optim from torch._subclasses.fake_tensor import FakeTensorMode from torch.distributed._tools.runtime_estimator import RuntimeEstimator from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase from torch.testing._internal.distributed._tensor.common_dtensor import ( ModelArgs, Transformer, ) class SimpleCNN(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/algorithms/ddp_comm_hooks/test_ddp_hooks.py
gpus_for_rank
def gpus_for_rank(world_size): visible_devices = list(range(torch.cuda.device_count())) gpus_per_process = torch.cuda.device_count() // world_size gpus_for_rank = [] for rank in range(world_size): gpus_for_rank.append( visible_devices[rank * gpus_per_process : (rank + 1) * gpus_per_process] ) return gpus_for_rank class Task(nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.p = nn.Parameter(torch.randn(40, 20)) def forward(self, x): return self.p * x class TestDdpCommHook(nn.Module): def __init__(self): super().__init__() self.t0 = Task() def forward(self, x, rank): return self.t0(x ** (1 + rank)) class DistributedDataParallelCommHookTest(MultiProcessTestCase): def setUp(self): super().setUp() self._spawn_processes() def tearDown(self): try: os.remove(self.file_name) except OSError: pass def _get_process_group_nccl(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group( backend="nccl", world_size=self.world_size, rank=self.rank, store=store, ) return dist.distributed_c10d._get_default_group() @property def world_size(self): return 2 def _local_model(self): local_model = TestDdpCommHook().cpu() return local_model def _get_grads(self, process_group, hook_type=None): device_id = gpus_for_rank(self.world_size)[self.rank][0] gpu_model = DistributedDataParallel( TestDdpCommHook().to(device_id), device_ids=[device_id], process_group=process_group, ) # Register DDP Communication Hook if defined if hook_type is not None: register_ddp_comm_hook( comm_hook_type=hook_type, model=gpu_model, state=process_group ) return self._run_and_get_grads(gpu_model) def _run_and_get_grads(self, model): torch.manual_seed(2020) input = torch.randn(40, 20) # Run forward output = model(input, self.rank) # Run backward output.mean().backward() # The only layer param = next(model.parameters()) return param.grad @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_allreduce_hook(self): """ This unit test verifies the ``allreduce`` hook registered case gives same result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads(process_group, DDPCommHookType.ALLREDUCE) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=0) @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_fp16compress_hook(self): """ This unit test verifies the ``fp16 compress`` hook registered case gives close result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads(process_group, DDPCommHookType.FP16_COMPRESS) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=1e-4) @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_quantize_per_tensor_hook(self): """ This unit test verifies the ``quantize per tensor`` hook registered case gives close result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads(process_group, DDPCommHookType.QUANTIZE_PER_TENSOR) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=1e-4) @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_quantize_per_channel_hook(self): """ This unit test verifies the ``quantize per channel`` hook registered case gives close result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads( process_group, DDPCommHookType.QUANTIZE_PER_CHANNEL ) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=1e-4) @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_noop_hook(self): """ This unit test verifies the ``noop`` hook registered case and a subsequent allreduce gives same result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads(process_group, DDPCommHookType.NOOP) # Apply a subsequent allreduce to average grads. hook_grads.div_(self.world_size) dist.all_reduce(hook_grads, group=process_group) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=0) @requires_nccl() @skip_if_lt_x_gpu(2) def test_is_last_hook(self): process_group = self._get_process_group_nccl() def hook(flags, bucket): flags.append(bucket.is_last()) fut = torch.futures.Future() fut.set_result(bucket.buffer()) return fut flags = [] device_id = gpus_for_rank(self.world_size)[self.rank][0] model = nn.Sequential( nn.Linear(2, 4000, bias=False), *[nn.Linear(4000, 4000, bias=False) for _ in range(10)] ) gpu_model = DistributedDataParallel( model.to(device_id), device_ids=[device_id], process_group=process_group, ) gpu_model.register_comm_hook(state=flags, hook=hook) input = torch.randn(10, 2) gpu_model(input).sum().backward() self.assertTrue(flags[-1]) self.assertFalse(any(flags[:-1])) if __name__ == "__main__": assert ( not torch.cuda._initialized ), "test_distributed must not have initialized CUDA context on main process" run_tests()
def gpus_for_rank(world_size): visible_devices = list(range(torch.cuda.device_count())) gpus_per_process = torch.cuda.device_count() // world_size gpus_for_rank = [] for rank in range(world_size): gpus_for_rank.append( visible_devices[rank * gpus_per_process : (rank + 1) * gpus_per_process] ) return gpus_for_rank class Task(nn.Module): def __init__(self) -> None: super().__init__() torch.manual_seed(0) self.p = nn.Parameter(torch.randn(40, 20)) def forward(self, x): return self.p * x class TestDdpCommHook(nn.Module): def __init__(self) -> None: super().__init__() self.t0 = Task() def forward(self, x, rank): return self.t0(x ** (1 + rank)) class DistributedDataParallelCommHookTest(MultiProcessTestCase): def setUp(self): super().setUp() self._spawn_processes() def tearDown(self): try: os.remove(self.file_name) except OSError: pass def _get_process_group_nccl(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group( backend="nccl", world_size=self.world_size, rank=self.rank, store=store, ) return dist.distributed_c10d._get_default_group() @property def world_size(self): return 2 def _local_model(self): local_model = TestDdpCommHook().cpu() return local_model def _get_grads(self, process_group, hook_type=None): device_id = gpus_for_rank(self.world_size)[self.rank][0] gpu_model = DistributedDataParallel( TestDdpCommHook().to(device_id), device_ids=[device_id], process_group=process_group, ) # Register DDP Communication Hook if defined if hook_type is not None: register_ddp_comm_hook( comm_hook_type=hook_type, model=gpu_model, state=process_group ) return self._run_and_get_grads(gpu_model) def _run_and_get_grads(self, model): torch.manual_seed(2020) input = torch.randn(40, 20) # Run forward output = model(input, self.rank) # Run backward output.mean().backward() # The only layer param = next(model.parameters()) return param.grad @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_allreduce_hook(self): """ This unit test verifies the ``allreduce`` hook registered case gives same result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads(process_group, DDPCommHookType.ALLREDUCE) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=0) @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_fp16compress_hook(self): """ This unit test verifies the ``fp16 compress`` hook registered case gives close result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads(process_group, DDPCommHookType.FP16_COMPRESS) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=1e-4) @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_quantize_per_tensor_hook(self): """ This unit test verifies the ``quantize per tensor`` hook registered case gives close result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads(process_group, DDPCommHookType.QUANTIZE_PER_TENSOR) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=1e-4) @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_quantize_per_channel_hook(self): """ This unit test verifies the ``quantize per channel`` hook registered case gives close result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads( process_group, DDPCommHookType.QUANTIZE_PER_CHANNEL ) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=1e-4) @requires_nccl() @skip_if_lt_x_gpu(2) def test_ddp_comm_hook_noop_hook(self): """ This unit test verifies the ``noop`` hook registered case and a subsequent allreduce gives same result with no hook registered case. """ process_group = self._get_process_group_nccl() # No hook registered case, get the reference grads. reference_grads = self._get_grads(process_group, None) # Register hook case, get the hook grads. hook_grads = self._get_grads(process_group, DDPCommHookType.NOOP) # Apply a subsequent allreduce to average grads. hook_grads.div_(self.world_size) dist.all_reduce(hook_grads, group=process_group) torch.testing.assert_close(hook_grads, reference_grads, rtol=1e-5, atol=0) @requires_nccl() @skip_if_lt_x_gpu(2) def test_is_last_hook(self): process_group = self._get_process_group_nccl() def hook(flags, bucket): flags.append(bucket.is_last()) fut = torch.futures.Future() fut.set_result(bucket.buffer()) return fut flags = [] device_id = gpus_for_rank(self.world_size)[self.rank][0] model = nn.Sequential( nn.Linear(2, 4000, bias=False), *[nn.Linear(4000, 4000, bias=False) for _ in range(10)], ) gpu_model = DistributedDataParallel( model.to(device_id), device_ids=[device_id], process_group=process_group, ) gpu_model.register_comm_hook(state=flags, hook=hook) input = torch.randn(10, 2) gpu_model(input).sum().backward() self.assertTrue(flags[-1]) self.assertFalse(any(flags[:-1])) if __name__ == "__main__": assert ( not torch.cuda._initialized ), "test_distributed must not have initialized CUDA context on main process" run_tests()
import os import sys import torch from torch import nn import torch.distributed as dist from torch.distributed.algorithms.ddp_comm_hooks import ( DDPCommHookType, register_ddp_comm_hook, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, )
import os import sys import torch import torch.distributed as dist from torch import nn from torch.distributed.algorithms.ddp_comm_hooks import ( DDPCommHookType, register_ddp_comm_hook, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/algorithms/ddp_comm_hooks/test_ddp_hooks.py
__init__
def __init__(self): super().__init__() torch.manual_seed(0) self.p = nn.Parameter(torch.randn(40, 20))
def __init__(self) -> None: super().__init__() torch.manual_seed(0) self.p = nn.Parameter(torch.randn(40, 20))
import os import sys import torch from torch import nn import torch.distributed as dist from torch.distributed.algorithms.ddp_comm_hooks import ( DDPCommHookType, register_ddp_comm_hook, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, ) class Task(nn.Module):
import os import sys import torch import torch.distributed as dist from torch import nn from torch.distributed.algorithms.ddp_comm_hooks import ( DDPCommHookType, register_ddp_comm_hook, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class Task(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/algorithms/ddp_comm_hooks/test_ddp_hooks.py
__init__
def __init__(self): super().__init__() torch.manual_seed(0) self.p = nn.Parameter(torch.randn(40, 20))
def __init__(self) -> None: super().__init__() torch.manual_seed(0) self.p = nn.Parameter(torch.randn(40, 20))
import os import sys import torch from torch import nn import torch.distributed as dist from torch.distributed.algorithms.ddp_comm_hooks import ( DDPCommHookType, register_ddp_comm_hook, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_DEV_DBG_ASAN, ) class Task(nn.Module):
import os import sys import torch import torch.distributed as dist from torch import nn from torch.distributed.algorithms.ddp_comm_hooks import ( DDPCommHookType, register_ddp_comm_hook, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN class Task(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/algorithms/quantization/test_quantization.py
_build_tensor
def _build_tensor(size, value=None, dtype=torch.float, device_id=None): if value is None: value = size if device_id is None: return torch.empty(size, dtype=dtype).fill_(value) else: return torch.empty(size, dtype=dtype).fill_(value).cuda(device_id) if TEST_WITH_DEV_DBG_ASAN: print("Skip dev-asan as torch + multiprocessing spawn have known issues", file=sys.stderr) sys.exit(0) if NO_MULTIPROCESSING_SPAWN: print("Spawn not available, skipping tests.", file=sys.stderr) sys.exit(0) BACKEND = os.environ["BACKEND"] if BACKEND == "gloo" or BACKEND == "nccl": class DistQuantizationTests(MultiProcessTestCase): def setUp(self): super().setUp() self._spawn_processes() torch.backends.cudnn.flags(enabled=True, allow_tf32=False).__enter__() def tearDown(self): super().tearDown() try: os.remove(self.file_name) except OSError: pass @property def op_timeout_sec(self): return 1 @property def world_size(self): return int(os.environ["WORLD_SIZE"]) @requires_gloo() @sandcastle_skip_if(BACKEND != "gloo", "Only gloo backend supports all_gather_fp16") def test_all_gather_fp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo') device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.group.WORLD self._test_all_gather(group, group_id, self.rank, dtype=torch.float32, qtype=DQuantType.FP16) @requires_gloo() @sandcastle_skip_if(BACKEND != "gloo", "Only gloo backend supports all_gather_fp16") def test_all_gather_bfp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo') device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.group.WORLD self._test_all_gather(group, group_id, self.rank, dtype=torch.float32, qtype=DQuantType.BFP16) @requires_nccl() @sandcastle_skip_if(BACKEND != "nccl", "Only nccl backend supports all_to_all_fp16") @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"])) @skip_if_rocm def test_all_to_all_fp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='nccl') device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.new_group(range(self.world_size)) rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND) self._test_all_to_all( group, group_id, self.rank, cuda=True, rank_to_GPU=rank_to_GPU, dtype=torch.float32, qtype=DQuantType.FP16) @requires_nccl() @sandcastle_skip_if(BACKEND != "nccl", "Only nccl backend supports all_to_all_fp16") @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"])) @skip_if_rocm def test_all_to_all_bfp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='nccl') device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.new_group(range(self.world_size)) rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND) self._test_all_to_all( group, group_id, self.rank, cuda=True, rank_to_GPU=rank_to_GPU, dtype=torch.float32, qtype=DQuantType.BFP16) @requires_nccl() @sandcastle_skip_if(BACKEND != "nccl", "Only nccl backend supports all_to_all_single_fp16") @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"])) def test_all_to_all_single_fp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='nccl') device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.new_group(range(self.world_size)) rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND) self._test_all_to_all_single( group, group_id, self.rank, cuda=True, rank_to_GPU=rank_to_GPU, dtype=torch.float32, qtype=DQuantType.FP16 ) @requires_nccl() @sandcastle_skip_if(BACKEND != "nccl", "Only nccl backend supports all_to_all_single_bfp16") @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"])) def test_all_to_all_single_bfp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='nccl') device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.new_group(range(self.world_size)) rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND) self._test_all_to_all_single( group, group_id, self.rank, cuda=True, rank_to_GPU=rank_to_GPU, dtype=torch.float32, qtype=DQuantType.BFP16 ) def _test_all_gather( self, group, group_id, rank, cuda=False, rank_to_GPU=None, dtype=torch.float, qtype=None): for dest in group: tensor = _build_tensor([dest + 1, dest + 1], rank, dtype=dtype) tensors = [_build_tensor([dest + 1, dest + 1], -1, dtype=dtype) for i in group] expected_tensors = [ _build_tensor([dest + 1, dest + 1], i, dtype=dtype) for i in group ] if cuda: tensor = tensor.cuda(rank_to_GPU[rank][0]) tensors = [t.cuda(rank_to_GPU[rank][0]) for t in tensors] if tensors[0].dtype == torch.complex64: tensor_shapes = [torch.view_as_real(tensors[0]).shape] else: tensor_shapes = [tensors[0].shape] allgather = quant.auto_quantize(dist.all_gather, qtype, quant_loss=None) allgather(tensors, tensor, group=group_id, async_op=False) for t1, t2 in zip(tensors, expected_tensors): self.assertEqual(t1, t2) def _test_all_to_all( self, group, group_id, rank, cuda=False, rank_to_GPU=None, dtype=torch.float, qtype=None ): if group_id is not None: size = len(group) in_splits = [i + 1 for i in group] in_tensors = [ torch.ones([in_splits[i], size], dtype=dtype) * rank for i, _ in enumerate(group) ] out_tensors = [ torch.ones([(rank + 1), size], dtype=dtype) for _ in group ] expected_tensors = [ torch.ones([rank + 1, size], dtype=dtype) * i for i in group ] if cuda: in_tensors = [t.cuda(rank_to_GPU[rank][0]) for t in in_tensors] expected_tensors = [ t.cuda(rank_to_GPU[rank][0]) for t in expected_tensors ] out_tensors = [t.cuda(rank_to_GPU[rank][0]) for t in out_tensors] quantize_alltoall = quant.auto_quantize(dist.all_to_all, qtype, quant_loss=None) quantize_alltoall(out_tensors, in_tensors, group=group_id) for t1, t2 in zip(out_tensors, expected_tensors): self.assertEqual(t1, t2) def _test_all_to_all_single( self, group, group_id, rank, cuda=False, rank_to_GPU=None, dtype=torch.float, qtype=DQuantType.FP16 ): if group_id is not None: size = len(group) in_splits = [i + 1 for i in group] out_splits = [rank + 1 for _ in group] in_tensor = torch.ones([sum(in_splits), size], dtype=dtype) * rank out_tensor = torch.ones([(rank + 1) * size, size], dtype=dtype) expected_tensor = torch.cat( [torch.ones([rank + 1, size], dtype=dtype) * i for i in group] ) if cuda: rank_to_GPU = rank_to_GPU[rank][0] in_tensor = in_tensor.cuda(rank_to_GPU) expected_tensor = expected_tensor.cuda(rank_to_GPU) out_tensor = out_tensor.cuda(rank_to_GPU) quantize_alltoall_single = quant.auto_quantize(dist.all_to_all_single, qtype, quant_loss=None) quantize_alltoall_single(out_tensor, in_tensor, out_splits=out_splits, in_splits=in_splits, group=group_id) self.assertEqual(out_tensor, expected_tensor) if __name__ == "__main__": run_tests()
def _build_tensor(size, value=None, dtype=torch.float, device_id=None): if value is None: value = size if device_id is None: return torch.empty(size, dtype=dtype).fill_(value) else: return torch.empty(size, dtype=dtype).fill_(value).cuda(device_id) if TEST_WITH_DEV_DBG_ASAN: print( "Skip dev-asan as torch + multiprocessing spawn have known issues", file=sys.stderr, ) sys.exit(0) if NO_MULTIPROCESSING_SPAWN: print("Spawn not available, skipping tests.", file=sys.stderr) sys.exit(0) BACKEND = os.environ["BACKEND"] if BACKEND == "gloo" or BACKEND == "nccl": class DistQuantizationTests(MultiProcessTestCase): def setUp(self): super().setUp() self._spawn_processes() torch.backends.cudnn.flags(enabled=True, allow_tf32=False).__enter__() def tearDown(self): super().tearDown() try: os.remove(self.file_name) except OSError: pass @property def op_timeout_sec(self): return 1 @property def world_size(self): return int(os.environ["WORLD_SIZE"]) @requires_gloo() @skip_but_pass_in_sandcastle_if( BACKEND != "gloo", "Only gloo backend supports all_gather_fp16" ) def test_all_gather_fp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group( store=store, rank=self.rank, world_size=self.world_size, backend="gloo" ) device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.group.WORLD self._test_all_gather( group, group_id, self.rank, dtype=torch.float32, qtype=DQuantType.FP16 ) @requires_gloo() @skip_but_pass_in_sandcastle_if( BACKEND != "gloo", "Only gloo backend supports all_gather_fp16" ) def test_all_gather_bfp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group( store=store, rank=self.rank, world_size=self.world_size, backend="gloo" ) device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.group.WORLD self._test_all_gather( group, group_id, self.rank, dtype=torch.float32, qtype=DQuantType.BFP16 ) @requires_nccl() @skip_but_pass_in_sandcastle_if( BACKEND != "nccl", "Only nccl backend supports all_to_all_fp16" ) @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"])) @skip_if_rocm_multiprocess def test_all_to_all_fp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group( store=store, rank=self.rank, world_size=self.world_size, backend="nccl" ) device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.new_group(range(self.world_size)) rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND) self._test_all_to_all( group, group_id, self.rank, cuda=True, rank_to_GPU=rank_to_GPU, dtype=torch.float32, qtype=DQuantType.FP16, ) @requires_nccl() @skip_but_pass_in_sandcastle_if( BACKEND != "nccl", "Only nccl backend supports all_to_all_fp16" ) @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"])) @skip_if_rocm_multiprocess def test_all_to_all_bfp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group( store=store, rank=self.rank, world_size=self.world_size, backend="nccl" ) device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.new_group(range(self.world_size)) rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND) self._test_all_to_all( group, group_id, self.rank, cuda=True, rank_to_GPU=rank_to_GPU, dtype=torch.float32, qtype=DQuantType.BFP16, ) @requires_nccl() @skip_but_pass_in_sandcastle_if( BACKEND != "nccl", "Only nccl backend supports all_to_all_single_fp16" ) @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"])) def test_all_to_all_single_fp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group( store=store, rank=self.rank, world_size=self.world_size, backend="nccl" ) device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.new_group(range(self.world_size)) rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND) self._test_all_to_all_single( group, group_id, self.rank, cuda=True, rank_to_GPU=rank_to_GPU, dtype=torch.float32, qtype=DQuantType.FP16, ) @requires_nccl() @skip_but_pass_in_sandcastle_if( BACKEND != "nccl", "Only nccl backend supports all_to_all_single_bfp16" ) @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"])) def test_all_to_all_single_bfp16(self): store = dist.FileStore(self.file_name, self.world_size) dist.init_process_group( store=store, rank=self.rank, world_size=self.world_size, backend="nccl" ) device = torch.device(f"cuda:{self.rank}") group = list(range(0, self.world_size)) group_id = dist.new_group(range(self.world_size)) rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND) self._test_all_to_all_single( group, group_id, self.rank, cuda=True, rank_to_GPU=rank_to_GPU, dtype=torch.float32, qtype=DQuantType.BFP16, ) def _test_all_gather( self, group, group_id, rank, cuda=False, rank_to_GPU=None, dtype=torch.float, qtype=None, ): for dest in group: tensor = _build_tensor([dest + 1, dest + 1], rank, dtype=dtype) tensors = [ _build_tensor([dest + 1, dest + 1], -1, dtype=dtype) for i in group ] expected_tensors = [ _build_tensor([dest + 1, dest + 1], i, dtype=dtype) for i in group ] if cuda: tensor = tensor.cuda(rank_to_GPU[rank][0]) tensors = [t.cuda(rank_to_GPU[rank][0]) for t in tensors] if tensors[0].dtype == torch.complex64: tensor_shapes = [torch.view_as_real(tensors[0]).shape] else: tensor_shapes = [tensors[0].shape] allgather = quant.auto_quantize(dist.all_gather, qtype, quant_loss=None) allgather(tensors, tensor, group=group_id, async_op=False) for t1, t2 in zip(tensors, expected_tensors): self.assertEqual(t1, t2) def _test_all_to_all( self, group, group_id, rank, cuda=False, rank_to_GPU=None, dtype=torch.float, qtype=None, ): if group_id is not None: size = len(group) in_splits = [i + 1 for i in group] in_tensors = [ torch.ones([in_splits[i], size], dtype=dtype) * rank for i, _ in enumerate(group) ] out_tensors = [ torch.ones([(rank + 1), size], dtype=dtype) for _ in group ] expected_tensors = [ torch.ones([rank + 1, size], dtype=dtype) * i for i in group ] if cuda: in_tensors = [t.cuda(rank_to_GPU[rank][0]) for t in in_tensors] expected_tensors = [ t.cuda(rank_to_GPU[rank][0]) for t in expected_tensors ] out_tensors = [t.cuda(rank_to_GPU[rank][0]) for t in out_tensors] quantize_alltoall = quant.auto_quantize( dist.all_to_all, qtype, quant_loss=None ) quantize_alltoall(out_tensors, in_tensors, group=group_id) for t1, t2 in zip(out_tensors, expected_tensors): self.assertEqual(t1, t2) def _test_all_to_all_single( self, group, group_id, rank, cuda=False, rank_to_GPU=None, dtype=torch.float, qtype=DQuantType.FP16, ): if group_id is not None: size = len(group) in_splits = [i + 1 for i in group] out_splits = [rank + 1 for _ in group] in_tensor = torch.ones([sum(in_splits), size], dtype=dtype) * rank out_tensor = torch.ones([(rank + 1) * size, size], dtype=dtype) expected_tensor = torch.cat( [torch.ones([rank + 1, size], dtype=dtype) * i for i in group] ) if cuda: rank_to_GPU = rank_to_GPU[rank][0] in_tensor = in_tensor.cuda(rank_to_GPU) expected_tensor = expected_tensor.cuda(rank_to_GPU) out_tensor = out_tensor.cuda(rank_to_GPU) quantize_alltoall_single = quant.auto_quantize( dist.all_to_all_single, qtype, quant_loss=None ) quantize_alltoall_single( out_tensor, in_tensor, out_splits=out_splits, in_splits=in_splits, group=group_id, ) self.assertEqual(out_tensor, expected_tensor) if __name__ == "__main__": run_tests()
import torch import os import torch.cuda import sys import torch.distributed as dist import torch.distributed.algorithms._quantization.quantization as quant from torch.distributed.algorithms._quantization.quantization import DQuantType from torch.testing._internal.common_distributed import ( MultiProcessTestCase, init_multigpu_helper, requires_gloo, skip_if_rocm, skip_if_lt_x_gpu, requires_nccl, ) from torch.testing._internal.common_utils import sandcastle_skip_if, run_tests, TEST_WITH_DEV_DBG_ASAN, NO_MULTIPROCESSING_SPAWN torch.backends.cuda.matmul.allow_tf32 = False
import os import sys import torch import torch.cuda import torch.distributed as dist import torch.distributed.algorithms._quantization.quantization as quant from torch.distributed.algorithms._quantization.quantization import DQuantType from torch.testing._internal.common_distributed import ( init_multigpu_helper, MultiProcessTestCase, requires_gloo, requires_nccl, skip_if_lt_x_gpu, skip_if_rocm_multiprocess, ) from torch.testing._internal.common_utils import ( NO_MULTIPROCESSING_SPAWN, run_tests, skip_but_pass_in_sandcastle_if, TEST_WITH_DEV_DBG_ASAN, ) torch.backends.cuda.matmul.allow_tf32 = False
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
modified
torch
test/distributed/checkpoint/e2e/test_fine_tuning.py
forward
def forward(self, batch): x = self.relu(self.layer1(batch)) x = self.relu(self.layer2(x)) x = self.relu(self.layer3(x)) x = self.sequential(x) x = self.module_list[1](self.module_list[0](x)) return x
import os import sys import torch import torch.distributed as dist import torch.distributed.checkpoint as dist_cp import torch.nn as nn from torch.distributed._tensor import init_device_mesh from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_state_dict, set_model_state_dict, set_state_dict, StateDictOptions, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir DIM = 500 class PreTrainedModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fine_tuning.py
forward
def forward(self, batch): x = self.relu(self.layer1(batch)) x = self.relu(self.layer2(x)) x = self.relu(self.layer3(x)) x = self.sequential(x) x = self.module_list[1](self.module_list[0](x)) return x
import os import sys import torch import torch.distributed as dist import torch.distributed.checkpoint as dist_cp import torch.nn as nn from torch.distributed._tensor import init_device_mesh from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_state_dict, set_model_state_dict, set_state_dict, StateDictOptions, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir DIM = 500 class PreTrainedModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fine_tuning.py
backend
def backend(self): return "cpu:gloo,cuda:nccl"
import os import sys import torch import torch.distributed as dist import torch.distributed.checkpoint as dist_cp import torch.nn as nn from torch.distributed._tensor import init_device_mesh from torch.distributed.checkpoint.state_dict import ( get_model_state_dict, get_state_dict, set_model_state_dict, set_state_dict, StateDictOptions, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir DIM = 500 class TestFineTuning(DTensorTestBase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fsdp_ep.py
forward
def forward(self, x): raise NotImplementedError
import torch import torch.nn as nn from torch.distributed._tensor import DTensor from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class Dummymodel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fsdp_ep.py
__init__
def __init__(self) -> None: super().__init__()
import torch import torch.nn as nn from torch.distributed._tensor import DTensor from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class Dummymodel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fsdp_ep.py
forward
def forward(self, x): raise NotImplementedError
import torch import torch.nn as nn from torch.distributed._tensor import DTensor from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class Dummymodel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fsdp_ep.py
__init__
def __init__(self) -> None: super().__init__()
import torch import torch.nn as nn from torch.distributed._tensor import DTensor from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class Dummymodel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fsdp_ep.py
forward
def forward(self, x): raise NotImplementedError
import torch import torch.nn as nn from torch.distributed._tensor import DTensor from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class Dummymodel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fsdp_ep.py
__init__
def __init__(self) -> None: super().__init__()
import torch import torch.nn as nn from torch.distributed._tensor import DTensor from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class Dummymodel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fsdp_ep.py
forward
def forward(self, x): raise NotImplementedError
import torch import torch.nn as nn from torch.distributed._tensor import DTensor from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class Dummymodel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
forward
def forward(self, x): x = F.relu(self.net1(x)) x = F.relu(self.net2(x)) x = F.relu(self.net3(x)) x = F.relu(self.net4(x)) return x
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestDummyModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
get_input
def get_input(self): return torch.rand(8, 8, device="cuda")
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestDummyModel(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_e2e_save_and_load.py
state_dict
def state_dict(self): return {"data": self.data}
import time from dataclasses import dataclass, field from enum import auto, Enum from functools import partial from io import BytesIO from typing import Any, Dict, List import torch import torch.distributed as dist import torch.distributed.checkpoint as DCP import torch.distributed.checkpoint.state_dict_saver as saver import torch.nn as nn import torch.nn.functional as F from torch.distributed._tensor.device_mesh import init_device_mesh from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, get_model_state_dict, get_optimizer_state_dict, get_state_dict, set_state_dict, ) from torch.distributed.checkpoint.state_dict_loader import _load_state_dict_from_keys from torch.distributed.checkpoint.utils import CheckpointException from torch.distributed.distributed_c10d import ReduceOp from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.api import ShardingStrategy from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, ) from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, ) from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestStatefulObj:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_fsdp_ep.py
test_e2e
def test_e2e(self): model = TopModel(self.rank).cuda() mesh_fsdp_tp = init_device_mesh( self.device_type, (2, 4), mesh_dim_names=("dp", "tp") ) # TODO: we are using an internal API atm. Change to a publich API once it is ready. mesh_fsdp_ep = _mesh_resources.create_child_mesh(mesh_fsdp_tp, ("dp",)) del _mesh_resources.child_to_parent_mapping[mesh_fsdp_ep] mesh_fsdp = init_device_mesh(self.device_type, (8,)) for i, l in enumerate(model.second.ep_layers): model.second.ep_layers[i] = FSDP( l, use_orig_params=True, device_mesh=mesh_fsdp_ep ) model.second = FSDP(model.second, use_orig_params=True, device_mesh=mesh_fsdp) model = FSDP(model, use_orig_params=True, device_mesh=mesh_fsdp) optim = torch.optim.Adam(model.parameters(), lr=0.1) msd, osd = get_state_dict(model, optim) # FSDP only params for key in ( "net.0.weight", "net.0.bias", "second.net.0.weight", "second.net.0.bias", ): msd_v = msd[key] osd_v = osd["state"][key]["exp_avg"] for v in (msd_v, osd_v): self.assertTrue(isinstance(v, DTensor)) self.assertEqual(tuple(v.device_mesh.mesh), tuple(range(8))) # FSDP/EP params layer = self.rank % 4 ranks = (layer, layer + 4) for i in range(4): for key in ( f"second.ep_layers.{i}.net1.0.weight", f"second.ep_layers.{i}.net1.0.bias", f"second.ep_layers.{i}.net2.0.weight", f"second.ep_layers.{i}.net2.0.bias", ): if layer != i: self.assertTrue(key not in msd) else: msd_v = msd[key] osd_v = osd["state"][key]["exp_avg"] for v in (msd_v, osd_v): self.assertTrue(isinstance(v, DTensor)) self.assertEqual(tuple(v.device_mesh.mesh), ranks) self.assertEqual(set(osd["state"].keys()), set(msd.keys()))
import torch import torch.nn as nn from torch.distributed._tensor import DTensor from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class TestFSDPWithEP(DTensorTestBase, VerifyStateDictMixin):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/checkpoint/e2e/test_pipeline.py
forward
def forward(self, batch): x = self.relu(self.layer1(batch)) x = self.relu(self.layer2(x)) x = self.relu(self.layer3(x)) x = self.relu(self.layer4(x)) return x
import os import sys import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.nn as nn from torch.distributed.checkpoint.state_dict import get_state_dict, set_state_dict from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.testing._internal.common_distributed import skip_if_lt_x_gpu from torch.testing._internal.common_fsdp import FSDPTest from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir DIM = 500 class PipelineModel(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added