library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/distributed/pipeline/sync/skip/test_leak.py
|
forward
|
def forward(self, input):
yield stash("skip", input)
return input # noqa: B901
|
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync import Pipe, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.skip import pop, skippable, stash
from torch.distributed.pipeline.sync.skip.tracker import current_skip_tracker
@skippable(stash=["skip"])
class Stash(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_leak.py
|
backward
|
def backward(ctx, grad):
assert portal_tensor_life_is(0, skip_tracker=ctx.skip_tracker)
return grad
|
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync import Pipe, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.skip import pop, skippable, stash
from torch.distributed.pipeline.sync.skip.tracker import current_skip_tracker
class F(torch.autograd.Function):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_leak.py
|
forward
|
def forward(self, input):
yield stash("skip", input)
return input # noqa: B901
|
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync import Pipe, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.skip import pop, skippable, stash
from torch.distributed.pipeline.sync.skip.tracker import current_skip_tracker
@skippable(stash=["skip"])
class Stash(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_leak.py
|
deny
|
def deny(*args, **kwargs):
raise AssertionError("tried to create Portal without Pipe")
monkeypatch.setattr("torch.distributed.pipeline.sync.skip.portal.Portal.__init__", deny)
model = nn.Sequential(Stash(), Pop())
input = torch.rand(10, requires_grad=True)
if train:
model.train()
output = model(input)
output.norm().backward()
else:
model.eval()
with torch.no_grad():
model(input)
|
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync import Pipe, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.skip import pop, skippable, stash
from torch.distributed.pipeline.sync.skip.tracker import current_skip_tracker
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_copy_returns_on_next_device
|
def test_copy_returns_on_next_device():
portal = Portal(torch.rand(1), tensor_life=1)
prev_stream = default_stream(torch.device("cpu"))
next_stream = default_stream(torch.device("cuda"))
phony = torch.zeros(0, requires_grad=True)
assert phony.device.type == "cpu"
phony = portal.copy(prev_stream, next_stream, phony)
assert phony.device.type == "cuda"
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_blue_orange
|
def test_blue_orange():
tensor1 = torch.rand(1, requires_grad=True)
tensor2 = torch.rand(1, requires_grad=True)
# Same with: output = tensor1*2 + tensor2
#
# +----------------------+
# | |
# tensor2 -- PortalBlue -+ +- PortalOrange -+
# | | |
# tensor1 ------------ Join -- Fork --- Mul --- Add -- output
#
main = tensor1
portal = Portal(tensor2, tensor_life=2)
phony = portal.blue()
main = join(main, phony)
main, phony = fork(main)
sub = portal.orange(phony)
output = main * 2 + sub
output.backward()
assert torch.allclose(tensor1.grad, torch.tensor([2.0]))
assert torch.allclose(tensor2.grad, torch.tensor([1.0]))
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_blue_orange_not_requires_grad
|
def test_blue_orange_not_requires_grad():
tensor1 = torch.rand(1, requires_grad=True)
tensor2 = torch.rand(1)
# Same with: output = tensor1*2 + tensor2
#
# +----------------------+
# | |
# tensor2 -- PortalBlue -+ +- PortalOrange -+
# | | |
# tensor1 ------------ Join -- Fork --- Mul --- Add -- output
#
main = tensor1
portal = Portal(tensor2, tensor_life=2)
phony = portal.blue()
main = join(main, phony)
main, phony = fork(main)
sub = portal.orange(phony)
output = main * 2 + sub
output.backward()
assert torch.allclose(tensor1.grad, torch.tensor([2.0]))
assert tensor2.grad is None
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/conftest.py
|
cuda_sleep
|
def cuda_sleep():
# Warm-up CUDA.
torch.empty(1, device="cuda")
# From test/test_cuda.py in PyTorch.
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
torch.cuda._sleep(1000000)
end.record()
end.synchronize()
cycles_per_ms = 1000000 / start.elapsed_time(end)
def cuda_sleep(seconds):
torch.cuda._sleep(int(seconds * cycles_per_ms * 1000))
return cuda_sleep
|
import tempfile
import pytest
import torch
import torch.distributed as dist
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/conftest.py
|
cuda_sleep
|
def cuda_sleep():
# Warm-up CUDA.
torch.empty(1, device="cuda")
# From test/test_cuda.py in PyTorch.
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
torch.cuda._sleep(1000000)
end.record()
end.synchronize()
cycles_per_ms = 1000000 / start.elapsed_time(end)
def cuda_sleep(seconds):
torch.cuda._sleep(int(seconds * cycles_per_ms * 1000))
return cuda_sleep
|
import tempfile
import pytest
import torch
import torch.distributed as dist
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/conftest.py
|
setup_rpc
|
def setup_rpc(scope="session"):
file = tempfile.NamedTemporaryFile()
dist.rpc.init_rpc(
name="worker0",
rank=0,
world_size=1,
rpc_backend_options=dist.rpc.TensorPipeRpcBackendOptions(
init_method="file://{}".format(file.name),
)
)
yield
dist.rpc.shutdown()
|
import tempfile
import pytest
import torch
import torch.distributed as dist
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/conftest.py
|
pytest_ignore_collect
|
def pytest_ignore_collect(path, config):
"Skip this directory if distributed modules are not enabled."
return not dist.is_available()
|
import tempfile
import pytest
import torch
import torch.distributed as dist
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_use_grad
|
def test_use_grad():
tensor = torch.rand(1, requires_grad=True)
portal = Portal(tensor, tensor_life=1)
portal.put_grad(tensor)
assert portal.use_grad() is tensor
# Gradient in a portal is ephemeral.
with pytest.raises(RuntimeError):
portal.use_grad()
class TestTensorLife:
@pytest.fixture
def new_portal(self):
portal = None
def new_portal(tensor_life):
nonlocal portal
tensor = torch.rand(1, requires_grad=True)
portal = Portal(tensor, tensor_life)
return portal, tensor
yield new_portal
# A test using this fixture must exhaust the tensor in the portal.
with pytest.raises(RuntimeError):
portal.check_tensor_life()
assert portal.tensor is None
def test_tensor_life_0(self, new_portal):
portal, tensor = new_portal(0)
assert portal.tensor is None
def test_tensor_life_1(self, new_portal):
portal, tensor = new_portal(1)
assert portal.tensor is tensor
portal.blue()
def test_tensor_life_2(self, new_portal):
portal, tensor = new_portal(2)
assert portal.tensor is tensor
phony = portal.blue()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
def test_tensor_life_3(self, new_portal):
portal, tensor = new_portal(3)
assert portal.tensor is tensor
phony = portal.blue()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
def test_tensor_life_4(self, new_portal):
portal, tensor = new_portal(4)
assert portal.tensor is tensor
phony = portal.blue()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
portal.blue()
def test_tensor_life_3_plus_1(self, new_portal):
portal, tensor = new_portal(3)
assert portal.tensor is tensor
phony = portal.blue()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
another_tensor = torch.rand(1, requires_grad=True)
portal.put_tensor(another_tensor, tensor_life=1)
portal.blue()
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
new_portal
|
def new_portal(self):
portal = None
def new_portal(tensor_life):
nonlocal portal
tensor = torch.rand(1, requires_grad=True)
portal = Portal(tensor, tensor_life)
return portal, tensor
yield new_portal
# A test using this fixture must exhaust the tensor in the portal.
with pytest.raises(RuntimeError):
portal.check_tensor_life()
assert portal.tensor is None
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
class TestTensorLife:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
new_portal
|
def new_portal(self):
portal = None
def new_portal(tensor_life):
nonlocal portal
tensor = torch.rand(1, requires_grad=True)
portal = Portal(tensor, tensor_life)
return portal, tensor
yield new_portal
# A test using this fixture must exhaust the tensor in the portal.
with pytest.raises(RuntimeError):
portal.check_tensor_life()
assert portal.tensor is None
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
class TestTensorLife:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_tensor_life_0
|
def test_tensor_life_0(self, new_portal):
portal, tensor = new_portal(0)
assert portal.tensor is None
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
class TestTensorLife:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_tensor_life_1
|
def test_tensor_life_1(self, new_portal):
portal, tensor = new_portal(1)
assert portal.tensor is tensor
portal.blue()
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
class TestTensorLife:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_tensor_life_2
|
def test_tensor_life_2(self, new_portal):
portal, tensor = new_portal(2)
assert portal.tensor is tensor
phony = portal.blue()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
class TestTensorLife:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_tensor_life_3
|
def test_tensor_life_3(self, new_portal):
portal, tensor = new_portal(3)
assert portal.tensor is tensor
phony = portal.blue()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
class TestTensorLife:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_tensor_life_4
|
def test_tensor_life_4(self, new_portal):
portal, tensor = new_portal(4)
assert portal.tensor is tensor
phony = portal.blue()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
portal.blue()
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
class TestTensorLife:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_portal.py
|
test_tensor_life_3_plus_1
|
def test_tensor_life_3_plus_1(self, new_portal):
portal, tensor = new_portal(3)
assert portal.tensor is tensor
phony = portal.blue()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
assert portal.orange(phony).data_ptr() == tensor.data_ptr()
another_tensor = torch.rand(1, requires_grad=True)
portal.put_tensor(another_tensor, tensor_life=1)
portal.blue()
|
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.skip.portal import Portal
from torch.distributed.pipeline.sync.stream import default_stream
class TestTensorLife:
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_stash_pop.py
|
skip_tracker
|
def skip_tracker():
skip_tracker = SkipTracker()
with use_skip_tracker(skip_tracker):
yield skip_tracker
|
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync.skip import pop, skippable, stash
from torch.distributed.pipeline.sync.skip.tracker import SkipTracker, use_skip_tracker
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
__init__
|
def __init__(self, seconds):
super().__init__()
self.seconds = seconds
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
forward
|
def forward(self, x):
time.sleep(self.seconds)
return x
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
forward
|
def forward(self, x):
time.sleep(self.seconds)
return x
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
__init__
|
def __init__(self, seconds):
super().__init__()
self.seconds = seconds
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
forward
|
def forward(self, x):
time.sleep(self.seconds)
return x
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
__init__
|
def __init__(self, seconds):
super().__init__()
self.seconds = seconds
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_verify_skippables.py
|
test_pop_again
|
def test_pop_again():
@skippable(stash=["foo"])
class Layer1(nn.Module):
pass
@skippable(pop=["foo"])
class Layer2(nn.Module):
pass
@skippable(pop=["foo"])
class Layer3(nn.Module):
pass
with pytest.raises(TypeError) as e:
verify_skippables(nn.Sequential(Layer1(), Layer2(), Layer3()))
assert "'2' redeclared 'foo' as poppable" in str(e.value)
|
import pytest
from torch import nn
from torch.distributed.pipeline.sync.skip import Namespace, skippable, verify_skippables
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_verify_skippables.py
|
test_stash_pop_together_different_names
|
def test_stash_pop_together_different_names():
@skippable(stash=["foo"])
class Layer1(nn.Module):
pass
@skippable(pop=["foo"], stash=["bar"])
class Layer2(nn.Module):
pass
@skippable(pop=["bar"])
class Layer3(nn.Module):
pass
verify_skippables(nn.Sequential(Layer1(), Layer2(), Layer3()))
|
import pytest
from torch import nn
from torch.distributed.pipeline.sync.skip import Namespace, skippable, verify_skippables
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_verify_skippables.py
|
test_stash_pop_together_same_name
|
def test_stash_pop_together_same_name():
@skippable(stash=["foo"], pop=["foo"])
class Layer1(nn.Module):
pass
with pytest.raises(TypeError) as e:
verify_skippables(nn.Sequential(Layer1()))
assert "'0' declared 'foo' both as stashable and as poppable" in str(e.value)
|
import pytest
from torch import nn
from torch.distributed.pipeline.sync.skip import Namespace, skippable, verify_skippables
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_verify_skippables.py
|
test_double_stash_pop
|
def test_double_stash_pop():
@skippable(stash=["foo"])
class Layer1(nn.Module):
pass
@skippable(pop=["foo"])
class Layer2(nn.Module):
pass
@skippable(stash=["foo"])
class Layer3(nn.Module):
pass
@skippable(pop=["foo"])
class Layer4(nn.Module):
pass
with pytest.raises(TypeError) as e:
verify_skippables(nn.Sequential(Layer1(), Layer2(), Layer3(), Layer4()))
assert "'2' redeclared 'foo' as stashable" in str(e.value)
assert "'3' redeclared 'foo' as poppable" in str(e.value)
|
import pytest
from torch import nn
from torch.distributed.pipeline.sync.skip import Namespace, skippable, verify_skippables
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/skip/test_verify_skippables.py
|
test_double_stash_pop_but_isolated
|
def test_double_stash_pop_but_isolated():
@skippable(stash=["foo"])
class Layer1(nn.Module):
pass
@skippable(pop=["foo"])
class Layer2(nn.Module):
pass
@skippable(stash=["foo"])
class Layer3(nn.Module):
pass
@skippable(pop=["foo"])
class Layer4(nn.Module):
pass
ns1 = Namespace()
ns2 = Namespace()
verify_skippables(
nn.Sequential(Layer1().isolate(ns1), Layer2().isolate(ns1), Layer3().isolate(ns2), Layer4().isolate(ns2),)
)
|
import pytest
from torch import nn
from torch.distributed.pipeline.sync.skip import Namespace, skippable, verify_skippables
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
test_blockpartition
|
def test_blockpartition():
assert blockpartition.solve([1, 2, 3, 4, 5, 6], partitions=2) == [[1, 2, 3, 4], [5, 6]]
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
test_blockpartition_zeros
|
def test_blockpartition_zeros():
assert blockpartition.solve([0, 0], partitions=2) == [[0], [0]]
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
test_blockpartition_non_positive_partitions
|
def test_blockpartition_non_positive_partitions():
with pytest.raises(ValueError):
blockpartition.solve([42], partitions=0)
with pytest.raises(ValueError):
blockpartition.solve([42], partitions=-1)
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
test_balance_by_time
|
def test_balance_by_time(device):
class Delay(nn.Module):
def __init__(self, seconds):
super().__init__()
self.seconds = seconds
def forward(self, x):
time.sleep(self.seconds)
return x
model = nn.Sequential(*[Delay(i / 10) for i in [1, 2, 3, 4, 5, 6]])
sample = torch.rand(1)
balance = balance_by_time(2, model, sample, device=device)
assert balance == [4, 2]
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
forward
|
def forward(self, x):
time.sleep(self.seconds)
return x
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
test_already_has_grad
|
def test_already_has_grad():
model = nn.Sequential(nn.Conv2d(3, 3, 1))
sample = torch.rand(1, 3, 32, 32)
model(sample).norm().backward()
with pytest.raises(ValueError, match="some parameter already has gradient"):
balance_by_time(1, model, sample, device="cpu")
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_bugs.py
|
test_python_autograd_function
|
def test_python_autograd_function(setup_rpc):
# A Python autograd function might fail with this error:
#
# RuntimeError: Returning Variables sharing storage with other Variables
# that require grad is not supported in Python functions. Please submit a
# feature request if you hit this error.
#
# It doesn't look like an essential restriction. But it happens on the
# current PyTorch version. To avoid it, we should detach the tensor before
# returning by identity autograd functions, such as Wait, Fork, and Join.
#
class Identity(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
return input
@staticmethod
def backward(ctx, grad):
return grad
class M(nn.Module):
def forward(self, input):
return Identity.apply(input)
model = nn.Sequential(M(), M())
model = Pipe(model, checkpoint="always")
x = torch.rand(42)
y = model(x)
assert torch.allclose(x, y.local_value())
|
import pytest
import torch
from torch import nn
import torch.nn.functional as F
from torch.distributed.pipeline.sync import Pipe
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_bugs.py
|
backward
|
def backward(ctx, grad):
return grad
|
import pytest
import torch
from torch import nn
import torch.nn.functional as F
from torch.distributed.pipeline.sync import Pipe
class Identity(torch.autograd.Function):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_bugs.py
|
test_tuple_wait
|
def test_tuple_wait(cuda_sleep, setup_rpc):
# In v0.0.3, Wait is applied to only the first tensor on a micro-batch.
# Under this behavior, if checkpointing was disabled, there's a possibility
# that gradient accumulations on other tensors are not synchronized
# properly to the copy stream.
class Sleep(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.detach()
@staticmethod
def backward(ctx, grad):
with torch.cuda.device(grad.device):
cuda_sleep(0.05)
return grad
class Layer1(nn.Module):
def __init__(self):
super().__init__()
self.ones = nn.Parameter(torch.ones(32, 3, 32, 32, requires_grad=True))
def forward(self, a, b):
a = a * self.ones
return a * 1, b * 2, b * 3
class Layer2(nn.Module):
def __init__(self):
super().__init__()
self.ones = nn.Parameter(torch.ones(32, 3, 32, 32, requires_grad=True))
def forward(self, a, b, c):
a = a * self.ones
b = Sleep.apply(b)
return a + b + c
model = nn.Sequential(Layer1().cuda(0), Layer2().cuda(1))
model = Pipe(model, chunks=32, checkpoint="never")
a = torch.rand(1024, 3, 32, 32, device=0, requires_grad=True)
b = torch.rand(1024, 3, 32, 32, device=0, requires_grad=True)
y = model(a, b)
y.local_value().norm().backward()
torch.cuda.synchronize(0)
torch.cuda.synchronize(1)
assert torch.isclose(b.grad.norm().cpu(), torch.tensor(5.000))
|
import pytest
import torch
from torch import nn
import torch.nn.functional as F
from torch.distributed.pipeline.sync import Pipe
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
forward
|
def forward(self, x):
time.sleep(self.seconds)
return x
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
test_sandbox_during_profiling
|
def test_sandbox_during_profiling(device):
model = nn.Sequential(nn.BatchNorm2d(3))
before = {k: v.clone() for k, v in model.state_dict().items()}
sample = torch.rand(1, 3, 10, 10)
balance_by_time(1, model, sample, device=device)
after = model.state_dict()
assert before.keys() == after.keys()
for key, value in before.items():
assert torch.allclose(after[key], value), key
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
test_not_training
|
def test_not_training():
class AssertTraining(nn.Module):
def forward(self, x):
assert self.training
return x
model = nn.Sequential(AssertTraining())
model.eval()
assert not model.training
sample = torch.rand(1)
balance_by_time(1, model, sample, device="cpu")
assert not model.training
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
forward
|
def forward(self, x):
time.sleep(self.seconds)
return x
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
forward
|
def forward(self, x):
time.sleep(self.seconds)
return x
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
forward
|
def forward(self, x):
time.sleep(self.seconds)
return x
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
test_balance_by_size_tuple
|
def test_balance_by_size_tuple():
class Twin(nn.Module):
def forward(self, x):
return x, x.detach()
class Add(nn.Module):
def forward(self, a, b):
return a + b
model = nn.Sequential(Twin(), Add())
sample = torch.rand(1, requires_grad=True)
balance_by_size(1, model, sample)
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_balance.py
|
forward
|
def forward(self, x):
time.sleep(self.seconds)
return x
|
import time
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync._balance import balance_by_size, balance_by_time, blockpartition
from torch.distributed.pipeline.sync._balance.profile import layerwise_sandbox
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
devices = ["cpu"]
class Delay(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_bugs.py
|
backward
|
def backward(ctx, grad):
return grad
|
import pytest
import torch
from torch import nn
import torch.nn.functional as F
from torch.distributed.pipeline.sync import Pipe
class Identity(torch.autograd.Function):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_bugs.py
|
__init__
|
def __init__(self):
super().__init__()
self.ones = nn.Parameter(torch.ones(32, 3, 32, 32, requires_grad=True))
|
import pytest
import torch
from torch import nn
import torch.nn.functional as F
from torch.distributed.pipeline.sync import Pipe
class Layer1(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_bugs.py
|
__init__
|
def __init__(self):
super().__init__()
self.ones = nn.Parameter(torch.ones(32, 3, 32, 32, requires_grad=True))
|
import pytest
import torch
from torch import nn
import torch.nn.functional as F
from torch.distributed.pipeline.sync import Pipe
class Layer1(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_bugs.py
|
test_parallel_randoms
|
def test_parallel_randoms(setup_rpc):
class Dropouts(nn.Module):
def forward(self, x):
for _ in range(100):
x = F.dropout(x, p=0.001)
return x
model = nn.Sequential(Dropouts(), Dropouts())
x = torch.rand(10, 10, requires_grad=True)
model = Pipe(model, chunks=10, checkpoint="always")
y = model(x)
y = y.local_value()
y.norm().backward()
assert y.to(torch.bool).tolist() == x.grad.to(torch.bool).tolist()
|
import pytest
import torch
from torch import nn
import torch.nn.functional as F
from torch.distributed.pipeline.sync import Pipe
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_checkpoint.py
|
test_serial_checkpoints
|
def test_serial_checkpoints(device):
# Copied from https://github.com/pytorch/pytorch/pull/18568.
timeline = []
class Log(torch.autograd.Function):
@staticmethod
def forward(ctx, name, x):
ctx.name = name
timeline.append(f"{name}:forward")
return x.detach()
@staticmethod
def backward(ctx, grad_output):
name = ctx.name
timeline.append(f"{name}:backward")
return None, grad_output
a = torch.rand(1, device=device, requires_grad=True)
b = torch.rand(1, device=device, requires_grad=True)
# Increase the next function sequence number.
_ = a + 1 + 2 + 3 + 4 + 5
a = checkpoint(partial(Log.apply, "a"), a)
a, phony = fork(a)
b = join(b, phony)
b = checkpoint(partial(Log.apply, "b"), b)
c = torch.cat((a, b))
out = c.sum()
# +--> {a} --Checkpoint(Log)--> {a}
# {out} --Sum--> {c} --Cat ^-----------------------------+
# +--> {b} --Checkpoint(Log)--> {b} --First--> {b}
out.backward()
assert timeline == ["a:forward", "b:forward", "b:forward", "b:backward", "a:forward", "a:backward"]
# |----------------------| |-----------------------| |-----------------------|
# forward pass Checkpoint(Log[b]) Checkpoint(Log[a])
|
from functools import partial
import pytest
import torch
from torch import nn
import torch.cuda
from torch.distributed.pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.microbatch import Batch
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/optim/test_zero_redundancy_optimizer.py
|
test_sharding
|
def test_sharding(self):
"""
Check ZeroRedundancyOptimizer's parameter sharding at construction
time.
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
``ZeroRedundancyOptimizer._partition_parameters()`` in
zero_redundancy_optimizer.py.
"""
self.dist_init(self.rank)
LR = 0.01
sizes = [9, 7, 5, 3]
params = []
for size in sizes * self.world_size:
params.append(torch.rand(size, 1))
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(
sum([x.numel() for x in o.optim.param_groups[0]["params"]]),
sum(sizes),
)
|
def test_sharding(self):
"""
Check ZeroRedundancyOptimizer's parameter sharding at construction
time.
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
``ZeroRedundancyOptimizer._partition_parameters()`` in
zero_redundancy_optimizer.py.
"""
self.dist_init(self.rank)
LR = 0.01
sizes = [9, 7, 5, 3]
params = []
for size in sizes * self.world_size:
params.append(torch.rand(size, 1))
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(
sum(x.numel() for x in o.optim.param_groups[0]["params"]),
sum(sizes),
)
|
import copy
import os
import sys
import unittest
from contextlib import suppress
from typing import Any, cast, List
import numpy as np
import torch
import torch.distributed as dist
from torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook import (
hook_with_zero_step,
hook_with_zero_step_interleaved,
)
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import allreduce_hook
from torch.distributed.algorithms.join import Join, Joinable, JoinHook
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW, SGD
from torch.testing._internal import common_distributed
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_WINDOWS,
parametrize,
run_tests,
TEST_WITH_ASAN,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
BACKEND = _get_backend_for_tests()
class TestZeroRedundancyOptimizerDistributed(TestZeroRedundancyOptimizer):
from torch.nn.parallel._replicated_tensor_ddp_utils import (
_ddp_replicated_tensor,
)
from torch.nn.parallel._replicated_tensor_ddp_utils import (
_ddp_replicated_tensor,
)
|
import copy
import os
import sys
import unittest
from contextlib import nullcontext
from typing import Any, cast, List
import numpy as np
import torch
import torch.distributed as dist
from torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook import (
hook_with_zero_step,
hook_with_zero_step_interleaved,
)
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import allreduce_hook
from torch.distributed.algorithms.join import Join, Joinable, JoinHook
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW, SGD
from torch.testing._internal import common_distributed
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_WINDOWS,
parametrize,
run_tests,
TEST_WITH_ASAN,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
BACKEND = _get_backend_for_tests()
class TestZeroRedundancyOptimizerDistributed(TestZeroRedundancyOptimizer):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/optim/test_zero_redundancy_optimizer.py
|
all_trainable
|
def all_trainable():
params = []
sizes = [9, 7, 5, 3]
sizes_world = sizes * self.world_size
for size in sizes_world[:-1]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable so that they are factored
# into the size-based parameter partitioning
for p in params:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(len(o.param_groups), 1)
o.add_param_group({"params": [torch.rand(3, 1)]})
# Verify that new group is added to the correct partition, making
# all partitions have the same elements
self.assertEqual(len(o.param_groups), 2)
self.assertEqual(
sum([x.numel() for g in o.optim.param_groups for x in g["params"]]),
sum(sizes),
)
self.assertEqual(len(o.optim.param_groups), 2)
# Test a pathological config with a first big non-trainable param
|
def all_trainable():
params = []
sizes = [9, 7, 5, 3]
sizes_world = sizes * self.world_size
for size in sizes_world[:-1]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable so that they are factored
# into the size-based parameter partitioning
for p in params:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(len(o.param_groups), 1)
o.add_param_group({"params": [torch.rand(3, 1)]})
# Verify that new group is added to the correct partition, making
# all partitions have the same elements
self.assertEqual(len(o.param_groups), 2)
self.assertEqual(
sum(x.numel() for g in o.optim.param_groups for x in g["params"]),
sum(sizes),
)
self.assertEqual(len(o.optim.param_groups), 2)
# Test a pathological config with a first big non-trainable param
|
import copy
import os
import sys
import unittest
from contextlib import suppress
from typing import Any, cast, List
import numpy as np
import torch
import torch.distributed as dist
from torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook import (
hook_with_zero_step,
hook_with_zero_step_interleaved,
)
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import allreduce_hook
from torch.distributed.algorithms.join import Join, Joinable, JoinHook
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW, SGD
from torch.testing._internal import common_distributed
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_WINDOWS,
parametrize,
run_tests,
TEST_WITH_ASAN,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
BACKEND = _get_backend_for_tests()
from torch.nn.parallel._replicated_tensor_ddp_utils import (
_ddp_replicated_tensor,
)
from torch.nn.parallel._replicated_tensor_ddp_utils import (
_ddp_replicated_tensor,
)
|
import copy
import os
import sys
import unittest
from contextlib import nullcontext
from typing import Any, cast, List
import numpy as np
import torch
import torch.distributed as dist
from torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook import (
hook_with_zero_step,
hook_with_zero_step_interleaved,
)
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import allreduce_hook
from torch.distributed.algorithms.join import Join, Joinable, JoinHook
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW, SGD
from torch.testing._internal import common_distributed
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_WINDOWS,
parametrize,
run_tests,
TEST_WITH_ASAN,
TEST_WITH_DEV_DBG_ASAN,
)
import torchvision
BACKEND = _get_backend_for_tests()
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/pipeline/sync/test_checkpoint.py
|
backward
|
def backward(ctx, grad_output):
name = ctx.name
timeline.append(f"{name}:backward")
return None, grad_output
|
from functools import partial
import pytest
import torch
from torch import nn
import torch.cuda
from torch.distributed.pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.microbatch import Batch
devices = ["cpu"]
class Log(torch.autograd.Function):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_checkpoint.py
|
test_not_requires_grad
|
def test_not_requires_grad():
x = Batch(torch.rand(1, requires_grad=False))
assert not x[0].requires_grad
def f(x):
return x * 2
chk = Checkpointing(f, x)
x = chk.checkpoint()
assert x[0].requires_grad
chk.recompute(x)
assert x[0].requires_grad
x.tensor.backward()
|
from functools import partial
import pytest
import torch
from torch import nn
import torch.cuda
from torch.distributed.pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.microbatch import Batch
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_checkpoint.py
|
f
|
def f(x):
return x * 2
chk = Checkpointing(f, x)
x = chk.checkpoint()
assert x[0].requires_grad
chk.recompute(x)
assert x[0].requires_grad
x.tensor.backward()
|
from functools import partial
import pytest
import torch
from torch import nn
import torch.cuda
from torch.distributed.pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.microbatch import Batch
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_checkpoint.py
|
f
|
def f(x):
return x * 2
chk = Checkpointing(f, x)
x = chk.checkpoint()
assert x[0].requires_grad
chk.recompute(x)
assert x[0].requires_grad
x.tensor.backward()
|
from functools import partial
import pytest
import torch
from torch import nn
import torch.cuda
from torch.distributed.pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.microbatch import Batch
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_checkpoint.py
|
test_random_in_checkpoint
|
def test_random_in_checkpoint(device):
dropout = nn.Dropout(p=0.5)
torch.manual_seed(0)
x = torch.randn(3, 3, device=device, requires_grad=True)
y = dropout(x)
y.norm().backward()
torch.manual_seed(0)
chk_x = torch.randn(3, 3, device=device, requires_grad=True)
chk_y = checkpoint(dropout, chk_x)
chk_y.norm().backward()
assert torch.allclose(x.grad, chk_x.grad)
|
from functools import partial
import pytest
import torch
from torch import nn
import torch.cuda
from torch.distributed.pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.microbatch import Batch
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_checkpoint.py
|
test_detect_checkpointing_recomputing
|
def test_detect_checkpointing_recomputing():
logs = []
class Detect(nn.Module):
def forward(self, input):
logs.append((is_checkpointing(), is_recomputing()))
return input
model = Detect()
input = torch.rand(1, requires_grad=True)
output = checkpoint(model, input)
output.backward()
assert logs == [(True, False), (False, True)]
|
from functools import partial
import pytest
import torch
from torch import nn
import torch.cuda
from torch.distributed.pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.microbatch import Batch
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_checkpoint.py
|
test_detect_checkpointing_recomputing_without_checkpoint
|
def test_detect_checkpointing_recomputing_without_checkpoint():
logs = []
class Detect(nn.Module):
def forward(self, input):
logs.append((is_checkpointing(), is_recomputing()))
return input
model = Detect()
input = torch.rand(1, requires_grad=True)
output = model(input)
output.backward()
assert logs == [(False, False)]
|
from functools import partial
import pytest
import torch
from torch import nn
import torch.cuda
from torch.distributed.pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.microbatch import Batch
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_checkpoint.py
|
test_non_grad_output
|
def test_non_grad_output():
class ForkNonGrad(nn.Module):
def forward(self, input):
return (input * 2, torch.rand(1))
model = ForkNonGrad()
input = torch.rand(1, requires_grad=True)
output = checkpoint(model, input)
output[0].backward()
|
from functools import partial
import pytest
import torch
from torch import nn
import torch.cuda
from torch.distributed.pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
from torch.distributed.pipeline.sync.dependency import fork, join
from torch.distributed.pipeline.sync.microbatch import Batch
devices = ["cpu"]
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_copy.py
|
_test_copy_wait
|
def _test_copy_wait(prev_stream, next_stream, cuda_sleep=None):
device = get_device(prev_stream)
with use_stream(prev_stream):
if is_cuda(prev_stream):
cuda_sleep(0.5)
x = torch.ones(100, device=device, requires_grad=True)
(y,) = Copy.apply(prev_stream, next_stream, x)
(y,) = Wait.apply(prev_stream, next_stream, x)
with use_stream(next_stream):
assert torch.allclose(y.sum(), torch.tensor(100.0, device=device))
y.norm().backward()
with use_stream(prev_stream):
assert torch.allclose(x.grad.sum(), torch.tensor(10.0, device=device))
|
import pytest
import torch
from torch.distributed.pipeline.sync.copy import Copy, Wait
from torch.distributed.pipeline.sync.stream import CPUStream, current_stream, get_device, is_cuda, new_stream, use_stream
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_copy.py
|
test_copy_wait_cuda_cuda
|
def test_copy_wait_cuda_cuda(cuda_sleep):
prev_stream = current_stream(torch.device("cuda"))
next_stream = new_stream(torch.device("cuda"))
_test_copy_wait(prev_stream, next_stream, cuda_sleep)
|
import pytest
import torch
from torch.distributed.pipeline.sync.copy import Copy, Wait
from torch.distributed.pipeline.sync.stream import CPUStream, current_stream, get_device, is_cuda, new_stream, use_stream
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_copy.py
|
test_wait_multiple_tensors
|
def test_wait_multiple_tensors():
a = torch.rand(1, requires_grad=True)
b = torch.rand(1, requires_grad=True)
a, b = Wait.apply(CPUStream, CPUStream, a, b)
assert a.grad_fn is b.grad_fn
assert a.grad_fn.__class__ is Wait._backward_cls
|
import pytest
import torch
from torch.distributed.pipeline.sync.copy import Copy, Wait
from torch.distributed.pipeline.sync.stream import CPUStream, current_stream, get_device, is_cuda, new_stream, use_stream
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_deferred_batch_norm.py
|
tilt_dist
|
def tilt_dist(input):
# Tilt variance by channel.
rgb = input.transpose(0, 1)
rgb[0] *= 1
rgb[1] *= 10
rgb[2] *= 100
# Tilt mean by single batch.
for i, single in enumerate(input):
single += 2 ** i
return input
|
from copy import deepcopy
from itertools import chain
import pytest
import torch
from torch import nn, optim
from torch.distributed.pipeline.sync.batchnorm import DeferredBatchNorm
CHUNKS = 4
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_deferred_batch_norm.py
|
test_running_stats
|
def test_running_stats(momentum):
bn = nn.BatchNorm2d(3, momentum=momentum)
dbn = DeferredBatchNorm.convert_deferred_batch_norm(deepcopy(bn), chunks=CHUNKS)
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
bn(input)
chunked_forward(dbn, input)
assert torch.allclose(bn.running_mean, dbn.running_mean, atol=1e-4)
assert torch.allclose(bn.running_var, dbn.running_var, atol=1e-4)
|
from copy import deepcopy
from itertools import chain
import pytest
import torch
from torch import nn, optim
from torch.distributed.pipeline.sync.batchnorm import DeferredBatchNorm
CHUNKS = 4
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_deferred_batch_norm.py
|
test_convert_deferred_batch_norm
|
def test_convert_deferred_batch_norm():
bn = nn.BatchNorm2d(3, track_running_stats=False)
bn = DeferredBatchNorm.convert_deferred_batch_norm(bn, chunks=CHUNKS)
assert type(bn) is nn.BatchNorm2d # because of track_running_stats=False
dbn = DeferredBatchNorm(3, chunks=CHUNKS)
dbn_again = DeferredBatchNorm.convert_deferred_batch_norm(dbn, chunks=CHUNKS)
assert dbn is dbn_again
dbn_again = DeferredBatchNorm.convert_deferred_batch_norm(dbn, chunks=CHUNKS + 1)
assert dbn is not dbn_again # because of different chunks
|
from copy import deepcopy
from itertools import chain
import pytest
import torch
from torch import nn, optim
from torch.distributed.pipeline.sync.batchnorm import DeferredBatchNorm
CHUNKS = 4
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_deferred_batch_norm.py
|
test_eval
|
def test_eval():
bn = nn.BatchNorm2d(3)
dbn = DeferredBatchNorm.convert_deferred_batch_norm(deepcopy(bn), chunks=CHUNKS)
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
bn(input)
chunked_forward(dbn, input)
bn.eval()
dbn.eval()
assert torch.allclose(bn(input), dbn(input), atol=1e-4)
|
from copy import deepcopy
from itertools import chain
import pytest
import torch
from torch import nn, optim
from torch.distributed.pipeline.sync.batchnorm import DeferredBatchNorm
CHUNKS = 4
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_deferred_batch_norm.py
|
test_optimize
|
def test_optimize():
bn = nn.BatchNorm2d(3)
dbn = DeferredBatchNorm.convert_deferred_batch_norm(deepcopy(bn), chunks=CHUNKS)
opt = optim.SGD(chain(bn.parameters(), dbn.parameters()), lr=1.0)
for i in range(5):
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
# train
y = bn(input)
a = y.sum()
a.backward()
y = chunked_forward(dbn, input)
b = y.sum()
b.backward()
opt.step()
# eval
bn.eval()
dbn.eval()
with torch.no_grad():
assert torch.allclose(bn(input), dbn(input), atol=1e-1 * (10 ** i))
|
from copy import deepcopy
from itertools import chain
import pytest
import torch
from torch import nn, optim
from torch.distributed.pipeline.sync.batchnorm import DeferredBatchNorm
CHUNKS = 4
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_deferred_batch_norm.py
|
test_conv_bn
|
def test_conv_bn():
bn = nn.Sequential(nn.Conv2d(3, 3, 1), nn.BatchNorm2d(3))
dbn = DeferredBatchNorm.convert_deferred_batch_norm(deepcopy(bn), chunks=CHUNKS)
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
opt = optim.SGD(chain(bn.parameters(), dbn.parameters()), lr=0.1)
# 1st step
a = bn(input)
b = chunked_forward(dbn, input)
# Outputs are different. (per-mini-batch vs. per-micro-batch)
assert not torch.allclose(a, b)
a.sum().backward()
b.sum().backward()
opt.step()
opt.zero_grad()
# Conv layers are also trained differently because of their different outputs.
assert not torch.allclose(bn[0].weight, dbn[0].weight)
# But BNs track identical running stats.
assert torch.allclose(bn[1].running_mean, dbn[1].running_mean, atol=1e-4)
assert torch.allclose(bn[1].running_var, dbn[1].running_var, atol=1e3)
# 2nd step
a = bn(input)
b = chunked_forward(dbn, input)
a.sum().backward()
b.sum().backward()
# BNs can't track identical running stats due to the different conv layers.
assert not torch.allclose(bn[1].running_mean, dbn[1].running_mean, atol=1e-4)
assert not torch.allclose(bn[1].running_var, dbn[1].running_var, atol=1e3)
|
from copy import deepcopy
from itertools import chain
import pytest
import torch
from torch import nn, optim
from torch.distributed.pipeline.sync.batchnorm import DeferredBatchNorm
CHUNKS = 4
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_deferred_batch_norm.py
|
test_input_requiring_grad
|
def test_input_requiring_grad():
dbn = DeferredBatchNorm(3, chunks=CHUNKS)
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
input.requires_grad = True
chunked_forward(dbn, input)
assert not dbn.sum.requires_grad
assert dbn.sum.grad_fn is None
|
from copy import deepcopy
from itertools import chain
import pytest
import torch
from torch import nn, optim
from torch.distributed.pipeline.sync.batchnorm import DeferredBatchNorm
CHUNKS = 4
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_dependency.py
|
test_fork_join
|
def test_fork_join():
logs = []
class Log(torch.autograd.Function):
@staticmethod
def forward(ctx, number, tensor):
ctx.number = number
return tensor.detach()
@staticmethod
def backward(ctx, grad):
logs.append(ctx.number)
return None, grad
a = torch.rand(1, device="cpu", requires_grad=True)
b = torch.rand(1, device="cuda", requires_grad=True)
a = Log.apply(1, a)
a, phony = fork(a)
b = join(a, phony)
b = Log.apply(2, b)
b = b.to("cpu")
(a + b).backward()
assert logs == [2, 1]
|
import weakref
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import Fork, Join, fork, join
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_dependency.py
|
backward
|
def backward(ctx, grad):
logs.append(ctx.number)
return None, grad
|
import weakref
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import Fork, Join, fork, join
class Log(torch.autograd.Function):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_inplace.py
|
forward
|
def forward(self, foo_bar):
# 'foo' requires grad but 'bar' does not. In-place operation on
# 'bar' won't cause a RuntimeError.
foo, bar = foo_bar
# add_(1) is not idempotent, in contrast to relu_(). If it is
# executed multiple times, it will accumulates each difference onto
# 'bar'.
bar.add_(1)
# 'bar' is still captured by checkpointing. 'foo' will get
# incorrect grad.
return foo * bar
|
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync import Pipe
class M(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_batch_atomic
|
def test_batch_atomic():
x = torch.tensor(42)
b = Batch(x)
assert b.atomic
assert b.tensor is x
with pytest.raises(AttributeError):
b.tensors
assert list(b) == [x]
assert len(b) == 1
assert b[0] is x
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_batch_non_atomic
|
def test_batch_non_atomic():
x, y = torch.tensor(42), torch.tensor(21)
b = Batch((x, y))
assert not b.atomic
with pytest.raises(AttributeError):
b.tensor
assert list(b) == [x, y]
assert len(b) == 2
assert b[0] is x
assert b[1] is y
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_batch_call
|
def test_batch_call():
a = Batch(torch.tensor(42))
b = Batch((torch.tensor(42), torch.tensor(21)))
def f(x):
return x
def g(x, y):
return x, y
assert a.call(f).atomic
assert not b.call(g).atomic
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
f
|
def f(x):
return x
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
g
|
def g(x, y):
return x, y
assert a.call(f).atomic
assert not b.call(g).atomic
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_batch_setitem_by_index
|
def test_batch_setitem_by_index():
a = Batch(torch.tensor(42))
b = Batch((torch.tensor(42), torch.tensor(21)))
a[0] = torch.tensor(0)
b[0] = torch.tensor(0)
assert a.atomic
assert a[0].item() == 0
assert not b.atomic
assert len(b) == 2
assert b[0].item() == 0
assert b[1].item() == 21
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_batch_setitem_by_slice
|
def test_batch_setitem_by_slice():
a = Batch(torch.tensor(42))
b = Batch((torch.tensor(42), torch.tensor(21)))
a[:] = (torch.tensor(0),)
b[:] = (torch.tensor(0),)
assert a.atomic
assert a[0].item() == 0
assert not b.atomic
assert len(b) == 1
assert b[0].item() == 0
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_check
|
def test_check():
check(torch.device("cpu"), torch.tensor(42))
check(torch.device("cpu"), torch.tensor(4), torch.tensor(2))
with pytest.raises(TypeError):
check(torch.device("cpu"), 42)
with pytest.raises(TypeError):
check(torch.device("cpu"), "str")
with pytest.raises(TypeError):
check(torch.device("cpu"), (torch.tensor(4), 2))
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_gather_tensors
|
def test_gather_tensors():
a = torch.zeros(1, 1)
b = torch.zeros(1, 1)
ab = gather([Batch(a), Batch(b)])
assert ab.size() == (2, 1)
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_dependency.py
|
test_fork_join_enable_grad
|
def test_fork_join_enable_grad():
x = torch.rand(1, requires_grad=True)
with torch.enable_grad():
x2, p = fork(x)
assert p.requires_grad
assert x2 is not x
x = x2
assert x.requires_grad
assert p.requires_grad
assert x.grad_fn.__class__ is Fork._backward_cls
assert p.grad_fn.__class__ is Fork._backward_cls
with torch.enable_grad():
x2 = join(x, p)
assert x2 is not x
x = x2
assert x.requires_grad
assert x.grad_fn.__class__ is Join._backward_cls
|
import weakref
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import Fork, Join, fork, join
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_dependency.py
|
do_not_apply
|
def do_not_apply(*args):
raise AssertionError("Function.apply called")
monkeypatch.setattr("torch.autograd.Function.apply", do_not_apply)
x = torch.rand(1, requires_grad=True)
with torch.no_grad():
x2, p = fork(x)
assert not p.requires_grad
assert x2 is x
x = x2
with torch.no_grad():
x2 = join(x, p)
assert x2 is x
x = x2
|
import weakref
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import Fork, Join, fork, join
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_dependency.py
|
test_fork_leak
|
def test_fork_leak():
leak = None
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
return input
@staticmethod
def backward(ctx, grad):
nonlocal leak
leak = weakref.ref(ctx)
return grad
x = torch.rand(1, requires_grad=True)
x = F.apply(x)
x, phony = fork(x)
x = join(x, phony)
x.backward()
del x, phony
assert leak() is None
|
import weakref
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import Fork, Join, fork, join
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_dependency.py
|
backward
|
def backward(ctx, grad):
logs.append(ctx.number)
return None, grad
|
import weakref
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import Fork, Join, fork, join
class Log(torch.autograd.Function):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_dependency.py
|
test_join_when_fork_not_requires_grad
|
def test_join_when_fork_not_requires_grad():
x = torch.rand(2, 1)
a, b = x.chunk(2)
assert not a.requires_grad
a, p = fork(a)
assert not a.requires_grad
assert not p.requires_grad
assert not b.requires_grad
b = join(b, p)
assert not b.requires_grad
|
import weakref
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import Fork, Join, fork, join
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_dependency.py
|
test_join_when_fork_requires_grad
|
def test_join_when_fork_requires_grad():
x = torch.rand(2, 1)
a, b = x.chunk(2)
a.requires_grad_()
assert a.requires_grad
a, p = fork(a)
assert a.requires_grad
assert p.requires_grad
assert not b.requires_grad
b = join(b, p)
assert b.requires_grad
|
import weakref
import pytest
import torch
from torch.distributed.pipeline.sync.dependency import Fork, Join, fork, join
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_inplace.py
|
test_inplace_incorrect_grad
|
def test_inplace_incorrect_grad(setup_rpc):
class M(nn.Module):
def forward(self, foo_bar):
# 'foo' requires grad but 'bar' does not. In-place operation on
# 'bar' won't cause a RuntimeError.
foo, bar = foo_bar
# add_(1) is not idempotent, in contrast to relu_(). If it is
# executed multiple times, it will accumulates each difference onto
# 'bar'.
bar.add_(1)
# 'bar' is still captured by checkpointing. 'foo' will get
# incorrect grad.
return foo * bar
model = nn.Sequential(M())
model = Pipe(model, [1], devices=["cpu"], checkpoint="always")
foo = torch.tensor([1.0], requires_grad=True)
bar = torch.tensor([1.0])
output = model((foo, bar)).local_value()
del model
output.backward()
# The gradient of 'foo' should be 2, but it is 3 actually because
# bar.add_(1) was executed twice due to checkpointing.
assert foo.grad.item() == 2.0
|
import pytest
import torch
from torch import nn
from torch.distributed.pipeline.sync import Pipe
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_gather_tuples
|
def test_gather_tuples():
a = (torch.zeros(1, 1), torch.zeros(2, 2))
b = (torch.zeros(1, 1), torch.zeros(2, 2))
ab = gather([Batch(a), Batch(b)])
assert isinstance(ab, tuple)
assert ab[0].size() == (2, 1)
assert ab[1].size() == (4, 2)
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_scatter_tensor
|
def test_scatter_tensor():
ab = torch.zeros(2, 1)
a, b = scatter(ab, chunks=2)
assert a.tensor.size() == (1, 1)
assert b.tensor.size() == (1, 1)
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_microbatch.py
|
test_scatter_multiple_tensors
|
def test_scatter_multiple_tensors():
ab = (torch.zeros(2, 1), torch.zeros(4, 2))
a, b = scatter(*ab, chunks=2)
assert list(a)[0].size() == (1, 1)
assert list(b)[0].size() == (1, 1)
assert list(a)[1].size() == (2, 2)
assert list(b)[1].size() == (2, 2)
|
import pytest
import torch
import torch.cuda
from torch.distributed.pipeline.sync.microbatch import Batch, check, gather, scatter
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_phony.py
|
test_phony_size
|
def test_phony_size():
p = get_phony(torch.device("cpu"), requires_grad=False)
assert p.size() == (0,)
|
import torch
from torch.distributed.pipeline.sync.phony import get_phony
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_phony.py
|
test_phony_requires_grad
|
def test_phony_requires_grad():
p1 = get_phony(torch.device("cpu"), requires_grad=True)
p2 = get_phony(torch.device("cpu"), requires_grad=False)
assert p1.requires_grad
assert not p2.requires_grad
|
import torch
from torch.distributed.pipeline.sync.phony import get_phony
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_phony.py
|
test_cached_phony
|
def test_cached_phony():
p1 = get_phony(torch.device("cpu"), requires_grad=True)
p2 = get_phony(torch.device("cpu"), requires_grad=True)
assert p1 is p2
p3 = get_phony(torch.device("cpu"), requires_grad=False)
p4 = get_phony(torch.device("cpu"), requires_grad=False)
assert p3 is p4
assert p1 is not p3
|
import torch
from torch.distributed.pipeline.sync.phony import get_phony
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
||
torch
|
test/distributed/pipeline/sync/test_phony.py
|
test_phony_in_autograd_function
|
def test_phony_in_autograd_function():
class Phonify(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
phony = get_phony(input.device, requires_grad=False)
return phony.detach()
x = torch.rand(1, requires_grad=True)
p1 = Phonify.apply(x)
p2 = get_phony(torch.device("cpu"), requires_grad=True)
assert p1 is not p2
assert p1.grad_fn is not None
assert p2.grad_fn is None
|
import torch
from torch.distributed.pipeline.sync.phony import get_phony
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
deleted
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.