library
stringclasses
1 value
test_file
stringclasses
785 values
test_function
stringlengths
1
295
before
stringlengths
0
448k
after
stringlengths
0
487k
context_before
stringclasses
947 values
context_after
stringlengths
0
16.3k
commit_before
stringclasses
1 value
commit_after
stringclasses
1 value
change_type
stringclasses
3 values
torch
test/distributed/pipeline/sync/test_phony.py
forward
def forward(ctx, input): phony = get_phony(input.device, requires_grad=False) return phony.detach()
import torch from torch.distributed.pipeline.sync.phony import get_phony class Phonify(torch.autograd.Function):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_pipe_without_rpc
def test_pipe_without_rpc(): model = nn.Sequential(nn.Linear(1, 1)) with pytest.raises(RuntimeError, match='Please initialize RPC framework'): pipe = Pipe(model, chunks=1)
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_parameters
def test_parameters(setup_rpc): model = nn.Sequential(nn.Linear(1, 1)) pipe = Pipe(model, chunks=1) assert list(pipe.parameters()) != []
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_checkpoint_eval
def test_checkpoint_eval(setup_rpc): model = nn.Sequential(nn.Linear(1, 1)) model = Pipe(model, chunks=2) input = torch.rand(2, 1) def find_grad_fn(grad_fn, name): if grad_fn is None: return False if grad_fn.__class__.__name__ == name: return True for next_grad_fn, _ in grad_fn.next_functions: if find_grad_fn(next_grad_fn, name): return True return False model.train() train_output = model(input) assert find_grad_fn(train_output.local_value().grad_fn, "CheckpointBackward") assert find_grad_fn(train_output.local_value().grad_fn, "RecomputeBackward") model.eval() eval_output = model(input) assert not find_grad_fn(eval_output.local_value().grad_fn, "CheckpointBackward") assert not find_grad_fn(eval_output.local_value().grad_fn, "RecomputeBackward")
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
find_grad_fn
def find_grad_fn(grad_fn, name): if grad_fn is None: return False if grad_fn.__class__.__name__ == name: return True for next_grad_fn, _ in grad_fn.next_functions: if find_grad_fn(next_grad_fn, name): return True return False model.train() train_output = model(input) assert find_grad_fn(train_output.local_value().grad_fn, "CheckpointBackward") assert find_grad_fn(train_output.local_value().grad_fn, "RecomputeBackward") model.eval() eval_output = model(input) assert not find_grad_fn(eval_output.local_value().grad_fn, "CheckpointBackward") assert not find_grad_fn(eval_output.local_value().grad_fn, "RecomputeBackward")
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_checkpoint_non_float_input
def test_checkpoint_non_float_input(setup_rpc): class ForkNonFloat(nn.Module): def forward(self, input): return (input * 2, torch.tensor([False])) class JoinNonFloat(nn.Module): def forward(self, input, non_float): return input * 2 model = nn.Sequential(ForkNonFloat(), JoinNonFloat()) model = Pipe(model, chunks=1, checkpoint="always") input = torch.rand(1, requires_grad=True) output = model(input) output.backward()
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_no_grad
def test_no_grad(setup_rpc): model = nn.Sequential(nn.Linear(1, 1)) model = Pipe(model, chunks=2) input = torch.rand(2, 1) latent = None def hook(module, input, output): _ = module _ = input nonlocal latent latent = output partition = model.partitions[0] partition.register_forward_hook(hook) with torch.no_grad(): model(input) assert latent.grad_fn is None
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
hook
def hook(module, input, output): _ = module _ = input nonlocal latent latent = output partition = model.partitions[0] partition.register_forward_hook(hook) with torch.no_grad(): model(input) assert latent.grad_fn is None
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_exception
def test_exception(setup_rpc): class ExpectedException(Exception): pass class Raise(nn.Module): def forward(self, *_): raise ExpectedException() model = nn.Sequential(Raise()) model = Pipe(model, chunks=1) with pytest.raises(ExpectedException): model(torch.rand(1))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_exception_early_stop_asap
def test_exception_early_stop_asap(setup_rpc): """Even the first partitions have finished to process, the partition before the failed partition should be killed as soon as possible. """ class ExpectedException(Exception): pass class Pass(nn.Module): def forward(self, x): return x counter = 0 class Counter(nn.Module): def forward(self, x): time.sleep(0.1) nonlocal counter counter += 1 return x class Raise(nn.Module): def forward(self, x): raise ExpectedException() model = nn.Sequential(Pass(), Pass(), Counter(), Raise()) model = Pipe(model, chunks=3) with pytest.raises(ExpectedException): model(torch.rand(3)) # If the early stop doesn't work, it would be 3 instead. assert counter == 2
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
__init__
def __init__(self, value): self.value = value
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class MyString:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_verify_nested_modules
def test_verify_nested_modules(setup_rpc): model = nn.Sequential( nn.Sequential( nn.Linear(32, 16).cuda(0), nn.Linear(16, 8).cuda(0) ), nn.Sequential( nn.Linear(8, 4).cuda(1), nn.Linear(4, 2).cuda(1) ), ) pipe = Pipe(model) out = pipe(torch.rand(10, 32).cuda(0)) assert out.local_value().device == torch.device("cuda:1") assert out.local_value().size() == torch.Size([10, 2])
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_verify_module_duplicate_parameters_on_same_device
def test_verify_module_duplicate_parameters_on_same_device(setup_rpc): class Surrogate(nn.Module): def __init__(self, module): super().__init__() self.module = module conv = nn.Conv2d(3, 3, 1) model = nn.Sequential(Surrogate(conv), Surrogate(conv)) Pipe(model)
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
__init__
def __init__(self, value): self.value = value
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class MyString:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
__init__
def __init__(self, value): self.value = value
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class MyString:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_worker.py
test_compute_success
def test_compute_success(): """Task.compute returns (True, (task, batch)) on success.""" def _42(): return Batch(torch.tensor(42)) with spawn_workers([torch.device("cpu")]) as (in_queues, out_queues): t = Task(CPUStream, compute=_42, finalize=None) in_queues[0].put(t) ok, (task, batch) = out_queues[0].get() assert ok assert task is t assert isinstance(batch, Batch) assert batch[0].item() == 42
import threading import pytest import torch from torch.distributed.pipeline.sync.microbatch import Batch from torch.distributed.pipeline.sync.stream import CPUStream from torch.distributed.pipeline.sync.worker import Task, spawn_workers
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_worker.py
_42
def _42(): return Batch(torch.tensor(42)) with spawn_workers([torch.device("cpu")]) as (in_queues, out_queues): t = Task(CPUStream, compute=_42, finalize=None) in_queues[0].put(t) ok, (task, batch) = out_queues[0].get() assert ok assert task is t assert isinstance(batch, Batch) assert batch[0].item() == 42
import threading import pytest import torch from torch.distributed.pipeline.sync.microbatch import Batch from torch.distributed.pipeline.sync.stream import CPUStream from torch.distributed.pipeline.sync.worker import Task, spawn_workers
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_worker.py
zero_div
def zero_div(): 0 / 0 with spawn_workers([torch.device("cpu")]) as (in_queues, out_queues): t = Task(CPUStream, compute=zero_div, finalize=None) in_queues[0].put(t) ok, exc_info = out_queues[0].get() assert not ok assert isinstance(exc_info, tuple) assert issubclass(exc_info[0], ZeroDivisionError)
import threading import pytest import torch from torch.distributed.pipeline.sync.microbatch import Batch from torch.distributed.pipeline.sync.stream import CPUStream from torch.distributed.pipeline.sync.worker import Task, spawn_workers
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_worker.py
detect_grad_enabled
def detect_grad_enabled(): x = torch.rand(1, requires_grad=torch.is_grad_enabled()) return Batch(x) with torch.set_grad_enabled(grad_mode): with spawn_workers([torch.device("cpu")]) as (in_queues, out_queues): task = Task(CPUStream, compute=detect_grad_enabled, finalize=None) in_queues[0].put(task) ok, (_, batch) = out_queues[0].get() assert ok assert batch[0].requires_grad == grad_mode
import threading import pytest import torch from torch.distributed.pipeline.sync.microbatch import Batch from torch.distributed.pipeline.sync.stream import CPUStream from torch.distributed.pipeline.sync.worker import Task, spawn_workers
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_worker.py
test_worker_per_device
def test_worker_per_device(): cpu = torch.device("cpu") cpu0 = torch.device("cpu", index=0) fake1 = fake_device() fake2 = fake_device() with spawn_workers([cpu, cpu, cpu0, fake1, fake2]) as (in_queues, out_queues): assert len(in_queues) == len(out_queues) == 5 # 0: cpu, 1: cpu, 2: cpu0 assert in_queues[0] is in_queues[1] is in_queues[2] assert out_queues[0] is out_queues[1] is out_queues[2] # 3: fake1, 4: fake2 assert in_queues[3] is not in_queues[4] assert out_queues[3] is not out_queues[4]
import threading import pytest import torch from torch.distributed.pipeline.sync.microbatch import Batch from torch.distributed.pipeline.sync.stream import CPUStream from torch.distributed.pipeline.sync.worker import Task, spawn_workers
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipelining/model_registry.py
__init__
def __init__(self, d_hid): super().__init__() self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.cval = torch.nn.Buffer(torch.randn((d_hid,), requires_grad=False)) self.lin0 = torch.nn.Linear(d_hid, d_hid) self.lin1 = torch.nn.Linear(d_hid, d_hid)
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
forward
def forward(self, x): x = torch.mm(x, self.mm_param0) x = torch.relu(x) # try passing a value that doesn't require_grad across skip boundaries a_constant = self.cval.clone() x = self.lin0(x) pipe_split() x = torch.relu(x) + a_constant x = torch.mm(x, self.mm_param1) x = self.lin1(x) x = torch.relu(x) return x
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
__init__
def __init__(self, d_hid): super().__init__() self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.cval = torch.nn.Buffer(torch.randn((d_hid,), requires_grad=False)) self.lin0 = torch.nn.Linear(d_hid, d_hid) self.lin1 = torch.nn.Linear(d_hid, d_hid)
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
__init__
def __init__(self, d_hid): super().__init__() self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.cval = torch.nn.Buffer(torch.randn((d_hid,), requires_grad=False)) self.lin0 = torch.nn.Linear(d_hid, d_hid) self.lin1 = torch.nn.Linear(d_hid, d_hid)
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipeline/sync/test_pipe.py
test_deferred_batch_norm_params
def test_deferred_batch_norm_params(checkpoint, setup_rpc): bn = nn.BatchNorm2d(3) pipe_bn = deepcopy(bn) pipe = Pipe( nn.Sequential(pipe_bn), chunks=1, checkpoint=checkpoint, deferred_batch_norm=True ) x = torch.rand(4, 3, 10, 10) pipe(x).local_value().mean().backward() bn(x).mean().backward() assert pipe[0].weight.grad is not None assert pipe[0].bias.grad is not None assert torch.allclose(pipe[0].weight.grad, bn.weight.grad, atol=1e-4) assert torch.allclose(pipe[0].bias.grad, bn.bias.grad, atol=1e-4)
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_devices
def test_devices(setup_rpc): a = nn.Linear(1, 1) b = nn.Linear(1, 1) c = nn.Linear(1, 1) # There are extra two devices. model = nn.Sequential(a, b, c) model = Pipe(model) cpu = torch.device("cpu") # Extra devices must be discarded. assert model.devices == [cpu, cpu, cpu]
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_merged_partitions
def test_merged_partitions(setup_rpc): a = nn.Linear(1, 1).to(0) b = nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 2)).to(0) c = nn.Linear(1, 1) d = nn.Linear(1, 2) model = nn.Sequential(a, b, c, d) model = Pipe(model) assert isinstance(model.partitions, nn.ModuleList) assert isinstance(model.partitions[0], PipeSequential) assert isinstance(model.partitions[1], PipeSequential) assert list(model.partitions[0]) == [a, b[0], b[1]] assert list(model.partitions[1]) == [c] assert list(model.partitions[2]) == [d]
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_deny_moving
def test_deny_moving(setup_rpc): a = nn.Linear(1, 1) b = nn.Linear(1, 1) model = nn.Sequential(a, b) model = Pipe(model) # Moving is denied. with pytest.raises(TypeError): model.cuda() with pytest.raises(TypeError): model.cpu() with pytest.raises(TypeError): model.to(torch.device("cuda")) with pytest.raises(TypeError): model.to(0) with pytest.raises(TypeError): model.to("cuda") with pytest.raises(TypeError): model.to(device=0) with pytest.raises(TypeError): model.to(torch.rand(1)) with pytest.raises(TypeError): model.to(tensor=torch.rand(1)) # Casting is allowed. model.half() model.to(torch.double) model.to(dtype=torch.float)
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_empty_module
def test_empty_module(setup_rpc): # Empty sequential module is not illegal. model = nn.Sequential() model = Pipe(model) assert model(torch.tensor(42)).local_value() == torch.tensor(42) # But only tensor or tensors is legal in Pipe. with pytest.raises(TypeError): model(42)
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_named_children
def test_named_children(setup_rpc): a = nn.Linear(1, 1) b = nn.Linear(1, 1) model = nn.Sequential(OrderedDict([("a", a), ("b", b)])) model = Pipe(model) names = {n for n, _ in model.named_modules()} assert "partitions.0.0" in names assert "partitions.1.0" in names # Pipe doesn't support __getattr__. Unlike nn.Sequential, Pipe requires # several methods in its namespace. with pytest.raises(AttributeError): model.a
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_verify_module_non_sequential
def test_verify_module_non_sequential(setup_rpc): with pytest.raises(TypeError, match="module must be nn.Sequential to be partitioned"): Pipe(nn.Module())
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
__init__
def __init__(self, value): self.value = value
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class MyString:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_with_device_wrapper
def test_with_device_wrapper(setup_rpc): fc1 = nn.Linear(16, 8).cuda(0) fc2 = nn.Linear(8, 4).cuda(1) dropout = nn.Dropout() model = nn.Sequential(fc1, fc2, WithDevice(dropout, 'cuda:1')) model = Pipe(model, chunks=8) assert torch.device('cuda:1') == model(torch.rand(16, 16).cuda(0)).local_value().device assert [torch.device('cuda:0'), torch.device('cuda:1')] == model.devices model = nn.Sequential(fc1, WithDevice(dropout, 'cuda:1')) model = Pipe(model, chunks=8) assert torch.device('cuda:1') == model(torch.rand(16, 16).cuda(0)).local_value().device assert [torch.device('cuda:0'), torch.device('cuda:1')] == model.devices model = nn.Sequential(fc1, WithDevice(fc2, 'cuda:0')) model = Pipe(model, chunks=8) assert torch.device('cuda:0') == model(torch.rand(16, 16).cuda(0)).local_value().device assert [torch.device('cuda:0')] == model.devices assert torch.device('cuda:0') == fc2.weight.device
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipeline.py
test_clock_cycles
def test_clock_cycles(): assert list(_clock_cycles(1, 1)) == [[(0, 0)]] assert list(_clock_cycles(1, 3)) == [[(0, 0)], [(0, 1)], [(0, 2)]] assert list(_clock_cycles(3, 1)) == [[(0, 0)], [(1, 0)], [(2, 0)]] assert list(_clock_cycles(3, 3)) == [ [(0, 0)], [(1, 0), (0, 1)], [(2, 0), (1, 1), (0, 2)], [(2, 1), (1, 2)], [(2, 2)], ] assert list(_clock_cycles(4, 2)) == [ [(0, 0)], [(1, 0), (0, 1)], [(2, 0), (1, 1)], [(3, 0), (2, 1)], [(3, 1)], ]
from torch.distributed.pipeline.sync.pipeline import _clock_cycles
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_stream.py
test_new_stream_cuda
def test_new_stream_cuda(self): stream = new_stream(torch.device("cuda")) assert isinstance(stream, torch.cuda.Stream) assert stream != torch.cuda.default_stream()
import pytest import torch from torch.distributed.pipeline.sync.stream import ( CPUStream, current_stream, default_stream, get_device, is_cuda, new_stream, record_stream, use_device, use_stream, wait_stream, ) skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class TestNewStream:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_stream.py
test_current_stream_cuda
def test_current_stream_cuda(self): stream = current_stream(torch.device("cuda")) assert isinstance(stream, torch.cuda.Stream) assert stream == torch.cuda.current_stream()
import pytest import torch from torch.distributed.pipeline.sync.stream import ( CPUStream, current_stream, default_stream, get_device, is_cuda, new_stream, record_stream, use_device, use_stream, wait_stream, ) skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class TestCurrentStream:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_nested_input
def test_nested_input(setup_rpc): class NestedInput(nn.Module): def __init__(self): super().__init__() self.fc_a = nn.Linear(1, 1) self.fc_b = nn.Linear(1, 1) def forward(self, inp): return inp model = nn.Sequential(NestedInput()) model = Pipe(model, chunks=2) a = torch.rand(10, 1, requires_grad=True) b = torch.rand(10, 1, requires_grad=True) # TypeError: expected Tensor, but got tuple with pytest.raises(TypeError): model((a, (a, b))).local_value() # TypeError: expected Tensor, but got list with pytest.raises(TypeError): model((a, [a, b])).local_value()
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
__init__
def __init__(self, value): self.value = value
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class MyString:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_input_pair
def test_input_pair(setup_rpc): class Two(nn.Module): def __init__(self): super().__init__() self.fc_a = nn.Linear(1, 1) self.fc_b = nn.Linear(1, 1) def forward(self, a, b): return (self.fc_a(a), self.fc_b(b)) model = nn.Sequential(Two()) model = Pipe(model, chunks=2) a = torch.rand(10, 1, requires_grad=True) b = torch.rand(10, 1, requires_grad=True) a_out, b_out = model(a, b).local_value() loss = (a_out + b_out).mean() loss.backward() assert a.grad is not None assert b.grad is not None
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
__init__
def __init__(self, value): self.value = value
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class MyString:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_multi_sequence_input
def test_multi_sequence_input(setup_rpc): class MultiSeq(nn.Module): def forward(self, tup1, tup2): return tup1, tup2 model = Pipe(nn.Sequential(MultiSeq())) with pytest.raises(TypeError): model( [torch.rand(10), torch.rand(10)], [torch.rand(10), torch.rand(10)] )
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_stream.py
test_wait_stream_cuda_cuda
def test_wait_stream_cuda_cuda(self, cuda_sleep): source = current_stream(torch.device("cuda")) target = new_stream(torch.device("cuda")) self._test_wait_stream(source, target, cuda_sleep)
import pytest import torch from torch.distributed.pipeline.sync.stream import ( CPUStream, current_stream, default_stream, get_device, is_cuda, new_stream, record_stream, use_device, use_stream, wait_stream, ) skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class TestWaitStream:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_stream.py
test_record_stream_shifted_view
def test_record_stream_shifted_view(self, cuda_sleep): # Issue: https://github.com/pytorch/pytorch/issues/27366 stream_alloc = new_stream(torch.device("cuda")) with torch.cuda.stream(stream_alloc): x = torch.rand(2, device=torch.device("cuda")) y = x[1:] assert y.data_ptr() > x.data_ptr() stream = new_stream(torch.device("cuda")) with use_stream(stream): cuda_sleep(0.5) record_stream(y, stream) data_ptr = x.data_ptr() del x, y stream_alloc.synchronize() with torch.cuda.stream(stream_alloc): z = torch.rand(2, device=torch.device("cuda")) assert z.data_ptr() != data_ptr
import pytest import torch from torch.distributed.pipeline.sync.stream import ( CPUStream, current_stream, default_stream, get_device, is_cuda, new_stream, record_stream, use_device, use_stream, wait_stream, ) skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class TestRecordStream:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_transparency.py
sum_grad
def sum_grad(parameters): return sum([p.grad.sum() for p in parameters if p.grad is not None])
import torch from torch import nn from torch.distributed.pipeline.sync import Pipe
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_transparency.py
zero_grad
def zero_grad(parameters): for p in parameters: p.grad = None inputs = torch.rand(8, 1) model = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 4), nn.Linear(4, 2), nn.Linear(2, 1),) # Without Pipe outputs = model(inputs) loss = outputs.mean() loss.backward() grad_without_pipe = sum_grad(model.parameters()) zero_grad(model.parameters()) # With Pipe model = Pipe(model, chunks=4) outputs = model(inputs).local_value() loss = outputs.mean() loss.backward() grad_with_pipe = sum_grad(model.parameters()) # Both grads should be identical. assert torch.allclose(grad_with_pipe, grad_without_pipe)
import torch from torch import nn from torch.distributed.pipeline.sync import Pipe
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_worker.py
test_compute_multithreading
def test_compute_multithreading(): """Task.compute should be executed on multiple threads.""" thread_ids = set() def log_thread_id(): thread_id = threading.current_thread().ident thread_ids.add(thread_id) return Batch(()) with spawn_workers([fake_device() for _ in range(2)]) as (in_queues, out_queues): for i in range(2): t = Task(CPUStream, compute=log_thread_id, finalize=None) in_queues[i].put(t) for i in range(2): out_queues[i].get() assert len(thread_ids) == 2
import threading import pytest import torch from torch.distributed.pipeline.sync.microbatch import Batch from torch.distributed.pipeline.sync.stream import CPUStream from torch.distributed.pipeline.sync.worker import Task, spawn_workers
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_worker.py
log_thread_id
def log_thread_id(): thread_id = threading.current_thread().ident thread_ids.add(thread_id) return Batch(()) with spawn_workers([fake_device() for _ in range(2)]) as (in_queues, out_queues): for i in range(2): t = Task(CPUStream, compute=log_thread_id, finalize=None) in_queues[i].put(t) for i in range(2): out_queues[i].get() assert len(thread_ids) == 2
import threading import pytest import torch from torch.distributed.pipeline.sync.microbatch import Batch from torch.distributed.pipeline.sync.stream import CPUStream from torch.distributed.pipeline.sync.worker import Task, spawn_workers
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_input_singleton
def test_input_singleton(setup_rpc): class One(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(1, 1) def forward(self, a): return (self.fc(a),) model = nn.Sequential(One()) model = Pipe(model, chunks=2) a = torch.rand(10, 1, requires_grad=True) (a_out,) = model(a).local_value() loss = a_out.mean() loss.backward() assert all(p.grad is not None for p in model.parameters()) assert a.grad is not None
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
__init__
def __init__(self, value): self.value = value
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class MyString:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_input_varargs
def test_input_varargs(setup_rpc): model = nn.Sequential(nn.Linear(1, 1)) model = Pipe(model) a = torch.rand(1) b = torch.rand(1) # TypeError: forward() takes 2 positional arguments but 3 were given with pytest.raises(TypeError): model(a, b)
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_non_tensor
def test_non_tensor(setup_rpc): class NonTensor(nn.Module): def forward(self, _): return "hello" model = nn.Sequential(NonTensor()) model = Pipe(model) x = torch.rand(1) with pytest.raises(TypeError): model(x) with pytest.raises(TypeError): model("hello")
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
forward
def forward(self, input): return (input * 2, torch.tensor([False]))
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class ForkNonFloat(nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipelining/model_registry.py
forward
def forward(self, x): x = torch.mm(x, self.mm_param0) x = torch.relu(x) # try passing a value that doesn't require_grad across skip boundaries a_constant = self.cval.clone() x = self.lin0(x) pipe_split() x = torch.relu(x) + a_constant x = torch.mm(x, self.mm_param1) x = self.lin1(x) x = torch.relu(x) return x
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
compute_dW
def compute_dW(self): grad_output_fc1 = self.cached_context["fc1"].pop(0) grad_output_fc2 = self.cached_context["fc2"].pop(0) cached_input_fc1 = self.cached_context["fc1_input"].pop(0) cached_input_fc2 = self.cached_context["fc2_input"].pop(0) dW2 = grad_output_fc2.t().mm(cached_input_fc2) db2 = grad_output_fc2.sum(0) dW1 = grad_output_fc1.t().mm(cached_input_fc1) db1 = grad_output_fc1.sum(0) if self.fc1_weight.grad is not None: self.fc1_weight.grad += dW1 self.fc1_bias.grad += db1 self.fc2_weight.grad += dW2 self.fc2_bias.grad += db2 else: self.fc1_weight.grad = dW1 self.fc1_bias.grad = db1 self.fc2_weight.grad = dW2 self.fc2_bias.grad = db2
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class MLPModuleWithDw(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
toggle
def toggle(self): self.use_custom_logic = not self.use_custom_logic # Multi-MLP model With Dw
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class MLPModuleWithDw(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
__init__
def __init__(self, d_hid): super().__init__() self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.cval = torch.nn.Buffer(torch.randn((d_hid,), requires_grad=False)) self.lin0 = torch.nn.Linear(d_hid, d_hid) self.lin1 = torch.nn.Linear(d_hid, d_hid)
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
forward
def forward(self, x): x = torch.mm(x, self.mm_param0) x = torch.relu(x) # try passing a value that doesn't require_grad across skip boundaries a_constant = self.cval.clone() x = self.lin0(x) pipe_split() x = torch.relu(x) + a_constant x = torch.mm(x, self.mm_param1) x = self.lin1(x) x = torch.relu(x) return x
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
toggle
def toggle(self): self.use_custom_logic = not self.use_custom_logic # Multi-MLP model With Dw
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class MLPModuleWithDw(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
compute_dW
def compute_dW(self): grad_output_fc1 = self.cached_context["fc1"].pop(0) grad_output_fc2 = self.cached_context["fc2"].pop(0) cached_input_fc1 = self.cached_context["fc1_input"].pop(0) cached_input_fc2 = self.cached_context["fc2_input"].pop(0) dW2 = grad_output_fc2.t().mm(cached_input_fc2) db2 = grad_output_fc2.sum(0) dW1 = grad_output_fc1.t().mm(cached_input_fc1) db1 = grad_output_fc1.sum(0) if self.fc1_weight.grad is not None: self.fc1_weight.grad += dW1 self.fc1_bias.grad += db1 self.fc2_weight.grad += dW2 self.fc2_bias.grad += db2 else: self.fc1_weight.grad = dW1 self.fc1_bias.grad = db1 self.fc2_weight.grad = dW2 self.fc2_bias.grad = db2
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class MLPModuleWithDw(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/test_backward.py
test_stage_backward
def test_stage_backward(self): # MLP as a stage module mod = MLPModule(d_hid) x = torch.randn(batch_size, d_hid) # As in a pipeline stage, the inputs to this stage requires gradients x.requires_grad_(True) target = torch.randn(batch_size, d_hid) loss_fn = torch.nn.MSELoss(reduction="sum") # Make a copy ref_mod = copy.deepcopy(mod) ref_x = x.detach().requires_grad_(x.requires_grad) ref_target = target.detach() # Forward and backward in stage manner out = mod(x) loss = loss_fn(out, target) grad_inputs = stage_backward( stage_output=loss, output_grads=None, input_values=(x,), ) # Run reference ref_out = ref_mod(ref_x) ref_loss = loss_fn(ref_out, ref_target) ref_loss.backward() torch.testing.assert_close(grad_inputs[0], ref_x.grad) # Every rank checks gradients for name, p in mod.named_parameters(): ref_p = ref_mod.get_parameter(name) try: torch.testing.assert_close(p.grad, ref_p.grad) except AssertionError: print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}") raise
import copy from model_registry import MLPModule import torch from torch.distributed.pipelining._backward import ( stage_backward, stage_backward_input, stage_backward_weight, ) from torch.testing._internal.common_utils import run_tests, TestCase d_hid = 512 batch_size = 256 class StageBackwardTests(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/test_backward.py
test_stage_backward_input
def test_stage_backward_input(self): # MLP as a stage module mod = MLPModule(d_hid) x = torch.randn(batch_size, d_hid) # As in a pipeline stage, the inputs to this stage requires gradients x.requires_grad_(True) target = torch.randn(batch_size, d_hid) loss_fn = torch.nn.MSELoss(reduction="sum") # Make a copy ref_mod = copy.deepcopy(mod) ref_x = x.detach().requires_grad_(x.requires_grad) ref_target = target.detach() # Forward, then backward of loss with respect to inputs out = mod(x) loss = loss_fn(out, target) dinputs, param_groups = stage_backward_input( stage_outputs=(loss,), output_grads=None, input_values=[x], weights=mod.parameters(), ) # Run reference ref_out = ref_mod(ref_x) ref_loss = loss_fn(ref_out, ref_target) ref_loss.backward() torch.testing.assert_close(x.grad, ref_x.grad) torch.testing.assert_close(dinputs[0], ref_x.grad) for name, p in mod.named_parameters(): # Check that the weight gradients were not updated self.assertEqual(p.grad, None)
import copy from model_registry import MLPModule import torch from torch.distributed.pipelining._backward import ( stage_backward, stage_backward_input, stage_backward_weight, ) from torch.testing._internal.common_utils import run_tests, TestCase d_hid = 512 batch_size = 256 class StageBackwardTests(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/test_backward.py
test_stage_backward_weight
def test_stage_backward_weight(self): # MLP as a stage module mod = MLPModule(d_hid) x = torch.randn(batch_size, d_hid) # As in a pipeline stage, the inputs to this stage requires gradients x.requires_grad_(True) target = torch.randn(batch_size, d_hid) loss_fn = torch.nn.MSELoss(reduction="sum") # Make a copy ref_mod = copy.deepcopy(mod) ref_x = x.detach().requires_grad_(x.requires_grad) ref_target = target.detach() # Forward, then backward of loss with respect to inputs out = mod(x) loss = loss_fn(out, target) dinputs, param_groups = stage_backward_input( stage_outputs=(loss,), output_grads=None, input_values=[x], weights=mod.parameters(), ) # backward of loss with respect to weights dweights = stage_backward_weight(mod.parameters(), param_groups) # Run reference ref_out = ref_mod(ref_x) ref_loss = loss_fn(ref_out, ref_target) ref_loss.backward() # Every rank checks gradients for name, p in mod.named_parameters(): ref_p = ref_mod.get_parameter(name) try: torch.testing.assert_close(p.grad, ref_p.grad) except AssertionError: print(f"Gradient test failed for {name}: {p.grad} vs {ref_p.grad}") raise
import copy from model_registry import MLPModule import torch from torch.distributed.pipelining._backward import ( stage_backward, stage_backward_input, stage_backward_weight, ) from torch.testing._internal.common_utils import run_tests, TestCase d_hid = 512 batch_size = 256 class StageBackwardTests(TestCase):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
forward
def forward(self, x): x = torch.mm(x, self.mm_param0) x = torch.relu(x) # try passing a value that doesn't require_grad across skip boundaries a_constant = self.cval.clone() x = self.lin0(x) pipe_split() x = torch.relu(x) + a_constant x = torch.mm(x, self.mm_param1) x = self.lin1(x) x = torch.relu(x) return x
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
__init__
def __init__(self, d_hid): super().__init__() self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.cval = torch.nn.Buffer(torch.randn((d_hid,), requires_grad=False)) self.lin0 = torch.nn.Linear(d_hid, d_hid) self.lin1 = torch.nn.Linear(d_hid, d_hid)
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
forward
def forward(self, x): x = torch.mm(x, self.mm_param0) x = torch.relu(x) # try passing a value that doesn't require_grad across skip boundaries a_constant = self.cval.clone() x = self.lin0(x) pipe_split() x = torch.relu(x) + a_constant x = torch.mm(x, self.mm_param1) x = self.lin1(x) x = torch.relu(x) return x
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
__init__
def __init__(self, d_hid): super().__init__() self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.cval = torch.nn.Buffer(torch.randn((d_hid,), requires_grad=False)) self.lin0 = torch.nn.Linear(d_hid, d_hid) self.lin1 = torch.nn.Linear(d_hid, d_hid)
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
forward
def forward(self, x): x = torch.mm(x, self.mm_param0) x = torch.relu(x) # try passing a value that doesn't require_grad across skip boundaries a_constant = self.cval.clone() x = self.lin0(x) pipe_split() x = torch.relu(x) + a_constant x = torch.mm(x, self.mm_param1) x = self.lin1(x) x = torch.relu(x) return x
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
forward
def forward(self, x): x = torch.mm(x, self.mm_param0) x = torch.relu(x) # try passing a value that doesn't require_grad across skip boundaries a_constant = self.cval.clone() x = self.lin0(x) pipe_split() x = torch.relu(x) + a_constant x = torch.mm(x, self.mm_param1) x = self.lin1(x) x = torch.relu(x) return x
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
backward
def backward(ctx, grad_output): input_val, weight, bias = ctx.saved_tensors grad_input = grad_output.mm(weight) ctx.module.cached_context[ctx.layer_idx].append(grad_output.clone()) ctx.module.cached_context[str(ctx.layer_idx) + "_input"].append( input_val.clone() ) return grad_input, None, None, None, None
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class CustomLinearDx(Function):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
forward
def forward(self, x): x = torch.mm(x, self.mm_param0) x = torch.relu(x) # try passing a value that doesn't require_grad across skip boundaries a_constant = self.cval.clone() x = self.lin0(x) pipe_split() x = torch.relu(x) + a_constant x = torch.mm(x, self.mm_param1) x = self.lin1(x) x = torch.relu(x) return x
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
backward
def backward(ctx, grad_output): input_val, weight, bias = ctx.saved_tensors grad_input = grad_output.mm(weight) ctx.module.cached_context[ctx.layer_idx].append(grad_output.clone()) ctx.module.cached_context[str(ctx.layer_idx) + "_input"].append( input_val.clone() ) return grad_input, None, None, None, None
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class CustomLinearDx(Function):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipelining/model_registry.py
__init__
def __init__(self, d_hid): super().__init__() self.mm_param0 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.mm_param1 = torch.nn.Parameter(torch.randn(d_hid, d_hid)) self.cval = torch.nn.Buffer(torch.randn((d_hid,), requires_grad=False)) self.lin0 = torch.nn.Linear(d_hid, d_hid) self.lin1 = torch.nn.Linear(d_hid, d_hid)
import torch from torch.autograd import Function from torch.distributed.pipelining import pipe_split, SplitPoint class ExampleCode(torch.nn.Module):
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
added
torch
test/distributed/pipeline/sync/test_pipe.py
test_public_attrs
def test_public_attrs(setup_rpc): class MyString: def __init__(self, value): self.value = value def __str__(self): return self.value model = nn.Sequential(nn.Linear(1, 1)) pipe = Pipe(model, chunks=42.000, checkpoint=MyString("always")) assert pipe.devices == [torch.device("cpu")] assert pipe.chunks == 42 assert isinstance(pipe.chunks, int) assert pipe.checkpoint == "always" assert isinstance(pipe.checkpoint, str)
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
__init__
def __init__(self, value): self.value = value
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class MyString:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
__str__
def __str__(self): return self.value
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") class MyString:
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_sequential_like
def test_sequential_like(setup_rpc): a = nn.Linear(1, 1) b = nn.Linear(1, 1) model = nn.Sequential(a, b) model = Pipe(model) assert len(model) == 2 assert list(model) == [a, b] assert model[0] is a assert model[1] is b with pytest.raises(IndexError): _ = model[2] assert model[-1] is b assert model[-2] is a
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_chunks_less_than_1
def test_chunks_less_than_1(setup_rpc): model = nn.Sequential(nn.Linear(1, 1)) with pytest.raises(ValueError): Pipe(model, chunks=0) with pytest.raises(ValueError): Pipe(model, chunks=-1)
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted
torch
test/distributed/pipeline/sync/test_pipe.py
test_batch_size_indivisible
def test_batch_size_indivisible(setup_rpc): model = nn.Sequential(nn.Linear(1, 1)) model = Pipe(model, chunks=4) with pytest.warns(None) as record: model(torch.rand(7, 1)) # Indivisible batch size is legal. assert not record
from collections import OrderedDict from copy import deepcopy import time import pytest import random import torch from torch import nn from torch import Tensor from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice from torch.distributed.pipeline.sync.pipe import PipeSequential skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
c263bd43e8e8502d4726643bc6fd046f0130ac0e
32f585d9346e316e554c8d9bf7548af9f62141fc
deleted