|
--- |
|
task_categories: |
|
- audio-classification |
|
license: cc |
|
tags: |
|
- bird classification |
|
- passive acoustic monitoring |
|
--- |
|
## Dataset Description |
|
|
|
- **Repository:** [https://github.com/DBD-research-group/GADME](https://github.com/DBD-research-group/GADME) |
|
- **Paper:** [GADME](https://arxiv.org/) |
|
- **Point of Contact:** [Lukas Rauch](mailto:lukas.rauch@uni-kassel.de) |
|
|
|
### Dataset Summary |
|
We present the GADME benchmark that covers a comprehensive range of avian monitoring datasets. |
|
We offer a static set of evaluation datasets and a varied collection of training datasets, enabling the application of diverse methodologies |
|
|
|
### Datasets |
|
|
|
##### Train |
|
- Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND. |
|
- Each dataset is tailored for specific target species identified in soundscape files. |
|
- We offer detected events and corresponding cluster assignments to identify bird sounds in each recording. |
|
- We provide the full recordings from XC! These can generate multiple samples from a single instance. |
|
|
|
##### Test |
|
- Only soundscape data sourced from Zenodo. |
|
- We provide the full recording with the complete label set and specified bounding boxes. |
|
- This dataset excludes recordings that do not contain bird calls ("no_call"). |
|
- Task: Multiclass ("ebird_code") |
|
|
|
##### Test_5s |
|
- Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme. |
|
- Each recording is segmented into 5-second intervals without overlaps. |
|
- This contains the "no_call" class. |
|
- Task: Multilabel ("ebird_code_multilabel") |
|
|
|
#### Subsets |
|
|
|
Numbers need to be updated |
|
|
|
| | train | test | test_5s | size (GB) | #classes | |
|
|----------------------------|--------:|-----------:|--------:|-----------:|-------------:| |
|
| HSN (high_sierras) | 5,197 | 10,296 | 12,000 | 6.2 | 21 | |
|
| NBP (nips) | 24,327 | 5,493 | 563 | wip | 51 | |
|
| NES (columbia_costa_rica) | 15,157 | 6,952 | 24,480 | 14 | 89 | |
|
| PER (amazon_basin) | 15,679 | 14,798 | 15,120 | 10 | 132 | |
|
| POW (powdermill_nature) | 13,922 | 16,052 | 4,560 | 16 | 48 | |
|
| SNE (sierra_nevada) | 18,307 | 20,147 | 23,756 | 22 | 56 | |
|
| SSW (sapsucker_woods) | 26,487 | 50,760 | 205,200| 36 | 81 | |
|
| UHH (hawaiian_islands) | 3,427 | 59,583 | 36,637 | 5.1 | 25 tr, 27 te | |
|
| XCM (xenocanto) | 80,012 | x | x | 83 | 409 | |
|
| XCL (xenocanto) | 492,676| x | x | 485 | 9,734 | |
|
|
|
#### FEATURES |
|
|
|
```python |
|
{ |
|
"audio": datasets.Audio(sampling_rate=32_000, mono=True, decode=True), |
|
"filepath": datasets.Value("string"), |
|
"start_time": datasets.Value("float64"), |
|
"end_time": datasets.Value("float64"), |
|
"low_freq": datasets.Value("int64"), |
|
"high_freq": datasets.Value("int64"), |
|
"ebird_code": datasets.ClassLabel(names=class_list), |
|
"ebird_code_multilabel": datasets.Sequence(datasets.ClassLabel(names=["no_call"] + class_list)), |
|
"ebird_code_secondary": datasets.Sequence(datasets.Value("string")), |
|
"call_type": datasets.Value("string"), |
|
"sex": datasets.Value("string"), |
|
"lat": datasets.Value("float64"), |
|
"long": datasets.Value("float64"), |
|
"length": datasets.Value("int64"), |
|
"microphone": datasets.Value("string"), |
|
"license": datasets.Value("string"), |
|
"source": datasets.Value("string"), |
|
"local_time": datasets.Value("string"), |
|
"detected_events": datasets.Sequence(datasets.Sequence(datasets.Value("float64"))), |
|
"event_cluster": datasets.Sequence(datasets.Value("int64")), |
|
"quality": datasets.Value("string"), |
|
"recordist": datasets.Value("string") |
|
}) |
|
``` |
|
```python |
|
EXAMPLE TRAIN |
|
{'audio': {'path': '.ogg', |
|
'array': array([ 6.24680333e-02, 7.57145062e-02, 4.91199419e-02, ..., |
|
-2.04162002e-02, 8.73558223e-03, -6.23320229e-05]), |
|
'sampling_rate': 32000}, |
|
'filepath': '.ogg', |
|
'start_time': None, |
|
'end_time': None, |
|
'low_freq': None, |
|
'high_freq': None, |
|
'ebird_code': 1, |
|
'ebird_code_multiclass': None, |
|
'call_type': 'call', |
|
'sex': None, |
|
'lat': 22.2029, |
|
'long': -159.473, |
|
'microphone': 'focal', |
|
'license': '//creativecommons.org/licenses/by-nc-sa/4.0/', |
|
'source': 'xenocanto', |
|
'local_time': '12:49', |
|
'detected_events': [[0.832, 2.48], |
|
[2.992, 4.016], |
|
[3.2, 3.904], |
|
[5.472, 6.048], |
|
[5.488, 6.432], |
|
[7.088, 8.16], |
|
[8.944, 10.432], |
|
[10.72, 12.672], |
|
[11.152, 13.2], |
|
[13.488, 14.0], |
|
[14.64, 16.496]], |
|
'event_cluster': [1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], |
|
'quality': 'A'} |
|
|
|
EXAMPLE TEST_5S |
|
{'audio': {'path': '.ogg', |
|
'array': array([-5.03219722e-04, 9.99580720e-04, 2.58744985e-05, ..., |
|
-4.06746846e-03, -3.79991997e-03, 2.88472045e-04]), |
|
'sampling_rate': 32000}, |
|
'filepath': '.ogg', |
|
'start_time': 0.0, |
|
'end_time': 5.0, |
|
'low_freq': 2678, |
|
'high_freq': 6053, |
|
'ebird_code': None, |
|
'ebird_code_multiclass': [0], |
|
'call_type': None, |
|
'sex': None, |
|
'lat': 19.801668, |
|
'long': -155.609444, |
|
'microphone': 'Soundscape', |
|
'license': 'Creative Commons Attribution 4.0 International Public License', |
|
'source': 'https://zenodo.org/record/7078499', |
|
'local_time': '15:00:06', |
|
'detected_events': None, |
|
'event_cluster': None, |
|
'quality': None} |
|
|
|
### Citation Information |
|
|
|
``` |
|
@article{gadme, |
|
author = {Rauch, Lukas and |
|
Schwinger, Raphael and |
|
Wirth, Moritz and |
|
Heinrich, René and |
|
Lange, Jonas and |
|
Kahl, Stefan and |
|
Sick, Bernhard and |
|
Tomforde, Sven and |
|
Scholz, Christoph}, |
|
title = {GADME: A Benchmark Towards General Avian Diversity Monitoring Evaluation in Deep Bioacoustics, |
|
journal = {CoRR}, |
|
volume = {X}, |
|
year = {2024}, |
|
url = {X}, |
|
archivePrefix = {arXiv}, |
|
} |
|
|
|
Note that each test in GADME dataset has its own citation. Please see the source to see |
|
the correct citation for each contained dataset. Each file in the training dataset also has its own recordist. The licenses can be found in the metadata. |
|
``` |