Datasets:

Languages:
English
ArXiv:
License:
system HF staff commited on
Commit
92376a0
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ - machine-generated
5
+ language_creators:
6
+ - crowdsourced
7
+ - found
8
+ languages:
9
+ - en
10
+ licenses:
11
+ - unknown
12
+ multilinguality:
13
+ - monolingual
14
+ size_categories:
15
+ - 10K<n<100K
16
+ source_datasets:
17
+ - original
18
+ task_categories:
19
+ - question-answering
20
+ task_ids:
21
+ - multiple-choice-qa
22
+ ---
23
+
24
+ # Dataset Card Creation Guide
25
+
26
+ ## Table of Contents
27
+ - [Dataset Description](#dataset-description)
28
+ - [Dataset Summary](#dataset-summary)
29
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
30
+ - [Languages](#languages)
31
+ - [Dataset Structure](#dataset-structure)
32
+ - [Data Instances](#data-instances)
33
+ - [Data Fields](#data-instances)
34
+ - [Data Splits](#data-instances)
35
+ - [Dataset Creation](#dataset-creation)
36
+ - [Curation Rationale](#curation-rationale)
37
+ - [Source Data](#source-data)
38
+ - [Annotations](#annotations)
39
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
40
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
41
+ - [Social Impact of Dataset](#social-impact-of-dataset)
42
+ - [Discussion of Biases](#discussion-of-biases)
43
+ - [Other Known Limitations](#other-known-limitations)
44
+ - [Additional Information](#additional-information)
45
+ - [Dataset Curators](#dataset-curators)
46
+ - [Licensing Information](#licensing-information)
47
+ - [Citation Information](#citation-information)
48
+
49
+ ## Dataset Description
50
+
51
+ - **Homepage:** [MC-TACO](https://cogcomp.seas.upenn.edu/page/resource_view/125)
52
+ - **Repository:** [Github repository](https://github.com/CogComp/MCTACO)
53
+ - **Paper:** ["Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding](https://arxiv.org/abs/1909.03065)
54
+ - **Leaderboard:** [AI2 Leaderboard](https://leaderboard.allenai.org/mctaco)
55
+
56
+ ### Dataset Summary
57
+
58
+ MC-TACO (Multiple Choice TemporAl COmmonsense) is a dataset of 13k question-answer pairs that require temporal commonsense comprehension. A system receives a sentence providing context information, a question designed to require temporal commonsense knowledge, and multiple candidate answers. More than one candidate answer can be plausible.
59
+
60
+ ### Supported Tasks and Leaderboards
61
+
62
+ The task is framed as binary classification: givent he context, the question, and the candidate answer, the task is to determine whether the candidate answer is plausible ("yes") or not ("no").
63
+
64
+ Performance is measured using two metrics:
65
+
66
+ - Exact Match -- the average number of questions for which all the candidate answers are predicted correctly.
67
+ - F1 -- is slightly more relaxed than EM. It measures the overlap between one’s predictions and the ground truth, by computing the geometric mean of Precision and Recall.
68
+
69
+ ### Languages
70
+
71
+ The text in the dataset is in English. The associated BCP-47 code is `en`.
72
+
73
+ ## Dataset Structure
74
+
75
+ ### Data Instances
76
+
77
+ An example looks like this:
78
+
79
+ ```
80
+ {
81
+ "sentence": "However, more recently, it has been suggested that it may date from earlier than Abdalonymus' death.",
82
+ "question": "How often did Abdalonymus die?",
83
+ "answer": "every two years",
84
+ "label": "no",
85
+ "category": "Frequency",
86
+ }
87
+ ```
88
+
89
+ ### Data Fields
90
+
91
+ All fields are strings:
92
+ - `sentence`: a sentence (or context) on which the question is based
93
+ - `question`: a question querying some temporal commonsense knowledge
94
+ - `answer`: a potential answer to the question (all lowercased)
95
+ - `label`: whether the answer is a correct. "yes" indicates the answer is correct/plaussible, "no" otherwise
96
+ - `category`: the temporal category the question belongs to (among "Event Ordering", "Event Duration", "Frequency", "Stationarity", and "Typical Time")
97
+
98
+ ### Data Splits
99
+
100
+ The development set contains 561 questions and 3,783 candidate answers. The test set contains 1,332 questions and 9,442 candidate answers.
101
+
102
+ From the original repository:
103
+
104
+ *Note that there is no training data, and we provide the dev set as the only source of supervision. The rationale is that we believe a successful system has to bring in a huge amount of world knowledge and derive commonsense understandings prior to the current task evaluation. We therefore believe that it is not reasonable to expect a system to be trained solely on this data, and we think of the development data as only providing a definition of the task.*
105
+
106
+ ## Dataset Creation
107
+
108
+ ### Curation Rationale
109
+
110
+ MC-TACO is used as a testbed to study the temporal commonsense understanding on NLP systems.
111
+
112
+ ### Source Data
113
+
114
+ From the original paper:
115
+
116
+ *The context sentences are randomly selected from [MultiRC](https://www.aclweb.org/anthology/N18-1023/) (from each of its 9 domains). For each sentence, we use crowdsourcing on Amazon Mechanical Turk to collect questions and candidate answers (both correct and wrong ones).*
117
+
118
+ #### Initial Data Collection and Normalization
119
+
120
+ [More Information Needed]
121
+
122
+ #### Who are the source language producers?
123
+
124
+ [More Information Needed]
125
+
126
+ ### Annotations
127
+
128
+ From the original paper:
129
+
130
+ *To ensure the quality of the results, we limit the annotations to native speakers and use qualification tryouts.*
131
+
132
+ #### Annotation process
133
+
134
+ The crowdsourced construction/annotation of the dataset follows 4 steps described in Section 3 of the [paper](https://arxiv.org/abs/1909.03065): question generation, question verification, candidate answer expansion and answer labeling.
135
+
136
+ #### Who are the annotators?
137
+
138
+ Paid crowdsourcers.
139
+
140
+ ### Personal and Sensitive Information
141
+
142
+ [More Information Needed]
143
+
144
+ ## Considerations for Using the Data
145
+
146
+ ### Social Impact of Dataset
147
+
148
+ [More Information Needed]
149
+
150
+ ### Discussion of Biases
151
+
152
+ [More Information Needed]
153
+
154
+ ### Other Known Limitations
155
+
156
+ [More Information Needed]
157
+
158
+ ## Additional Information
159
+
160
+ ### Dataset Curators
161
+
162
+ [More Information Needed]
163
+
164
+ ### Licensing Information
165
+
166
+ Unknwon
167
+
168
+ ### Citation Information
169
+
170
+ ```
171
+ @inproceedings{ZKNR19,
172
+ author = {Ben Zhou, Daniel Khashabi, Qiang Ning and Dan Roth},
173
+ title = {“Going on a vacation” takes longer than “Going for a walk”: A Study of Temporal Commonsense Understanding },
174
+ booktitle = {EMNLP},
175
+ year = {2019},
176
+ }
177
+ ```
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"plain_text": {"description": "MC-TACO (Multiple Choice TemporAl COmmonsense) is a dataset of 13k question-answer\npairs that require temporal commonsense comprehension. A system receives a sentence\nproviding context information, a question designed to require temporal commonsense\nknowledge, and multiple candidate answers. More than one candidate answer can be plausible.\n\nThe task is framed as binary classification: givent he context, the question,\nand the candidate answer, the task is to determine whether the candidate\nanswer is plausible (\"yes\") or not (\"no\").", "citation": "@inproceedings{ZKNR19,\n author = {Ben Zhou, Daniel Khashabi, Qiang Ning and Dan Roth},\n title = {\u201cGoing on a vacation\u201d takes longer than \u201cGoing for a walk\u201d: A Study of Temporal Commonsense Understanding },\n booktitle = {EMNLP},\n year = {2019},\n}\n", "homepage": "https://cogcomp.seas.upenn.edu/page/resource_view/125", "license": "Unknown", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["no", "yes"], "names_file": null, "id": null, "_type": "ClassLabel"}, "category": {"num_classes": 5, "names": ["Event Duration", "Event Ordering", "Frequency", "Typical Time", "Stationarity"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "mc_taco", "config_name": "plain_text", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1785553, "num_examples": 9442, "dataset_name": "mc_taco"}, "validation": {"name": "validation", "num_bytes": 713023, "num_examples": 3783, "dataset_name": "mc_taco"}}, "download_checksums": {"https://raw.githubusercontent.com/CogComp/MCTACO/master/dataset/dev_3783.tsv": {"num_bytes": 679912, "checksum": "8de54f6d3e0a6466e4ba2c5179c7f9ac3442eeba8683c46fd712f5f54751d6dd"}, "https://raw.githubusercontent.com/CogComp/MCTACO/master/dataset/test_9442.tsv": {"num_bytes": 1705225, "checksum": "47e12f88559eb0735eeca2af2d0a3ed48efb3bb2742ff31de9fcfc9a76094354"}}, "download_size": 2385137, "post_processing_size": null, "dataset_size": 2498576, "size_in_bytes": 4883713}}
dummy/plain_text/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95b49c8911ceffd65aebac490daa338e902e1f8def741fcd132fc71535b9d650
3
+ size 711
mc_taco.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """MC-TACO Dataset."""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import csv
20
+
21
+ import datasets
22
+
23
+
24
+ _CITATION = """\
25
+ @inproceedings{ZKNR19,
26
+ author = {Ben Zhou, Daniel Khashabi, Qiang Ning and Dan Roth},
27
+ title = {“Going on a vacation” takes longer than “Going for a walk”: A Study of Temporal Commonsense Understanding },
28
+ booktitle = {EMNLP},
29
+ year = {2019},
30
+ }
31
+ """
32
+
33
+ _DESCRIPTION = """\
34
+ MC-TACO (Multiple Choice TemporAl COmmonsense) is a dataset of 13k question-answer
35
+ pairs that require temporal commonsense comprehension. A system receives a sentence
36
+ providing context information, a question designed to require temporal commonsense
37
+ knowledge, and multiple candidate answers. More than one candidate answer can be plausible.
38
+
39
+ The task is framed as binary classification: givent he context, the question,
40
+ and the candidate answer, the task is to determine whether the candidate
41
+ answer is plausible ("yes") or not ("no")."""
42
+
43
+ _LICENSE = "Unknown"
44
+
45
+ _URLs = {
46
+ "dev": "https://raw.githubusercontent.com/CogComp/MCTACO/master/dataset/dev_3783.tsv",
47
+ "test": "https://raw.githubusercontent.com/CogComp/MCTACO/master/dataset/test_9442.tsv",
48
+ }
49
+
50
+
51
+ class McTaco(datasets.GeneratorBasedBuilder):
52
+ """MC-TACO Dataset: temporal commonsense knowledge."""
53
+
54
+ VERSION = datasets.Version("1.1.0")
55
+
56
+ BUILDER_CONFIGS = [
57
+ datasets.BuilderConfig(
58
+ name="plain_text",
59
+ description="Plain text",
60
+ version=VERSION,
61
+ ),
62
+ ]
63
+
64
+ def _info(self):
65
+ return datasets.DatasetInfo(
66
+ description=_DESCRIPTION,
67
+ features=datasets.Features(
68
+ {
69
+ "sentence": datasets.Value("string"),
70
+ "question": datasets.Value("string"),
71
+ "answer": datasets.Value("string"),
72
+ "label": datasets.ClassLabel(names=["no", "yes"]),
73
+ "category": datasets.ClassLabel(
74
+ names=["Event Duration", "Event Ordering", "Frequency", "Typical Time", "Stationarity"]
75
+ ),
76
+ }
77
+ ),
78
+ supervised_keys=None,
79
+ homepage="https://cogcomp.seas.upenn.edu/page/resource_view/125",
80
+ license=_LICENSE,
81
+ citation=_CITATION,
82
+ )
83
+
84
+ def _split_generators(self, dl_manager):
85
+ """Returns SplitGenerators."""
86
+ data_dir = dl_manager.download_and_extract(_URLs)
87
+ return [
88
+ datasets.SplitGenerator(
89
+ name=datasets.Split.TEST,
90
+ gen_kwargs={
91
+ "filepath": data_dir["test"],
92
+ },
93
+ ),
94
+ datasets.SplitGenerator(
95
+ name=datasets.Split.VALIDATION,
96
+ gen_kwargs={
97
+ "filepath": data_dir["dev"],
98
+ },
99
+ ),
100
+ ]
101
+
102
+ def _generate_examples(self, filepath):
103
+ """ Yields examples. """
104
+ with open(filepath, encoding="utf-8") as csv_file:
105
+ csv_reader = csv.reader(
106
+ csv_file,
107
+ delimiter="\t",
108
+ )
109
+ for id_, row in enumerate(csv_reader):
110
+ yield id_, {
111
+ "sentence": row[0],
112
+ "question": row[1],
113
+ "answer": row[2],
114
+ "label": row[3],
115
+ "category": row[4],
116
+ }