Datasets:
CZLC
/

Modalities:
Text
Formats:
json
Languages:
Czech
Libraries:
Datasets
pandas
License:
mfajcik commited on
Commit
c057c58
·
verified ·
1 Parent(s): d93fa93

Upload convert_ORTOFON_ORAL13.py

Browse files
Files changed (1) hide show
  1. convert_ORTOFON_ORAL13.py +199 -0
convert_ORTOFON_ORAL13.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # open .data/ORTOFONv1/ortofon_v1_vert.gz
2
+ import gzip
3
+ import os
4
+ import re
5
+ from typing import Dict
6
+ from tqdm import tqdm
7
+
8
+ FILE_PATH = ".data/ORTOFONv1/ortofon_v1_vert.gz"
9
+ with gzip.open(FILE_PATH, "rt") as f:
10
+ data = f.read()
11
+ """
12
+ Problems:
13
+ - sometimes lines in oral are empty? e.g. 08A009N // REMOVE THESE LINES
14
+ - sometimes lines in ortofon are containing three dots only, such as [mluvčí: Miroslava] ... // REMOVE THESE LINES
15
+ - sometimes lines in ortofon contain @ only, e.g., [mluvčí: Radka] @ // REMOVE THESE LINES
16
+ """
17
+
18
+ def process_vert_format_ortofon(vert_content: str) -> Dict[str, str]:
19
+ # Pattern to match document boundaries and extract metadata
20
+ doc_pattern = re.compile(r'<doc[^>]*>.*?</doc>', re.DOTALL)
21
+ metadata_pattern = re.compile(
22
+ r'<doc id="([^"]*)" year="([^"]*)" month="([^"]*)" location="([^"]*)" situation="([^"]*)" speakers="([^"]*)" genders="([^"]*)" generations="([^"]*)" relationship="([^"]*)"[^>]*>')
23
+
24
+ # Pattern to match speaker turns
25
+ sp_pattern = re.compile(r'<sp[^>]*nickname="([^"]*)"[^>]*>(.*?)</sp>', re.DOTALL)
26
+
27
+ # Pattern to match pw tags
28
+ pw_pattern = re.compile(r'<pw>\n(.*?)</pw>\n', re.DOTALL)
29
+
30
+ # Pattern to remove speaker suffix
31
+ remove_speaker_suffix = re.compile(r'_[0-9]+$')
32
+
33
+ # Pattern to remove whitespace before punctuation
34
+ ws_before_punct = re.compile(r'\s+([.!?])')
35
+
36
+ # Find all documents
37
+ documents = re.findall(doc_pattern, vert_content)
38
+ processed_documents = {}
39
+
40
+ for doc in tqdm(documents):
41
+ # Extract metadata
42
+ metadata_match = re.search(metadata_pattern, doc)
43
+ if metadata_match:
44
+ doc_id = metadata_match.group(1)
45
+ location = metadata_match.group(4)
46
+ situation = metadata_match.group(5)
47
+ speakers = metadata_match.group(6)
48
+ genders = metadata_match.group(7)
49
+ generations = metadata_match.group(8)
50
+ relationship = metadata_match.group(9)
51
+ metadata_str = (f"Lokalita: {location}, Situace: {situation}, "
52
+ f"Počet mluvčích: {speakers}, Pohlaví: {genders}, "
53
+ f"Generace: {generations}, Vztah: {relationship}")
54
+ else:
55
+ raise ValueError("Metadata not found in document")
56
+
57
+ # Initialize an empty list to hold processed document text
58
+ processed_document = [metadata_str]
59
+
60
+ # Find all speaker turns within the document
61
+ for sp_match in re.findall(sp_pattern, doc):
62
+ speaker_id = sp_match[0]
63
+ # sometimes speaker_id ends with _1, _2, _89, etc. Remove it
64
+ speaker_id = re.sub(remove_speaker_suffix, '', speaker_id)
65
+
66
+ # if speaker is Y, rename him as Jiný zvuk
67
+ if speaker_id == "Y":
68
+ speaker_id = "Zvuk"
69
+
70
+
71
+ sp_content = sp_match[1]
72
+
73
+ segs = re.findall(pw_pattern, sp_content)
74
+ if segs == []:
75
+ segs = [sp_content]
76
+ # remove tags from each line, and join text
77
+ tokens = [line.split("\t")[0].strip() for seg in segs for line in seg.split("\n") if line != ""]
78
+ speaker_text = " ".join(tokens)
79
+
80
+ # - sometimes lines in ortofon are containing three dots only, such as [mluvčí: Miroslava] ... // REMOVE THESE LINES
81
+ if speaker_text.strip() == "...":
82
+ continue
83
+ # - sometimes lines in ortofon contain @ only, e.g., [mluvčí: Radka] @ // REMOVE THESE LINES
84
+ if speaker_text.strip() == "@":
85
+ continue
86
+
87
+ # remove whitespace before ., !, ?
88
+ speaker_text = re.sub(ws_before_punct, r'\1', speaker_text)
89
+
90
+ # Format the speaker turn and add to the processed document list
91
+ processed_document.append(f"[mluvčí: {speaker_id}] {speaker_text}")
92
+
93
+
94
+ # Join all speaker turns into a single string for the document
95
+ final_text = '\n'.join(processed_document)
96
+ processed_documents[doc_id] = final_text
97
+
98
+ return processed_documents
99
+
100
+
101
+ ortofon_data = process_vert_format_ortofon(data)
102
+ del data
103
+
104
+
105
+ FILE_PATH = ".data/ORAL2013/oral2013_vert.gz"
106
+ with gzip.open(FILE_PATH, "rt") as f:
107
+ data = f.read()
108
+
109
+ def process_vert_format_oral(vert_content: str) -> Dict[str, str]:
110
+ # Pattern to match document boundaries and extract metadata
111
+ doc_pattern = re.compile(r'<doc[^>]*>.*?</doc>', re.DOTALL)
112
+ metadata_pattern = re.compile(
113
+ r'<doc id="([^"]*)" temp="([^"]*)" pocet="([^"]*)" vztah="([^"]*)" situace="([^"]*)" promluva="([^"]*)"[^>]*>'
114
+ )
115
+ # Pattern to match speaker turns
116
+ sp_pattern = re.compile(r'<sp[^>]*num="([^"]*)"[^>]*>(.*?)</sp>', re.DOTALL)
117
+
118
+ # Pattern to match seg tags
119
+ seg_pattern = re.compile(r'<seg start="[^"]*" end="[^"]*">(.*?)</seg>\n', re.DOTALL)
120
+
121
+ # Pattern to remove whitespace before punctuation
122
+ ws_before_punct = re.compile(r'\s+([.!?])')
123
+
124
+ # Find all documents
125
+ documents = re.findall(doc_pattern, vert_content)
126
+ processed_documents = {}
127
+
128
+ for doc in tqdm(documents):
129
+ # Extract metadata
130
+ metadata_match = re.search(metadata_pattern, doc)
131
+ if metadata_match:
132
+ doc_id = metadata_match.group(1)
133
+ situation = metadata_match.group(5)
134
+ speakers = metadata_match.group(3)
135
+ relationship = metadata_match.group(4)
136
+
137
+ metadata_str = (f"Situace: {situation}, "
138
+ f"Počet mluvčích: {speakers}, "
139
+ f"Vztah: {relationship}")
140
+ else:
141
+ raise ValueError("Metadata not found in document")
142
+
143
+ # Initialize an empty list to hold processed document text
144
+ processed_document = [metadata_str]
145
+
146
+ # Find all speaker turns within the document
147
+ for sp_match in re.findall(sp_pattern, doc):
148
+ speaker_id = sp_match[0]
149
+
150
+ # if speaker is Y, rename him as Jiný zvuk
151
+ if speaker_id == "Y":
152
+ speaker_id = "Zvuk"
153
+
154
+ sp_content = sp_match[1]
155
+ # remove symbols ---, ...:,
156
+ sp_content = sp_content.replace("---", "")
157
+ sp_content = sp_content.replace("...:", "")
158
+ sp_content = sp_content.replace("...", "")
159
+ sp_content = sp_content.replace("?.", "?")
160
+
161
+
162
+ segs = re.findall(seg_pattern, sp_content)
163
+ if segs == []:
164
+ segs = [sp_content]
165
+ # remove tags from each line, and join text
166
+ tokens = [line.split("\t")[0].strip() for seg in segs for line in seg.split("\n") if line.strip() != ""]
167
+ speaker_text = " ".join(tokens)
168
+
169
+ # remove whitespace before ., !, ?
170
+ speaker_text = re.sub(ws_before_punct, r'\1', speaker_text)
171
+
172
+ # - sometimes lines in oral are empty? e.g. 08A009N // REMOVE THESE LINES
173
+ if speaker_text.strip() == "":
174
+ continue
175
+
176
+ # Format the speaker turn and add to the processed document list
177
+ processed_document.append(f"[mluvčí: {speaker_id}] {speaker_text}")
178
+
179
+
180
+ # Join all speaker turns into a single string for the document
181
+ final_text = '\n'.join(processed_document)
182
+ processed_documents[doc_id] = final_text
183
+
184
+ return processed_documents
185
+
186
+ oral_data = process_vert_format_oral(data)
187
+
188
+ # merge ortofon and oral data
189
+ ortofon_data.update(oral_data)
190
+
191
+ # save the merged data in jsonlines as {"text": doc, "id": doc_id}
192
+
193
+ import jsonlines
194
+ FILE_PATH = ".data/hf_dataset/ortofon_oral/test.jsonl"
195
+
196
+ os.makedirs(os.path.dirname(FILE_PATH), exist_ok=True)
197
+ with jsonlines.open(FILE_PATH, 'w') as writer:
198
+ for doc_id, doc in ortofon_data.items():
199
+ writer.write({"text": doc, "id": doc_id})