Datasets:
CZLC
/

Modalities:
Text
Formats:
json
Languages:
Czech
Libraries:
Datasets
pandas
License:
CNC_oral_ortofon / convert_ORTOFON_ORAL13.py
mfajcik's picture
Update convert_ORTOFON_ORAL13.py
d4be186 verified
#author: Martin Fajčík
import gzip
import os
import re
from typing import Dict
from tqdm import tqdm
FILE_PATH = ".data/ORTOFONv1/ortofon_v1_vert.gz"
with gzip.open(FILE_PATH, "rt") as f:
data = f.read()
def process_vert_format_ortofon(vert_content: str) -> Dict[str, str]:
# Pattern to match document boundaries and extract metadata
doc_pattern = re.compile(r'<doc[^>]*>.*?</doc>', re.DOTALL)
metadata_pattern = re.compile(
r'<doc id="([^"]*)" year="([^"]*)" month="([^"]*)" location="([^"]*)" situation="([^"]*)" speakers="([^"]*)" genders="([^"]*)" generations="([^"]*)" relationship="([^"]*)"[^>]*>')
# Pattern to match speaker turns
sp_pattern = re.compile(r'<sp[^>]*nickname="([^"]*)"[^>]*>(.*?)</sp>', re.DOTALL)
# Pattern to match pw tags
pw_pattern = re.compile(r'<pw>\n(.*?)</pw>\n', re.DOTALL)
# Pattern to remove speaker suffix
remove_speaker_suffix = re.compile(r'_[0-9]+$')
# Pattern to remove whitespace before punctuation
ws_before_punct = re.compile(r'\s+([.!?])')
# Find all documents
documents = re.findall(doc_pattern, vert_content)
processed_documents = {}
for doc in tqdm(documents):
# Extract metadata
metadata_match = re.search(metadata_pattern, doc)
if metadata_match:
doc_id = metadata_match.group(1)
location = metadata_match.group(4)
situation = metadata_match.group(5)
speakers = metadata_match.group(6)
genders = metadata_match.group(7)
generations = metadata_match.group(8)
relationship = metadata_match.group(9)
metadata_str = (f"Lokalita: {location}, Situace: {situation}, "
f"Počet mluvčích: {speakers}, Pohlaví: {genders}, "
f"Generace: {generations}, Vztah: {relationship}")
else:
raise ValueError("Metadata not found in document")
# Initialize an empty list to hold processed document text
processed_document = [metadata_str]
# Find all speaker turns within the document
for sp_match in re.findall(sp_pattern, doc):
speaker_id = sp_match[0]
# sometimes speaker_id ends with _1, _2, _89, etc. Remove it
speaker_id = re.sub(remove_speaker_suffix, '', speaker_id)
# if speaker is Y, rename him as Jiný zvuk
if speaker_id == "Y":
speaker_id = "Zvuk"
sp_content = sp_match[1]
segs = re.findall(pw_pattern, sp_content)
if segs == []:
segs = [sp_content]
# remove tags from each line, and join text
tokens = [line.split("\t")[0].strip() for seg in segs for line in seg.split("\n") if line != ""]
speaker_text = " ".join(tokens)
# - sometimes lines in ortofon are containing three dots only, such as [mluvčí: Miroslava] ... // REMOVE THESE LINES
if speaker_text.strip() == "...":
continue
# - sometimes lines in ortofon contain @ only, e.g., [mluvčí: Radka] @ // REMOVE THESE LINES
if speaker_text.strip() == "@":
continue
# remove whitespace before ., !, ?
speaker_text = re.sub(ws_before_punct, r'\1', speaker_text)
# Format the speaker turn and add to the processed document list
processed_document.append(f"[mluvčí: {speaker_id}] {speaker_text}")
# Join all speaker turns into a single string for the document
final_text = '\n'.join(processed_document)
processed_documents[doc_id] = final_text
return processed_documents
ortofon_data = process_vert_format_ortofon(data)
del data
FILE_PATH = ".data/ORAL2013/oral2013_vert.gz"
with gzip.open(FILE_PATH, "rt") as f:
data = f.read()
def process_vert_format_oral(vert_content: str) -> Dict[str, str]:
# Pattern to match document boundaries and extract metadata
doc_pattern = re.compile(r'<doc[^>]*>.*?</doc>', re.DOTALL)
metadata_pattern = re.compile(
r'<doc id="([^"]*)" temp="([^"]*)" pocet="([^"]*)" vztah="([^"]*)" situace="([^"]*)" promluva="([^"]*)"[^>]*>'
)
# Pattern to match speaker turns
sp_pattern = re.compile(r'<sp[^>]*num="([^"]*)"[^>]*>(.*?)</sp>', re.DOTALL)
# Pattern to match seg tags
seg_pattern = re.compile(r'<seg start="[^"]*" end="[^"]*">(.*?)</seg>\n', re.DOTALL)
# Pattern to remove whitespace before punctuation
ws_before_punct = re.compile(r'\s+([.!?])')
# Find all documents
documents = re.findall(doc_pattern, vert_content)
processed_documents = {}
for doc in tqdm(documents):
# Extract metadata
metadata_match = re.search(metadata_pattern, doc)
if metadata_match:
doc_id = metadata_match.group(1)
situation = metadata_match.group(5)
speakers = metadata_match.group(3)
relationship = metadata_match.group(4)
metadata_str = (f"Situace: {situation}, "
f"Počet mluvčích: {speakers}, "
f"Vztah: {relationship}")
else:
raise ValueError("Metadata not found in document")
# Initialize an empty list to hold processed document text
processed_document = [metadata_str]
# Find all speaker turns within the document
for sp_match in re.findall(sp_pattern, doc):
speaker_id = sp_match[0]
# if speaker is Y, rename him as Jiný zvuk
if speaker_id == "Y":
speaker_id = "Zvuk"
sp_content = sp_match[1]
# remove symbols ---, ...:,
sp_content = sp_content.replace("---", "")
sp_content = sp_content.replace("...:", "")
sp_content = sp_content.replace("...", "")
sp_content = sp_content.replace("?.", "?")
segs = re.findall(seg_pattern, sp_content)
if segs == []:
segs = [sp_content]
# remove tags from each line, and join text
tokens = [line.split("\t")[0].strip() for seg in segs for line in seg.split("\n") if line.strip() != ""]
speaker_text = " ".join(tokens)
# remove whitespace before ., !, ?
speaker_text = re.sub(ws_before_punct, r'\1', speaker_text)
# - sometimes lines in oral are empty? e.g. 08A009N // REMOVE THESE LINES
if speaker_text.strip() == "":
continue
# Format the speaker turn and add to the processed document list
processed_document.append(f"[mluvčí: {speaker_id}] {speaker_text}")
# Join all speaker turns into a single string for the document
final_text = '\n'.join(processed_document)
processed_documents[doc_id] = final_text
return processed_documents
oral_data = process_vert_format_oral(data)
# merge ortofon and oral data
ortofon_data.update(oral_data)
# save the merged data in jsonlines as {"text": doc, "id": doc_id}
import jsonlines
FILE_PATH = ".data/hf_dataset/ortofon_oral/test.jsonl"
os.makedirs(os.path.dirname(FILE_PATH), exist_ok=True)
with jsonlines.open(FILE_PATH, 'w') as writer:
for doc_id, doc in ortofon_data.items():
writer.write({"text": doc, "id": doc_id})