Datasets:
metadata
dataset_info:
features:
- name: br
dtype: string
- name: fr
dtype: string
splits:
- name: train
num_bytes: 101142
num_examples: 882
download_size: 60945
dataset_size: 101142
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
task_categories:
- translation
language:
- br
- fr
multilinguality:
- multilingual
Description
Paires breton/français du jeu de données QED disponible sur OPUS.
⚠ Attention ⚠ : il y a des problèmes d'alignement. Ce jeu de données n'est donc pas utilisbale tel quel et un post-processing serait à effectuer.
Citations
QED
@inproceedings{abdelali-etal-2014-amara,
title = "The {AMARA} Corpus: Building Parallel Language Resources for the Educational Domain",
author = "Abdelali, Ahmed and Guzman, Francisco and Sajjad, Hassan and Vogel, Stephan",
editor = "Calzolari, Nicoletta and Choukri, Khalid and Declerck, Thierry and Loftsson, Hrafn and Maegaard, Bente and Mariani, Joseph and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios",
booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
month = may,
year = "2014",
address = "Reykjavik, Iceland",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/877_Paper.pdf",
pages = "1856--1862",
abstract = "This paper presents the AMARA corpus of on-line educational content: a new parallel corpus of educational video subtitles, multilingually aligned for 20 languages, i.e. 20 monolingual corpora and 190 parallel corpora. This corpus includes both resource-rich languages such as English and Arabic, and resource-poor languages such as Hindi and Thai. In this paper, we describe the gathering, validation, and preprocessing of a large collection of parallel, community-generated subtitles. Furthermore, we describe the methodology used to prepare the data for Machine Translation tasks. Additionally, we provide a document-level, jointly aligned development and test sets for 14 language pairs, designed for tuning and testing Machine Translation systems. We provide baseline results for these tasks, and highlight some of the challenges we face when building machine translation systems for educational content.",
}
OPUS
@inbook{4992de1b5fb34f3e9691772606b36edf,
title = "News from OPUS - A Collection of Multilingual Parallel Corpora with Tools and Interfaces",
author = "J{\"o}rg Tiedemann",
year = "2009",
language = "odefinierat/ok{\"a}nt",
volume = "V",
pages = "237--248",
editor = "N. Nicolov and K. Bontcheva and G. Angelova and R. Mitkov",
booktitle = "Recent Advances in Natural Language Processing",
}