Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
code
Size:
10K<n<100K
ArXiv:
Tags:
code
License:
Create TACO.py
Browse files
TACO.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""APPS dataset."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import datasets
|
19 |
+
|
20 |
+
|
21 |
+
_REPO_NAME = "BAAI/TACO"
|
22 |
+
|
23 |
+
_CITATION = """
|
24 |
+
"""
|
25 |
+
|
26 |
+
_DESCRIPTION = """
|
27 |
+
TACO is a benchmark for Python code generation, it includes 25443 problems and 1000 problems for train and test splits.
|
28 |
+
"""
|
29 |
+
|
30 |
+
_HOMEPAGE = "https://github.com/FlagOpen/TACO"
|
31 |
+
_DIFFICULTY = ["EASY", "MEDIUM", "MEDIUM_HARD", "HARD", "VERY_HARD"]
|
32 |
+
_DIFFICULTY_CONFIGS = ["ALL"] + _DIFFICULTY
|
33 |
+
_SKILL = ['Data structures', 'Sorting', 'Range queries', 'Complete search', 'Amortized analysis', 'Dynamic programming', 'Bit manipulation', 'Greedy algorithms']
|
34 |
+
_SKILL_CONFIGS = ["ALL"] + _SKILL
|
35 |
+
_URLS = {
|
36 |
+
"train": ['train/data-00000-of-00009.arrow', 'train/data-00001-of-00009.arrow', 'train/data-00002-of-00009.arrow', 'train/data-00003-of-00009.arrow', 'train/data-00004-of-00009.arrow', 'train/data-00005-of-00009.arrow', 'train/data-00006-of-00009.arrow', 'train/data-00007-of-00009.arrow', 'train/data-00008-of-00009.arrow'],
|
37 |
+
"test": ['test/data-00000-of-00001.arrow'],
|
38 |
+
}
|
39 |
+
|
40 |
+
|
41 |
+
class TACOConfig(datasets.BuilderConfig):
|
42 |
+
"""BuilderConfig for the TACO dataset."""
|
43 |
+
|
44 |
+
def __init__(self, *args, difficulties=["ALL"], skills=["ALL"], **kwargs):
|
45 |
+
"""BuilderConfig for the APPS Code dataset.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
difficulties (:obj:`List[str]`): List of problem difficulty levels to load.
|
49 |
+
skills (:obj:`List[str]`): List of algorithm skills of problems to load.
|
50 |
+
**kwargs: keyword arguments forwarded to super.
|
51 |
+
"""
|
52 |
+
if "ALL" in difficulties:
|
53 |
+
assert len(difficulties) == 1
|
54 |
+
self.filter_difficulties = False
|
55 |
+
else:
|
56 |
+
self.filter_difficulties = True
|
57 |
+
if "ALL" in skills:
|
58 |
+
assert len(skills) == 1
|
59 |
+
self.filter_skills = False
|
60 |
+
else:
|
61 |
+
self.filter_skills = True
|
62 |
+
|
63 |
+
if self.filter_difficulties:
|
64 |
+
subset_name = '+'.join(sorted(difficulties))
|
65 |
+
assert not self.filter_skills, "Not supported to filter difficulties and skills together."
|
66 |
+
elif self.filter_skills:
|
67 |
+
subset_name = '+'.join(sorted(skills))
|
68 |
+
else:
|
69 |
+
subset_name = 'ALL'
|
70 |
+
|
71 |
+
super().__init__(
|
72 |
+
*args,
|
73 |
+
name=subset_name,
|
74 |
+
**kwargs,
|
75 |
+
)
|
76 |
+
|
77 |
+
self.subsets = {"difficulties": difficulties, "skills": skills}
|
78 |
+
|
79 |
+
|
80 |
+
class TACO(datasets.GeneratorBasedBuilder):
|
81 |
+
"""TACO dataset."""
|
82 |
+
|
83 |
+
VERSION = datasets.Version("1.0.0")
|
84 |
+
|
85 |
+
BUILDER_CONFIG_CLASS = TACOConfig
|
86 |
+
BUILDER_CONFIGS = [
|
87 |
+
TACOConfig(difficulties=[level]) for level in _DIFFICULTY_CONFIGS
|
88 |
+
] + [
|
89 |
+
TACOConfig(skills=[skill]) for skill in _SKILL_CONFIGS if skill!='ALL'
|
90 |
+
]
|
91 |
+
DEFAULT_CONFIG_NAME = "ALL"
|
92 |
+
|
93 |
+
def _info(self):
|
94 |
+
return datasets.DatasetInfo(
|
95 |
+
description=_DESCRIPTION,
|
96 |
+
features=datasets.Features({
|
97 |
+
'question': datasets.Value(dtype='string', id=None),
|
98 |
+
'solutions': datasets.Value(dtype='string', id=None),
|
99 |
+
'starter_code': datasets.Value(dtype='string', id=None),
|
100 |
+
'input_output': datasets.Value(dtype='string', id=None),
|
101 |
+
'difficulty': datasets.Value(dtype='string', id=None),
|
102 |
+
'raw_tags': datasets.Value(dtype='string', id=None),
|
103 |
+
'name': datasets.Value(dtype='string', id=None),
|
104 |
+
'source': datasets.Value(dtype='string', id=None),
|
105 |
+
'tags': datasets.Value(dtype='string', id=None),
|
106 |
+
'skill_types': datasets.Value(dtype='string', id=None),
|
107 |
+
'url': datasets.Value(dtype='string', id=None),
|
108 |
+
'Expected Auxiliary Space': datasets.Value(dtype='string', id=None),
|
109 |
+
'time_limit': datasets.Value(dtype='string', id=None),
|
110 |
+
'date': datasets.Value(dtype='string', id=None),
|
111 |
+
'picture_num': datasets.Value(dtype='string', id=None),
|
112 |
+
'memory_limit': datasets.Value(dtype='string', id=None),
|
113 |
+
'Expected Time Complexity': datasets.Value(dtype='string', id=None),
|
114 |
+
}),
|
115 |
+
supervised_keys=None,
|
116 |
+
citation=_CITATION,
|
117 |
+
homepage=_HOMEPAGE,
|
118 |
+
license="MIT License",
|
119 |
+
|
120 |
+
)
|
121 |
+
|
122 |
+
def _split_generators(self, dl_manager):
|
123 |
+
|
124 |
+
downloaded_files = _URLS
|
125 |
+
|
126 |
+
return [
|
127 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
128 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
129 |
+
]
|
130 |
+
|
131 |
+
def _generate_examples(self, filepath):
|
132 |
+
key = 0
|
133 |
+
dataset = datasets.concatenate_datasets([datasets.Dataset.from_file(file) for file in filepath])
|
134 |
+
for idx, data in enumerate(dataset):
|
135 |
+
difficulty = data['difficulty']
|
136 |
+
skills = eval(data['skill_types'])
|
137 |
+
if self.config.filter_difficulties and not difficulty in self.config.subsets['difficulties']:
|
138 |
+
continue
|
139 |
+
if self.config.filter_skills:
|
140 |
+
valid_skills = self.config.subsets['skills']
|
141 |
+
if not bool(set(valid_skills) & set(skills)):
|
142 |
+
continue
|
143 |
+
|
144 |
+
yield key, {k:v for k, v in data.items() if k!='eval_topic'}
|
145 |
+
key += 1
|