Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -131,14 +131,269 @@ The TALI dataset consists of the following modalities:
|
|
131 |
4. Video
|
132 |
1. YouTube Content Video
|
133 |
|
134 |
-
|
135 |
-
|
136 |
|
137 |
-
|
138 |
-
- TALI-base: Contains about 6.5 million 30-second video clips, aligned with 120K WiT entries.
|
139 |
-
- TALI-big: Contains about 13 million 30-second video clips, aligned with 120K WiT entries.
|
140 |
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
|
144 |
### Dataset Statistics
|
|
|
131 |
4. Video
|
132 |
1. YouTube Content Video
|
133 |
|
134 |
+
## Usage:
|
135 |
+
To get started with TALI, you can load the dataset via Hugging Face's `datasets` library through our helper functions. The reason we don't use `datasets` directly is because we found huggingface_hub downloads much faster and reliable. For a full set of possible configurations look at [examples.py](examples.py). Here's a basic usage example:
|
136 |
|
137 |
+
First install the tali package:
|
|
|
|
|
138 |
|
139 |
+
### Installation
|
140 |
+
|
141 |
+
For the default install use:
|
142 |
+
|
143 |
+
```bash
|
144 |
+
pip install git+https://github.com/AntreasAntoniou/TALI
|
145 |
+
```
|
146 |
+
|
147 |
+
For the dev install use:
|
148 |
+
|
149 |
+
```bash
|
150 |
+
pip install git+https://github.com/AntreasAntoniou/TALI[dev]
|
151 |
+
```
|
152 |
+
|
153 |
+
Then use the dataset using:
|
154 |
+
|
155 |
+
### Examples
|
156 |
+
Import relevant helper functions
|
157 |
+
```python
|
158 |
+
import pathlib
|
159 |
+
from enum import Enum
|
160 |
+
|
161 |
+
import torch
|
162 |
+
from tqdm.auto import tqdm
|
163 |
+
|
164 |
+
from tali.data import (
|
165 |
+
SubModalityTypes,
|
166 |
+
TALIBaseTransform,
|
167 |
+
TALIBaseTransformConfig,
|
168 |
+
VideoFramesFormat,
|
169 |
+
default_transforms,
|
170 |
+
load_dataset_via_hub,
|
171 |
+
)
|
172 |
+
```
|
173 |
+
|
174 |
+
#### TALI with default transforms (CLIP and Whisper) and no streaming
|
175 |
+
|
176 |
+
```python
|
177 |
+
def tali_with_transforms_no_streaming(
|
178 |
+
dataset_storage_path: pathlib.Path | str,
|
179 |
+
):
|
180 |
+
if isinstance(dataset_storage_path, str):
|
181 |
+
dataset_storage_path = pathlib.Path(dataset_storage_path)
|
182 |
+
|
183 |
+
dataset = load_dataset_via_hub(
|
184 |
+
dataset_storage_path, dataset_name="Antreas/TALI"
|
185 |
+
)["train"]
|
186 |
+
|
187 |
+
(
|
188 |
+
image_transforms,
|
189 |
+
text_transforms,
|
190 |
+
audio_transforms,
|
191 |
+
video_transforms,
|
192 |
+
) = default_transforms()
|
193 |
+
|
194 |
+
preprocessing_transform = TALIBaseTransform(
|
195 |
+
cache_dir=dataset_storage_path / "cache",
|
196 |
+
text_tokenizer=text_transforms,
|
197 |
+
image_tokenizer=image_transforms,
|
198 |
+
audio_tokenizer=audio_transforms,
|
199 |
+
video_tokenizer=video_transforms,
|
200 |
+
config=TALIBaseTransformConfig(
|
201 |
+
root_filepath=dataset_storage_path,
|
202 |
+
modality_list=[
|
203 |
+
SubModalityTypes.youtube_content_video,
|
204 |
+
SubModalityTypes.youtube_content_audio,
|
205 |
+
SubModalityTypes.youtube_random_video_frame,
|
206 |
+
SubModalityTypes.youtube_subtitle_text,
|
207 |
+
SubModalityTypes.youtube_description_text,
|
208 |
+
SubModalityTypes.youtube_title_text,
|
209 |
+
SubModalityTypes.wikipedia_caption_image,
|
210 |
+
SubModalityTypes.wikipedia_caption_text,
|
211 |
+
SubModalityTypes.wikipedia_main_body_text,
|
212 |
+
SubModalityTypes.wikipedia_title_text,
|
213 |
+
],
|
214 |
+
video_frames_format=VideoFramesFormat.PIL,
|
215 |
+
),
|
216 |
+
)
|
217 |
+
|
218 |
+
for sample in tqdm(dataset):
|
219 |
+
sample = preprocessing_transform(sample)
|
220 |
+
print(list(sample.keys()))
|
221 |
+
for key, value in sample.items():
|
222 |
+
if hasattr(value, "shape"):
|
223 |
+
print(key, value.shape)
|
224 |
+
elif isinstance(value, torch.Tensor):
|
225 |
+
print(key, value.shape)
|
226 |
+
elif hasattr(value, "__len__"):
|
227 |
+
print(key, len(value))
|
228 |
+
print(key, type(value))
|
229 |
+
|
230 |
+
break
|
231 |
+
|
232 |
+
|
233 |
+
```
|
234 |
+
|
235 |
+
#### TALI with no transforms and no streaming, returning text as text, images as PIL images, videos as a list of PIL images, and audio as a sequence of floats
|
236 |
+
|
237 |
+
```python
|
238 |
+
def tali_without_transforms_no_streaming(
|
239 |
+
dataset_storage_path: pathlib.Path | str,
|
240 |
+
):
|
241 |
+
if isinstance(dataset_storage_path, str):
|
242 |
+
dataset_storage_path = pathlib.Path(dataset_storage_path)
|
243 |
+
|
244 |
+
dataset = load_dataset_via_hub(
|
245 |
+
dataset_storage_path, dataset_name="Antreas/TALI"
|
246 |
+
)["train"]
|
247 |
+
|
248 |
+
preprocessing_transform = TALIBaseTransform(
|
249 |
+
cache_dir=dataset_storage_path / "cache",
|
250 |
+
text_tokenizer=None,
|
251 |
+
image_tokenizer=None,
|
252 |
+
audio_tokenizer=None,
|
253 |
+
video_tokenizer=None,
|
254 |
+
config=TALIBaseTransformConfig(
|
255 |
+
root_filepath=dataset_storage_path,
|
256 |
+
modality_list=[
|
257 |
+
SubModalityTypes.youtube_content_video,
|
258 |
+
SubModalityTypes.youtube_content_audio,
|
259 |
+
SubModalityTypes.youtube_random_video_frame,
|
260 |
+
SubModalityTypes.youtube_subtitle_text,
|
261 |
+
SubModalityTypes.youtube_description_text,
|
262 |
+
SubModalityTypes.youtube_title_text,
|
263 |
+
SubModalityTypes.wikipedia_caption_image,
|
264 |
+
SubModalityTypes.wikipedia_caption_text,
|
265 |
+
SubModalityTypes.wikipedia_main_body_text,
|
266 |
+
SubModalityTypes.wikipedia_title_text,
|
267 |
+
],
|
268 |
+
video_frames_format=VideoFramesFormat.PIL,
|
269 |
+
),
|
270 |
+
)
|
271 |
+
|
272 |
+
for sample in tqdm(dataset):
|
273 |
+
sample = preprocessing_transform(sample)
|
274 |
+
print(list(sample.keys()))
|
275 |
+
for key, value in sample.items():
|
276 |
+
if hasattr(value, "shape"):
|
277 |
+
print(key, value.shape)
|
278 |
+
elif isinstance(value, torch.Tensor):
|
279 |
+
print(key, value.shape)
|
280 |
+
elif hasattr(value, "__len__"):
|
281 |
+
print(key, len(value))
|
282 |
+
print(key, type(value))
|
283 |
+
|
284 |
+
break
|
285 |
+
```
|
286 |
+
|
287 |
+
#### TALI with default transforms and streaming
|
288 |
+
|
289 |
+
```python
|
290 |
+
def tali_with_transforms_streaming(
|
291 |
+
dataset_storage_path: pathlib.Path | str,
|
292 |
+
):
|
293 |
+
if isinstance(dataset_storage_path, str):
|
294 |
+
dataset_storage_path = pathlib.Path(dataset_storage_path)
|
295 |
+
|
296 |
+
dataset = load_dataset_via_hub(
|
297 |
+
dataset_storage_path, dataset_name="Antreas/TALI", streaming=True
|
298 |
+
)["train"]
|
299 |
+
|
300 |
+
(
|
301 |
+
image_transforms,
|
302 |
+
text_transforms,
|
303 |
+
audio_transforms,
|
304 |
+
video_transforms,
|
305 |
+
) = default_transforms()
|
306 |
+
|
307 |
+
preprocessing_transform = TALIBaseTransform(
|
308 |
+
cache_dir=dataset_storage_path / "cache",
|
309 |
+
text_tokenizer=text_transforms,
|
310 |
+
image_tokenizer=image_transforms,
|
311 |
+
audio_tokenizer=audio_transforms,
|
312 |
+
video_tokenizer=video_transforms,
|
313 |
+
config=TALIBaseTransformConfig(
|
314 |
+
root_filepath=dataset_storage_path,
|
315 |
+
modality_list=[
|
316 |
+
SubModalityTypes.youtube_content_video,
|
317 |
+
SubModalityTypes.youtube_content_audio,
|
318 |
+
SubModalityTypes.youtube_random_video_frame,
|
319 |
+
SubModalityTypes.youtube_subtitle_text,
|
320 |
+
SubModalityTypes.youtube_description_text,
|
321 |
+
SubModalityTypes.youtube_title_text,
|
322 |
+
SubModalityTypes.wikipedia_caption_image,
|
323 |
+
SubModalityTypes.wikipedia_caption_text,
|
324 |
+
SubModalityTypes.wikipedia_main_body_text,
|
325 |
+
SubModalityTypes.wikipedia_title_text,
|
326 |
+
],
|
327 |
+
video_frames_format=VideoFramesFormat.PIL,
|
328 |
+
),
|
329 |
+
)
|
330 |
+
|
331 |
+
for sample in tqdm(dataset):
|
332 |
+
sample = preprocessing_transform(sample)
|
333 |
+
print(list(sample.keys()))
|
334 |
+
for key, value in sample.items():
|
335 |
+
if hasattr(value, "shape"):
|
336 |
+
print(key, value.shape)
|
337 |
+
elif isinstance(value, torch.Tensor):
|
338 |
+
print(key, value.shape)
|
339 |
+
elif hasattr(value, "__len__"):
|
340 |
+
print(key, len(value))
|
341 |
+
print(key, type(value))
|
342 |
+
|
343 |
+
break
|
344 |
+
|
345 |
+
```
|
346 |
+
|
347 |
+
#### TALI with no transforms and streaming, returning text as text, images as PIL images, videos as a list of PIL images, and audio as a sequence of floats
|
348 |
+
```python
|
349 |
+
def tali_without_transforms_streaming(
|
350 |
+
dataset_storage_path: pathlib.Path | str,
|
351 |
+
):
|
352 |
+
if isinstance(dataset_storage_path, str):
|
353 |
+
dataset_storage_path = pathlib.Path(dataset_storage_path)
|
354 |
+
|
355 |
+
dataset = load_dataset_via_hub(
|
356 |
+
dataset_storage_path, dataset_name="Antreas/TALI", streaming=True
|
357 |
+
)["train"]
|
358 |
+
|
359 |
+
preprocessing_transform = TALIBaseTransform(
|
360 |
+
cache_dir=dataset_storage_path / "cache",
|
361 |
+
text_tokenizer=None,
|
362 |
+
image_tokenizer=None,
|
363 |
+
audio_tokenizer=None,
|
364 |
+
video_tokenizer=None,
|
365 |
+
config=TALIBaseTransformConfig(
|
366 |
+
root_filepath=dataset_storage_path,
|
367 |
+
modality_list=[
|
368 |
+
SubModalityTypes.youtube_content_video,
|
369 |
+
SubModalityTypes.youtube_content_audio,
|
370 |
+
SubModalityTypes.youtube_random_video_frame,
|
371 |
+
SubModalityTypes.youtube_subtitle_text,
|
372 |
+
SubModalityTypes.youtube_description_text,
|
373 |
+
SubModalityTypes.youtube_title_text,
|
374 |
+
SubModalityTypes.wikipedia_caption_image,
|
375 |
+
SubModalityTypes.wikipedia_caption_text,
|
376 |
+
SubModalityTypes.wikipedia_main_body_text,
|
377 |
+
SubModalityTypes.wikipedia_title_text,
|
378 |
+
],
|
379 |
+
video_frames_format=VideoFramesFormat.PIL,
|
380 |
+
),
|
381 |
+
)
|
382 |
+
|
383 |
+
for sample in tqdm(dataset):
|
384 |
+
sample = preprocessing_transform(sample)
|
385 |
+
print(list(sample.keys()))
|
386 |
+
for key, value in sample.items():
|
387 |
+
if hasattr(value, "shape"):
|
388 |
+
print(key, value.shape)
|
389 |
+
elif isinstance(value, torch.Tensor):
|
390 |
+
print(key, value.shape)
|
391 |
+
elif hasattr(value, "__len__"):
|
392 |
+
print(key, len(value))
|
393 |
+
print(key, type(value))
|
394 |
+
|
395 |
+
break
|
396 |
+
```
|
397 |
|
398 |
|
399 |
### Dataset Statistics
|