|
--- |
|
dataset_info: |
|
features: |
|
- name: Prompt |
|
dtype: string |
|
- name: Category |
|
dtype: string |
|
- name: Challenge |
|
dtype: string |
|
- name: Note |
|
dtype: string |
|
- name: images |
|
dtype: image |
|
- name: model_name |
|
dtype: string |
|
- name: seed |
|
dtype: int64 |
|
- name: upvotes |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 19633368.0 |
|
num_examples: 219 |
|
download_size: 19625614 |
|
dataset_size: 19633368.0 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
# Wuerstchen |
|
|
|
All images included in this dataset were voted as "Not solved" by the community in https://huggingface.co/spaces/OpenGenAI/open-parti-prompts. This means that according to the community the model did not generate an image that corresponds sufficiently enough to the prompt. |
|
|
|
The following script was used to generate the images: |
|
|
|
```py |
|
import torch |
|
from datasets import Dataset, Features |
|
from datasets import Image as ImageFeature |
|
from datasets import Value, load_dataset |
|
from diffusers import AutoPipelineForText2Image |
|
|
|
import PIL |
|
|
|
|
|
def main(): |
|
print("Loading dataset...") |
|
parti_prompts = load_dataset("nateraw/parti-prompts", split="train") |
|
|
|
print("Loading pipeline...") |
|
seed = 0 |
|
|
|
device = "cuda" |
|
generator = torch.Generator(device).manual_seed(seed) |
|
dtype = torch.float16 |
|
|
|
ckpt_id = "warp-diffusion/wuerstchen" |
|
|
|
pipeline = AutoPipelineForText2Image.from_pretrained( |
|
ckpt_id, torch_dtype=dtype |
|
).to(device) |
|
|
|
pipeline.prior_prior = torch.compile(pipeline.prior_prior, mode="reduce-overhead", fullgraph=True) |
|
pipeline.decoder = torch.compile(pipeline.decoder, mode="reduce-overhead", fullgraph=True) |
|
|
|
print("Running inference...") |
|
main_dict = {} |
|
for i in range(len(parti_prompts)): |
|
sample = parti_prompts[i] |
|
prompt = sample["Prompt"] |
|
|
|
image = pipeline( |
|
prompt=prompt, |
|
height=1024, |
|
width=1024, |
|
prior_guidance_scale=4.0, |
|
decoder_guidance_scale=0.0, |
|
generator=generator, |
|
).images[0] |
|
|
|
image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS) |
|
img_path = f"wuerstchen_{i}.png" |
|
image.save(img_path) |
|
main_dict.update( |
|
{ |
|
prompt: { |
|
"img_path": img_path, |
|
"Category": sample["Category"], |
|
"Challenge": sample["Challenge"], |
|
"Note": sample["Note"], |
|
"model_name": ckpt_id, |
|
"seed": seed, |
|
} |
|
} |
|
) |
|
|
|
def generation_fn(): |
|
for prompt in main_dict: |
|
prompt_entry = main_dict[prompt] |
|
yield { |
|
"Prompt": prompt, |
|
"Category": prompt_entry["Category"], |
|
"Challenge": prompt_entry["Challenge"], |
|
"Note": prompt_entry["Note"], |
|
"images": {"path": prompt_entry["img_path"]}, |
|
"model_name": prompt_entry["model_name"], |
|
"seed": prompt_entry["seed"], |
|
} |
|
|
|
print("Preparing HF dataset...") |
|
ds = Dataset.from_generator( |
|
generation_fn, |
|
features=Features( |
|
Prompt=Value("string"), |
|
Category=Value("string"), |
|
Challenge=Value("string"), |
|
Note=Value("string"), |
|
images=ImageFeature(), |
|
model_name=Value("string"), |
|
seed=Value("int64"), |
|
), |
|
) |
|
ds_id = "diffusers-parti-prompts/wuerstchen" |
|
ds.push_to_hub(ds_id) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |