albertvillanova HF staff commited on
Commit
3151edc
1 Parent(s): c5069db

Fix NonMatchingChecksumError in adv_glue dataset (#4939)

Browse files

Update metadata JSON of adv_glue dataset

Commit from https://github.com/huggingface/datasets/commit/3666461b271b2789b429e8b15c1f13d1addce46a

Files changed (1) hide show
  1. dataset_infos.json +1 -1
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"adv_sst2": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_sst2", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 15407, "num_examples": 148, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": null}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 15407, "size_in_bytes": 56069}, "adv_qqp": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"question1": {"dtype": "string", "id": null, "_type": "Value"}, "question2": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_qqp", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 9294, "num_examples": 78, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": null}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 9294, "size_in_bytes": 49956}, "adv_mnli": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_mnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 22760, "num_examples": 121, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": null}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 22760, "size_in_bytes": 63422}, "adv_mnli_mismatched": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_mnli_mismatched", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 39678, "num_examples": 162, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": null}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 39678, "size_in_bytes": 80340}, "adv_qnli": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_qnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 33685, "num_examples": 148, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": null}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 33685, "size_in_bytes": 74347}, "adv_rte": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_rte", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 25342, "num_examples": 81, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": null}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 25342, "size_in_bytes": 66004}}
 
1
+ {"adv_sst2": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_sst2", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 16595, "num_examples": 148, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 16595, "size_in_bytes": 57257}, "adv_qqp": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"question1": {"dtype": "string", "id": null, "_type": "Value"}, "question2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_duplicate", "duplicate"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_qqp", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 9926, "num_examples": 78, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 9926, "size_in_bytes": 50588}, "adv_mnli": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_mnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 23736, "num_examples": 121, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 23736, "size_in_bytes": 64398}, "adv_mnli_mismatched": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_mnli_mismatched", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 40982, "num_examples": 162, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 40982, "size_in_bytes": 81644}, "adv_qnli": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_qnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 34877, "num_examples": 148, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 34877, "size_in_bytes": 75539}, "adv_rte": {"description": "Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark\nthat focuses on the adversarial robustness evaluation of language models. It covers five\nnatural language understanding tasks from the famous GLUE tasks and is an adversarial\nversion of GLUE benchmark.\n", "citation": "@article{Wang2021AdversarialGA,\n title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},\n author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li},\n journal={ArXiv},\n year={2021},\n volume={abs/2111.02840}\n}\n", "homepage": "https://adversarialglue.github.io/", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "adv_glue", "config_name": "adv_rte", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 25998, "num_examples": 81, "dataset_name": "adv_glue"}}, "download_checksums": {"https://adversarialglue.github.io/dataset/dev.zip": {"num_bytes": 40662, "checksum": "efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9"}}, "download_size": 40662, "post_processing_size": null, "dataset_size": 25998, "size_in_bytes": 66660}}