Datasets:
Create script-generation.py
Browse files- script-generation.py +304 -0
script-generation.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
_VERSION = "1.2.1"
|
7 |
+
|
8 |
+
_CITATION = f"""
|
9 |
+
@dataset{{unsplash-lite-dataset,
|
10 |
+
title = {{Unsplash Lite Dataset {_VERSION}}},
|
11 |
+
url = {{\\url{{https://github.com/unsplash/datasets}}}},
|
12 |
+
author = {{Unsplash}},
|
13 |
+
year = {{2023}},
|
14 |
+
month = {{May}},
|
15 |
+
day = {{02}},
|
16 |
+
}}
|
17 |
+
"""
|
18 |
+
|
19 |
+
_DESCRIPTION = """
|
20 |
+
This dataset, available for commercial and noncommercial usage,
|
21 |
+
contains 25k nature-themed Unsplash photos, 25k keywords, and 1M searches.
|
22 |
+
"""
|
23 |
+
|
24 |
+
_HOMEPAGE = f"https://github.com/unsplash/datasets/tree/{_VERSION}"
|
25 |
+
|
26 |
+
_URL = f"https://unsplash.com/data/lite/{_VERSION}"
|
27 |
+
|
28 |
+
_LICENSE = "Unsplash Dataset License"
|
29 |
+
|
30 |
+
_TSV = (
|
31 |
+
"collections",
|
32 |
+
"colors",
|
33 |
+
"conversions",
|
34 |
+
"keywords",
|
35 |
+
"photos",
|
36 |
+
)
|
37 |
+
|
38 |
+
_FEATURES = datasets.Features(
|
39 |
+
{
|
40 |
+
"photo": {
|
41 |
+
"id": datasets.Value("string"),
|
42 |
+
"url": datasets.Value("string"),
|
43 |
+
"image_url": datasets.Value("string"),
|
44 |
+
"submitted_at": datasets.Value("string"),
|
45 |
+
"featured": datasets.Value("bool"),
|
46 |
+
"width": datasets.Value("uint16"),
|
47 |
+
"height": datasets.Value("uint16"),
|
48 |
+
"aspect_ratio": datasets.Value("float32"),
|
49 |
+
"description": datasets.Value("string"),
|
50 |
+
"blur_hash": datasets.Value("string"),
|
51 |
+
},
|
52 |
+
"photographer": {
|
53 |
+
"username": datasets.Value("string"),
|
54 |
+
"first_name": datasets.Value("string"),
|
55 |
+
"last_name": datasets.Value("string"),
|
56 |
+
},
|
57 |
+
"exif": {
|
58 |
+
"camera_make": datasets.Value("string"),
|
59 |
+
"camera_model": datasets.Value("string"),
|
60 |
+
"iso": datasets.Value("string"),
|
61 |
+
"aperture_value": datasets.Value("string"),
|
62 |
+
"focal_length": datasets.Value("string"),
|
63 |
+
"exposure_time": datasets.Value("string"),
|
64 |
+
},
|
65 |
+
"location": {
|
66 |
+
"name": datasets.Value("string"),
|
67 |
+
"latitude": datasets.Value("float32"),
|
68 |
+
"longitude": datasets.Value("float32"),
|
69 |
+
"country": datasets.Value("string"),
|
70 |
+
"city": datasets.Value("string"),
|
71 |
+
},
|
72 |
+
"stats": {
|
73 |
+
"views": datasets.Value("uint32"),
|
74 |
+
"downloads": datasets.Value("uint32"),
|
75 |
+
},
|
76 |
+
"ai": {
|
77 |
+
"description": datasets.Value("string"),
|
78 |
+
"primary_landmark_name": datasets.Value("string"),
|
79 |
+
"primary_landmark_latitude": datasets.Value("string"),
|
80 |
+
"primary_landmark_longitude": datasets.Value("string"),
|
81 |
+
"primary_landmark_confidence": datasets.Value("string"),
|
82 |
+
},
|
83 |
+
"keywords": [
|
84 |
+
{
|
85 |
+
"keyword": datasets.Value("string"),
|
86 |
+
"ai_service_1_confidence": datasets.Value("string"),
|
87 |
+
"ai_service_2_confidence": datasets.Value("string"),
|
88 |
+
"suggested_by_user": datasets.Value("bool"),
|
89 |
+
},
|
90 |
+
],
|
91 |
+
"collections": [
|
92 |
+
{
|
93 |
+
"collection_id": datasets.Value("string"),
|
94 |
+
"collection_title": datasets.Value("string"),
|
95 |
+
"photo_collected_at": datasets.Value("string"),
|
96 |
+
},
|
97 |
+
],
|
98 |
+
"conversions": [
|
99 |
+
{
|
100 |
+
"converted_at": datasets.Value("string"),
|
101 |
+
"conversion_type": datasets.Value("string"),
|
102 |
+
"keyword": datasets.Value("string"),
|
103 |
+
"anonymous_user_id": datasets.Value("string"),
|
104 |
+
"conversion_country": datasets.Value("string"),
|
105 |
+
},
|
106 |
+
],
|
107 |
+
"colors": [
|
108 |
+
{
|
109 |
+
"hex": datasets.Value("string"),
|
110 |
+
"red": datasets.Value("uint8"),
|
111 |
+
"green": datasets.Value("uint8"),
|
112 |
+
"blue": datasets.Value("uint8"),
|
113 |
+
"keyword": datasets.Value("string"),
|
114 |
+
"ai_coverage": datasets.Value("float32"),
|
115 |
+
"ai_score": datasets.Value("float32"),
|
116 |
+
},
|
117 |
+
],
|
118 |
+
},
|
119 |
+
)
|
120 |
+
|
121 |
+
def df_withprefix(df, prefix, exclude=None):
|
122 |
+
columns = [col for col in df.columns if col.startswith(prefix)]
|
123 |
+
if exclude is not None:
|
124 |
+
columns = [col for col in columns if exclude not in col]
|
125 |
+
if "photo_id" not in columns:
|
126 |
+
columns.append("photo_id")
|
127 |
+
|
128 |
+
return df[columns].rename(columns=lambda col: col.removeprefix(prefix))
|
129 |
+
|
130 |
+
class Unsplash(datasets.GeneratorBasedBuilder):
|
131 |
+
"""The Unsplash Lite dataset."""
|
132 |
+
|
133 |
+
DEFAULT_WRITER_BATCH_SIZE = 100
|
134 |
+
|
135 |
+
def _info(self):
|
136 |
+
return datasets.DatasetInfo(
|
137 |
+
features=_FEATURES,
|
138 |
+
supervised_keys=None,
|
139 |
+
description=_DESCRIPTION,
|
140 |
+
homepage=_HOMEPAGE,
|
141 |
+
license=_LICENSE,
|
142 |
+
version=_VERSION,
|
143 |
+
citation=_CITATION,
|
144 |
+
)
|
145 |
+
|
146 |
+
def _split_generators(self, dl_manager):
|
147 |
+
# raise NotImplementedError()
|
148 |
+
|
149 |
+
archive_path = Path(dl_manager.download_and_extract(_URL))
|
150 |
+
|
151 |
+
# read all tsv files
|
152 |
+
dataframes = {}
|
153 |
+
for doc in _TSV:
|
154 |
+
# read all tsv files for this document type
|
155 |
+
frames = []
|
156 |
+
for filename in archive_path.glob(f"{doc}.tsv*"):
|
157 |
+
frame = pd.read_csv(filename, sep="\t", header=0)
|
158 |
+
frames.append(frame)
|
159 |
+
|
160 |
+
# concatenate all subframes into one
|
161 |
+
concat_frames = pd.concat(frames, axis=0, ignore_index=True)
|
162 |
+
|
163 |
+
if doc != "photos":
|
164 |
+
dataframes[doc] = concat_frames
|
165 |
+
else:
|
166 |
+
# split "photos" into "photo", "photographer", "exif", "location", "stats", "ai"
|
167 |
+
dataframes["photo"] = df_withprefix(concat_frames, "photo_", "location")
|
168 |
+
dataframes["photo"]["blur_hash"] = concat_frames["blur_hash"]
|
169 |
+
dataframes["photographer"] = df_withprefix(concat_frames, "photographer_")
|
170 |
+
dataframes["exif"] = df_withprefix(concat_frames, "exif_")
|
171 |
+
dataframes["location"] = df_withprefix(concat_frames, "photo_location_")
|
172 |
+
dataframes["stats"] = df_withprefix(concat_frames, "stats_")
|
173 |
+
dataframes["ai"] = df_withprefix(concat_frames, "ai_")
|
174 |
+
|
175 |
+
# preprocess some columns
|
176 |
+
dataframes["photo"]["featured"] = dataframes["photo"]["featured"].map({"t": True, "f": False})
|
177 |
+
dataframes["keywords"]["suggested_by_user"] = dataframes["keywords"]["suggested_by_user"].map({"t": True, "f": False})
|
178 |
+
|
179 |
+
# cast columns to appropriate dtypes
|
180 |
+
for doc in dataframes.keys():
|
181 |
+
if doc in _TSV:
|
182 |
+
features = _FEATURES[doc][0]
|
183 |
+
else:
|
184 |
+
features = _FEATURES[doc]
|
185 |
+
|
186 |
+
dataframes[doc].astype({
|
187 |
+
key: features[key].dtype
|
188 |
+
for key in features.keys()
|
189 |
+
})
|
190 |
+
|
191 |
+
# groupby "photo_id" if not "photo" dataframe
|
192 |
+
for key in _TSV[:-1]:
|
193 |
+
dataframes[key] = dataframes[key].groupby("photo_id")
|
194 |
+
|
195 |
+
return [
|
196 |
+
datasets.SplitGenerator(
|
197 |
+
name=datasets.Split.TRAIN,
|
198 |
+
gen_kwargs={"dataframes": dataframes},
|
199 |
+
),
|
200 |
+
]
|
201 |
+
|
202 |
+
def _generate_examples(self, dataframes):
|
203 |
+
# iterate over rows of "photos" dataframe
|
204 |
+
photo_id_frames = {}
|
205 |
+
for index, row in dataframes["photo"].iterrows():
|
206 |
+
photo_id = row["id"]
|
207 |
+
photographer = dataframes["photographer"].iloc[index]
|
208 |
+
exif = dataframes["exif"].iloc[index]
|
209 |
+
location = dataframes["location"].iloc[index]
|
210 |
+
stats = dataframes["stats"].iloc[index]
|
211 |
+
ai = dataframes["ai"].iloc[index]
|
212 |
+
|
213 |
+
for key in _TSV[:-1]:
|
214 |
+
try:
|
215 |
+
photo_id_frames[key] = dataframes[key].get_group(photo_id)
|
216 |
+
except:
|
217 |
+
photo_id_frames[key] = pd.DataFrame()
|
218 |
+
|
219 |
+
data = {
|
220 |
+
"photo": {
|
221 |
+
"id": photo_id,
|
222 |
+
"url": row["url"],
|
223 |
+
"image_url": row["image_url"],
|
224 |
+
"submitted_at": row["submitted_at"],
|
225 |
+
"featured": row["featured"],
|
226 |
+
"width": row["width"],
|
227 |
+
"height": row["height"],
|
228 |
+
"aspect_ratio": row["aspect_ratio"],
|
229 |
+
"description": row["description"],
|
230 |
+
"blur_hash": row["blur_hash"],
|
231 |
+
},
|
232 |
+
"photographer": {
|
233 |
+
"username": photographer["username"],
|
234 |
+
"first_name": photographer["first_name"],
|
235 |
+
"last_name": photographer["last_name"],
|
236 |
+
},
|
237 |
+
"exif": {
|
238 |
+
"camera_make": exif["camera_make"],
|
239 |
+
"camera_model": exif["camera_model"],
|
240 |
+
"iso": exif["iso"],
|
241 |
+
"aperture_value": exif["aperture_value"],
|
242 |
+
"focal_length": exif["focal_length"],
|
243 |
+
"exposure_time": exif["exposure_time"],
|
244 |
+
},
|
245 |
+
"location": {
|
246 |
+
"name": location["name"],
|
247 |
+
"latitude": location["latitude"],
|
248 |
+
"longitude": location["longitude"],
|
249 |
+
"country": location["country"],
|
250 |
+
"city": location["city"],
|
251 |
+
},
|
252 |
+
"stats": {
|
253 |
+
"views": stats["views"],
|
254 |
+
"downloads": stats["downloads"],
|
255 |
+
},
|
256 |
+
"ai": {
|
257 |
+
"description": ai["description"],
|
258 |
+
"primary_landmark_name": ai["primary_landmark_name"],
|
259 |
+
"primary_landmark_latitude": ai["primary_landmark_latitude"],
|
260 |
+
"primary_landmark_longitude": ai["primary_landmark_longitude"],
|
261 |
+
"primary_landmark_confidence": ai["primary_landmark_confidence"],
|
262 |
+
},
|
263 |
+
"keywords": [
|
264 |
+
{
|
265 |
+
"keyword": keyword["keyword"],
|
266 |
+
"ai_service_1_confidence": keyword["ai_service_1_confidence"],
|
267 |
+
"ai_service_2_confidence": keyword["ai_service_2_confidence"],
|
268 |
+
"suggested_by_user": keyword["suggested_by_user"],
|
269 |
+
}
|
270 |
+
for _, keyword in photo_id_frames["keywords"].iterrows()
|
271 |
+
],
|
272 |
+
"collections": [
|
273 |
+
{
|
274 |
+
"collection_id": collection["collection_id"],
|
275 |
+
"collection_title": str(collection["collection_title"]),
|
276 |
+
"photo_collected_at": collection["photo_collected_at"],
|
277 |
+
}
|
278 |
+
for _, collection in photo_id_frames["collections"].iterrows()
|
279 |
+
],
|
280 |
+
"conversions": [
|
281 |
+
{
|
282 |
+
"converted_at": conversion["converted_at"],
|
283 |
+
"conversion_type": conversion["conversion_type"],
|
284 |
+
"keyword": conversion["keyword"],
|
285 |
+
"anonymous_user_id": conversion["anonymous_user_id"],
|
286 |
+
"conversion_country": str(conversion["conversion_country"]),
|
287 |
+
}
|
288 |
+
for _, conversion in photo_id_frames["conversions"].iterrows()
|
289 |
+
],
|
290 |
+
"colors": [
|
291 |
+
{
|
292 |
+
"hex": color["hex"],
|
293 |
+
"red": color["red"],
|
294 |
+
"green": color["green"],
|
295 |
+
"blue": color["blue"],
|
296 |
+
"keyword": color["keyword"],
|
297 |
+
"ai_coverage": color["ai_coverage"],
|
298 |
+
"ai_score": color["ai_score"],
|
299 |
+
}
|
300 |
+
for _, color in photo_id_frames["colors"].iterrows()
|
301 |
+
],
|
302 |
+
}
|
303 |
+
|
304 |
+
yield index, data
|