|
--- |
|
language: |
|
- fr |
|
tags: |
|
- classification |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: "tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les 'ont dit'..." |
|
--- |
|
# camembert-fr-covid-tweet-sentiment-classification |
|
This model is a fine-tune checkpoint of [Yanzhu/bertweetfr-base](https://huggingface.co/Yanzhu/bertweetfr-base), fine-tuned on SST-2. |
|
This model reaches an accuracy of 71% on the dev set. |
|
In this dataset, given a tweet, the goal was to infer the underlying topic of the tweet by choosing from four topics classes: |
|
- 0 : negatif |
|
- 1 : neutre |
|
- 2 : positif |
|
|
|
|
|
# Pipelining the Model |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline |
|
tokenizer = AutoTokenizer.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification") |
|
model = AutoModelForSequenceClassification.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification") |
|
nlp_topic_classif = transformers.pipeline('topics-classification', model = model, tokenizer = tokenizer) |
|
nlp_topic_classif("tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les '' ont dit ''...") |
|
# Output: [{'label': 'opinions', 'score': 0.831] |
|
``` |