metadata
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: t5-small-samsum-ft-experiment_2
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 0.0982
t5-small-samsum-ft-experiment_2
This model is a fine-tuned version of google-t5/t5-small on the samsum dataset. It achieves the following results on the evaluation set:
- Loss: 8.2125
- Rouge1: 0.0982
- Rouge2: 0.0087
- Rougel: 0.0982
- Rougelsum: 0.0972
- Gen Len: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 1 | 8.2709 | 0.0982 | 0.0087 | 0.0982 | 0.0972 | 19.0 |
No log | 2.0 | 2 | 8.2709 | 0.0982 | 0.0087 | 0.0982 | 0.0972 | 19.0 |
No log | 3.0 | 3 | 8.2125 | 0.0982 | 0.0087 | 0.0982 | 0.0972 | 19.0 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1