darklord25
commited on
Initial Commit
Browse files- README.md +7 -3
- dataloader/CIFAR_FS copy.py +470 -0
- dataloader/CIFAR_FS.py +488 -0
- dataloader/FC100.py +453 -0
- dataloader/__pycache__/chest.cpython-36.pyc +0 -0
- dataloader/__pycache__/chest.cpython-37.pyc +0 -0
- dataloader/__pycache__/chest.cpython-38.pyc +0 -0
- dataloader/chest.py +512 -0
- dataloader/chest1.py +517 -0
- dataloader/mini_imagenet.py +454 -0
- dataloader/simple_datamanager.py +43 -0
- dataloader/tiered_imagenet.py +512 -0
- norm.py +32 -0
- requirements.txt +10 -0
- test.py +345 -0
- train.py +458 -0
- utils.py +56 -0
README.md
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
# FSL_Subspace
|
2 |
+
|
3 |
+
Codes for work on few-shot learning on chest x-ray images ([paper](https://openreview.net/pdf?id=AF97JZpgPe)).
|
4 |
+
|
5 |
+
Check our [website](https://few-shot-learning-on-chest-x-ray.github.io/Project-Page/) for a brief summary of the paper.
|
6 |
+
|
7 |
+
tl;dr : We propose a computationally efficient few-shot learning method for diagnosing chest X-rays, which uses an ensemble of random subspaces and a novel loss function to create well-separated clusters of training data in discriminative subspaces. Our method is almost 1.8 times faster than the popular t-SVD method for subspace decomposition and yields promising results on large-scale CXR datasets.
|
dataloader/CIFAR_FS copy.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataloader of Gidaris & Komodakis, CVPR 2018
|
2 |
+
# Adapted from:
|
3 |
+
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/dataloader.py
|
4 |
+
from __future__ import print_function
|
5 |
+
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
import numpy as np
|
9 |
+
import random
|
10 |
+
import pickle
|
11 |
+
import json
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.data as data
|
16 |
+
import torchvision
|
17 |
+
import torchvision.datasets as datasets
|
18 |
+
import torchvision.transforms as transforms
|
19 |
+
import torchnet as tnt
|
20 |
+
|
21 |
+
import h5py
|
22 |
+
|
23 |
+
import cv2
|
24 |
+
from PIL import Image
|
25 |
+
from PIL import ImageEnhance
|
26 |
+
|
27 |
+
from pdb import set_trace as breakpoint
|
28 |
+
|
29 |
+
from torchvision.transforms.transforms import ToPILImage
|
30 |
+
|
31 |
+
|
32 |
+
# Set the appropriate paths of the datasets here.
|
33 |
+
_CIFAR_FS_DATASET_DIR = './cifar/CIFAR-FS/'
|
34 |
+
|
35 |
+
|
36 |
+
def buildLabelIndex(labels):
|
37 |
+
label2inds = {}
|
38 |
+
for idx, label in enumerate(labels):
|
39 |
+
if label not in label2inds:
|
40 |
+
label2inds[label] = []
|
41 |
+
label2inds[label].append(idx)
|
42 |
+
|
43 |
+
return label2inds
|
44 |
+
|
45 |
+
|
46 |
+
def load_data(file):
|
47 |
+
try:
|
48 |
+
with open(file, 'rb') as fo:
|
49 |
+
data = pickle.load(fo)
|
50 |
+
return data
|
51 |
+
except:
|
52 |
+
with open(file, 'rb') as f:
|
53 |
+
u = pickle._Unpickler(f)
|
54 |
+
u.encoding = 'latin1'
|
55 |
+
data = u.load()
|
56 |
+
return data
|
57 |
+
|
58 |
+
|
59 |
+
class CIFAR_FS(data.Dataset):
|
60 |
+
def __init__(self, phase='train', do_not_use_random_transf=False):
|
61 |
+
|
62 |
+
assert(phase == 'train' or phase == 'val' or phase ==
|
63 |
+
'test' or phase == 'trainval')
|
64 |
+
self.phase = phase
|
65 |
+
self.name = 'CIFAR_FS_' + phase
|
66 |
+
|
67 |
+
print('Loading CIFAR-FS dataset - phase {0}'.format(phase))
|
68 |
+
file_train_categories_train_phase = os.path.join(
|
69 |
+
_CIFAR_FS_DATASET_DIR,
|
70 |
+
'CIFAR_FS_train.pickle')
|
71 |
+
file_train_categories_val_phase = os.path.join(
|
72 |
+
_CIFAR_FS_DATASET_DIR,
|
73 |
+
'CIFAR_FS_train.pickle')
|
74 |
+
file_train_categories_test_phase = os.path.join(
|
75 |
+
_CIFAR_FS_DATASET_DIR,
|
76 |
+
'CIFAR_FS_train.pickle')
|
77 |
+
file_val_categories_val_phase = os.path.join(
|
78 |
+
_CIFAR_FS_DATASET_DIR,
|
79 |
+
'CIFAR_FS_val.pickle')
|
80 |
+
file_test_categories_test_phase = os.path.join(
|
81 |
+
_CIFAR_FS_DATASET_DIR,
|
82 |
+
'CIFAR_FS_test.pickle')
|
83 |
+
|
84 |
+
if self.phase == 'train':
|
85 |
+
# During training phase we only load the training phase images
|
86 |
+
# of the training categories (aka base categories).
|
87 |
+
data_train = load_data(file_train_categories_train_phase)
|
88 |
+
self.data = data_train['data']
|
89 |
+
self.labels = data_train['labels']
|
90 |
+
|
91 |
+
self.label2ind = buildLabelIndex(self.labels)
|
92 |
+
self.labelIds = sorted(self.label2ind.keys())
|
93 |
+
self.num_cats = len(self.labelIds)
|
94 |
+
self.labelIds_base = self.labelIds
|
95 |
+
self.num_cats_base = len(self.labelIds_base)
|
96 |
+
elif self.phase == 'trainval':
|
97 |
+
# During training phase we only load the training phase images
|
98 |
+
# of the training categories (aka base categories).
|
99 |
+
data_train = load_data(file_train_categories_train_phase)
|
100 |
+
self.data = data_train['data']
|
101 |
+
self.labels = data_train['labels']
|
102 |
+
data_base = load_data(file_train_categories_val_phase)
|
103 |
+
data_novel = load_data(file_val_categories_val_phase)
|
104 |
+
self.data = np.concatenate(
|
105 |
+
[self.data, data_novel['data']], axis=0)
|
106 |
+
self.data = np.concatenate(
|
107 |
+
[self.data, data_base['data']], axis=0)
|
108 |
+
|
109 |
+
self.labels = np.concatenate(
|
110 |
+
[self.labels, data_novel['labels']], axis=0)
|
111 |
+
self.labels = np.concatenate(
|
112 |
+
[self.labels, data_base['labels']], axis=0)
|
113 |
+
|
114 |
+
self.label2ind = buildLabelIndex(self.labels)
|
115 |
+
self.labelIds = sorted(self.label2ind.keys())
|
116 |
+
self.num_cats = len(self.labelIds)
|
117 |
+
self.labelIds_base = self.labelIds
|
118 |
+
self.num_cats_base = len(self.labelIds_base)
|
119 |
+
elif self.phase == 'val' or self.phase == 'test':
|
120 |
+
if self.phase == 'test':
|
121 |
+
# load data that will be used for evaluating the recognition
|
122 |
+
# accuracy of the base categories.
|
123 |
+
data_base = load_data(file_train_categories_test_phase)
|
124 |
+
# load data that will be use for evaluating the few-shot recogniton
|
125 |
+
# accuracy on the novel categories.
|
126 |
+
data_novel = load_data(file_test_categories_test_phase)
|
127 |
+
else: # phase=='val'
|
128 |
+
# load data that will be used for evaluating the recognition
|
129 |
+
# accuracy of the base categories.
|
130 |
+
data_base = load_data(file_train_categories_val_phase)
|
131 |
+
# load data that will be use for evaluating the few-shot recogniton
|
132 |
+
# accuracy on the novel categories.
|
133 |
+
data_novel = load_data(file_val_categories_val_phase)
|
134 |
+
|
135 |
+
self.data = np.concatenate(
|
136 |
+
[data_base['data'], data_novel['data']], axis=0)
|
137 |
+
self.labels = data_base['labels'] + data_novel['labels']
|
138 |
+
|
139 |
+
self.label2ind = buildLabelIndex(self.labels)
|
140 |
+
self.labelIds = sorted(self.label2ind.keys())
|
141 |
+
self.num_cats = len(self.labelIds)
|
142 |
+
|
143 |
+
self.labelIds_base = buildLabelIndex(data_base['labels']).keys()
|
144 |
+
self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys()
|
145 |
+
self.num_cats_base = len(self.labelIds_base)
|
146 |
+
self.num_cats_novel = len(self.labelIds_novel)
|
147 |
+
intersection = set(self.labelIds_base) & set(self.labelIds_novel)
|
148 |
+
assert(len(intersection) == 0)
|
149 |
+
else:
|
150 |
+
raise ValueError('Not valid phase {0}'.format(self.phase))
|
151 |
+
|
152 |
+
mean_pix = [x/255.0 for x in [129.37731888,
|
153 |
+
124.10583864, 112.47758569]]
|
154 |
+
|
155 |
+
std_pix = [x/255.0 for x in [68.20947949, 65.43124043, 70.45866994]]
|
156 |
+
|
157 |
+
normalize = transforms.Normalize(mean=mean_pix, std=std_pix)
|
158 |
+
|
159 |
+
if (self.phase == 'test' or self.phase == 'val') or (do_not_use_random_transf == True):
|
160 |
+
|
161 |
+
self.transform = transforms.Compose([
|
162 |
+
transforms.ToPILImage(),
|
163 |
+
# lambda x: np.asarray(x),
|
164 |
+
transforms.ToTensor(),
|
165 |
+
normalize
|
166 |
+
])
|
167 |
+
else:
|
168 |
+
self.transform = transforms.Compose([
|
169 |
+
transforms.ToPILImage(),
|
170 |
+
transforms.RandomCrop(32, padding=4),
|
171 |
+
transforms.ColorJitter(
|
172 |
+
brightness=0.4, contrast=0.4, saturation=0.4),
|
173 |
+
transforms.RandomHorizontalFlip(),
|
174 |
+
transforms.ToTensor(),
|
175 |
+
# lambda x: np.asarray(x),
|
176 |
+
normalize
|
177 |
+
])
|
178 |
+
|
179 |
+
def __getitem__(self, index):
|
180 |
+
img, label = self.data[index], self.labels[index]
|
181 |
+
# doing this so that it is consistent with all other datasets
|
182 |
+
# to return a PIL Image
|
183 |
+
|
184 |
+
# img = Image.fromarray(img)
|
185 |
+
if self.transform is not None:
|
186 |
+
img = self.transform(img)
|
187 |
+
return img, label
|
188 |
+
|
189 |
+
def __len__(self):
|
190 |
+
return len(self.data)
|
191 |
+
|
192 |
+
|
193 |
+
class FewShotDataloader():
|
194 |
+
def __init__(self,
|
195 |
+
dataset,
|
196 |
+
nKnovel=5, # number of novel categories.
|
197 |
+
nKbase=-1, # number of base categories.
|
198 |
+
# number of training examples per novel category.
|
199 |
+
nExemplars=1,
|
200 |
+
# number of test examples for all the novel categories.
|
201 |
+
nTestNovel=15*5,
|
202 |
+
# number of test examples for all the base categories.
|
203 |
+
nTestBase=15*5,
|
204 |
+
batch_size=1, # number of training episodes per batch.
|
205 |
+
num_workers=4,
|
206 |
+
epoch_size=2000, # number of batches per epoch.
|
207 |
+
):
|
208 |
+
|
209 |
+
self.dataset = dataset
|
210 |
+
self.phase = self.dataset.phase
|
211 |
+
max_possible_nKnovel = (self.dataset.num_cats_base if self.phase == 'train' or self.phase == 'trainval'
|
212 |
+
else self.dataset.num_cats_novel)
|
213 |
+
assert(nKnovel >= 0 and nKnovel < max_possible_nKnovel)
|
214 |
+
self.nKnovel = nKnovel
|
215 |
+
|
216 |
+
max_possible_nKbase = self.dataset.num_cats_base
|
217 |
+
nKbase = nKbase if nKbase >= 0 else max_possible_nKbase
|
218 |
+
if (self.phase == 'train' or self.phase == 'trainval') and nKbase > 0:
|
219 |
+
nKbase -= self.nKnovel
|
220 |
+
max_possible_nKbase -= self.nKnovel
|
221 |
+
|
222 |
+
assert(nKbase >= 0 and nKbase <= max_possible_nKbase)
|
223 |
+
self.nKbase = nKbase
|
224 |
+
|
225 |
+
self.nExemplars = nExemplars
|
226 |
+
self.nTestNovel = nTestNovel
|
227 |
+
self.nTestBase = nTestBase
|
228 |
+
self.batch_size = batch_size
|
229 |
+
self.epoch_size = epoch_size
|
230 |
+
self.num_workers = num_workers
|
231 |
+
self.is_eval_mode = (self.phase == 'test') or (self.phase == 'val')
|
232 |
+
|
233 |
+
def sampleImageIdsFrom(self, cat_id, sample_size=1):
|
234 |
+
"""
|
235 |
+
Samples `sample_size` number of unique image ids picked from the
|
236 |
+
category `cat_id` (i.e., self.dataset.label2ind[cat_id]).
|
237 |
+
|
238 |
+
Args:
|
239 |
+
cat_id: a scalar with the id of the category from which images will
|
240 |
+
be sampled.
|
241 |
+
sample_size: number of images that will be sampled.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
image_ids: a list of length `sample_size` with unique image ids.
|
245 |
+
"""
|
246 |
+
assert(cat_id in self.dataset.label2ind)
|
247 |
+
assert(len(self.dataset.label2ind[cat_id]) >= sample_size)
|
248 |
+
# Note: random.sample samples elements without replacement.
|
249 |
+
# seed = random.randint(1,10000000)
|
250 |
+
# random.seed(seed)
|
251 |
+
return random.sample(self.dataset.label2ind[cat_id], sample_size)
|
252 |
+
|
253 |
+
def sampleCategories(self, cat_set, sample_size=1):
|
254 |
+
"""
|
255 |
+
Samples `sample_size` number of unique categories picked from the
|
256 |
+
`cat_set` set of categories. `cat_set` can be either 'base' or 'novel'.
|
257 |
+
|
258 |
+
Args:
|
259 |
+
cat_set: string that specifies the set of categories from which
|
260 |
+
categories will be sampled.
|
261 |
+
sample_size: number of categories that will be sampled.
|
262 |
+
|
263 |
+
Returns:
|
264 |
+
cat_ids: a list of length `sample_size` with unique category ids.
|
265 |
+
"""
|
266 |
+
if cat_set == 'base':
|
267 |
+
labelIds = self.dataset.labelIds_base
|
268 |
+
elif cat_set == 'novel':
|
269 |
+
labelIds = self.dataset.labelIds_novel
|
270 |
+
else:
|
271 |
+
raise ValueError('Not recognized category set {}'.format(cat_set))
|
272 |
+
|
273 |
+
assert(len(labelIds) >= sample_size)
|
274 |
+
# return sample_size unique categories chosen from labelIds set of
|
275 |
+
# categories (that can be either self.labelIds_base or self.labelIds_novel)
|
276 |
+
# Note: random.sample samples elements without replacement.
|
277 |
+
return random.sample(labelIds, sample_size)
|
278 |
+
|
279 |
+
def sample_base_and_novel_categories(self, nKbase, nKnovel):
|
280 |
+
"""
|
281 |
+
Samples `nKbase` number of base categories and `nKnovel` number of novel
|
282 |
+
categories.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
nKbase: number of base categories
|
286 |
+
nKnovel: number of novel categories
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
Kbase: a list of length 'nKbase' with the ids of the sampled base
|
290 |
+
categories.
|
291 |
+
Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel
|
292 |
+
categories.
|
293 |
+
"""
|
294 |
+
if self.is_eval_mode:
|
295 |
+
assert(nKnovel <= self.dataset.num_cats_novel)
|
296 |
+
# sample from the set of base categories 'nKbase' number of base
|
297 |
+
# categories.
|
298 |
+
Kbase = sorted(self.sampleCategories('base', nKbase))
|
299 |
+
# sample from the set of novel categories 'nKnovel' number of novel
|
300 |
+
# categories.
|
301 |
+
Knovel = sorted(self.sampleCategories('novel', nKnovel))
|
302 |
+
else:
|
303 |
+
# sample from the set of base categories 'nKnovel' + 'nKbase' number
|
304 |
+
# of categories.
|
305 |
+
cats_ids = self.sampleCategories('base', nKnovel+nKbase)
|
306 |
+
assert(len(cats_ids) == (nKnovel+nKbase))
|
307 |
+
# Randomly pick 'nKnovel' number of fake novel categories and keep
|
308 |
+
# the rest as base categories.
|
309 |
+
random.shuffle(cats_ids)
|
310 |
+
Knovel = sorted(cats_ids[:nKnovel])
|
311 |
+
Kbase = sorted(cats_ids[nKnovel:])
|
312 |
+
|
313 |
+
return Kbase, Knovel
|
314 |
+
|
315 |
+
def sample_test_examples_for_base_categories(self, Kbase, nTestBase):
|
316 |
+
"""
|
317 |
+
Sample `nTestBase` number of images from the `Kbase` categories.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
Kbase: a list of length `nKbase` with the ids of the categories from
|
321 |
+
where the images will be sampled.
|
322 |
+
nTestBase: the total number of images that will be sampled.
|
323 |
+
|
324 |
+
Returns:
|
325 |
+
Tbase: a list of length `nTestBase` with 2-element tuples. The 1st
|
326 |
+
element of each tuple is the image id that was sampled and the
|
327 |
+
2nd elemend is its category label (which is in the range
|
328 |
+
[0, len(Kbase)-1]).
|
329 |
+
"""
|
330 |
+
Tbase = []
|
331 |
+
if len(Kbase) > 0:
|
332 |
+
# Sample for each base category a number images such that the total
|
333 |
+
# number sampled images of all categories to be equal to `nTestBase`.
|
334 |
+
KbaseIndices = np.random.choice(
|
335 |
+
np.arange(len(Kbase)), size=nTestBase, replace=True)
|
336 |
+
KbaseIndices, NumImagesPerCategory = np.unique(
|
337 |
+
KbaseIndices, return_counts=True)
|
338 |
+
|
339 |
+
for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory):
|
340 |
+
imd_ids = self.sampleImageIdsFrom(
|
341 |
+
Kbase[Kbase_idx], sample_size=NumImages)
|
342 |
+
Tbase += [(img_id, Kbase_idx) for img_id in imd_ids]
|
343 |
+
|
344 |
+
assert(len(Tbase) == nTestBase)
|
345 |
+
|
346 |
+
return Tbase
|
347 |
+
|
348 |
+
def sample_train_and_test_examples_for_novel_categories(
|
349 |
+
self, Knovel, nTestNovel, nExemplars, nKbase):
|
350 |
+
"""Samples train and test examples of the novel categories.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
Knovel: a list with the ids of the novel categories.
|
354 |
+
nTestNovel: the total number of test images that will be sampled
|
355 |
+
from all the novel categories.
|
356 |
+
nExemplars: the number of training examples per novel category that
|
357 |
+
will be sampled.
|
358 |
+
nKbase: the number of base categories. It is used as offset of the
|
359 |
+
category index of each sampled image.
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
Tnovel: a list of length `nTestNovel` with 2-element tuples. The
|
363 |
+
1st element of each tuple is the image id that was sampled and
|
364 |
+
the 2nd element is its category label (which is in the range
|
365 |
+
[nKbase, nKbase + len(Knovel) - 1]).
|
366 |
+
Exemplars: a list of length len(Knovel) * nExemplars of 2-element
|
367 |
+
tuples. The 1st element of each tuple is the image id that was
|
368 |
+
sampled and the 2nd element is its category label (which is in
|
369 |
+
the ragne [nKbase, nKbase + len(Knovel) - 1]).
|
370 |
+
"""
|
371 |
+
|
372 |
+
if len(Knovel) == 0:
|
373 |
+
return [], []
|
374 |
+
|
375 |
+
nKnovel = len(Knovel)
|
376 |
+
Tnovel = []
|
377 |
+
Exemplars = []
|
378 |
+
assert((nTestNovel % nKnovel) == 0)
|
379 |
+
nEvalExamplesPerClass = int(nTestNovel / nKnovel)
|
380 |
+
|
381 |
+
for Knovel_idx in range(len(Knovel)):
|
382 |
+
imd_ids = self.sampleImageIdsFrom(
|
383 |
+
Knovel[Knovel_idx],
|
384 |
+
sample_size=(nEvalExamplesPerClass + nExemplars))
|
385 |
+
|
386 |
+
imds_tnovel = imd_ids[:nEvalExamplesPerClass]
|
387 |
+
imds_ememplars = imd_ids[nEvalExamplesPerClass:]
|
388 |
+
|
389 |
+
Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel]
|
390 |
+
Exemplars += [(img_id, nKbase+Knovel_idx)
|
391 |
+
for img_id in imds_ememplars]
|
392 |
+
assert(len(Tnovel) == nTestNovel)
|
393 |
+
assert(len(Exemplars) == len(Knovel) * nExemplars)
|
394 |
+
random.shuffle(Exemplars)
|
395 |
+
|
396 |
+
return Tnovel, Exemplars
|
397 |
+
|
398 |
+
def sample_episode(self):
|
399 |
+
"""Samples a training episode."""
|
400 |
+
nKnovel = self.nKnovel
|
401 |
+
nKbase = self.nKbase
|
402 |
+
nTestNovel = self.nTestNovel
|
403 |
+
nTestBase = self.nTestBase
|
404 |
+
nExemplars = self.nExemplars
|
405 |
+
|
406 |
+
Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel)
|
407 |
+
Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase)
|
408 |
+
Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories(
|
409 |
+
Knovel, nTestNovel, nExemplars, nKbase)
|
410 |
+
|
411 |
+
# concatenate the base and novel category examples.
|
412 |
+
Test = Tbase + Tnovel
|
413 |
+
random.shuffle(Test)
|
414 |
+
Kall = Kbase + Knovel
|
415 |
+
|
416 |
+
return Exemplars, Test, Kall, nKbase
|
417 |
+
|
418 |
+
def createExamplesTensorData(self, examples):
|
419 |
+
"""
|
420 |
+
Creates the examples image and label tensor data.
|
421 |
+
|
422 |
+
Args:
|
423 |
+
examples: a list of 2-element tuples, each representing a
|
424 |
+
train or test example. The 1st element of each tuple
|
425 |
+
is the image id of the example and 2nd element is the
|
426 |
+
category label of the example, which is in the range
|
427 |
+
[0, nK - 1], where nK is the total number of categories
|
428 |
+
(both novel and base).
|
429 |
+
|
430 |
+
Returns:
|
431 |
+
images: a tensor of shape [nExamples, Height, Width, 3] with the
|
432 |
+
example images, where nExamples is the number of examples
|
433 |
+
(i.e., nExamples = len(examples)).
|
434 |
+
labels: a tensor of shape [nExamples] with the category label
|
435 |
+
of each example.
|
436 |
+
"""
|
437 |
+
images = torch.stack(
|
438 |
+
[self.dataset[img_idx][0] for img_idx, _ in examples], dim=0)
|
439 |
+
labels = torch.LongTensor([label for _, label in examples])
|
440 |
+
return images, labels
|
441 |
+
|
442 |
+
def get_iterator(self, epoch=0):
|
443 |
+
rand_seed = epoch
|
444 |
+
random.seed(rand_seed)
|
445 |
+
np.random.seed(rand_seed)
|
446 |
+
|
447 |
+
def load_function(iter_idx):
|
448 |
+
Exemplars, Test, Kall, nKbase = self.sample_episode()
|
449 |
+
Xt, Yt = self.createExamplesTensorData(Test)
|
450 |
+
Kall = torch.LongTensor(Kall)
|
451 |
+
if len(Exemplars) > 0:
|
452 |
+
Xe, Ye = self.createExamplesTensorData(Exemplars)
|
453 |
+
return Xe, Ye, Xt, Yt, Kall, nKbase
|
454 |
+
else:
|
455 |
+
return Xt, Yt, Kall, nKbase
|
456 |
+
|
457 |
+
tnt_dataset = tnt.dataset.ListDataset(
|
458 |
+
elem_list=range(self.epoch_size), load=load_function)
|
459 |
+
data_loader = tnt_dataset.parallel(
|
460 |
+
batch_size=self.batch_size,
|
461 |
+
num_workers=(0 if self.is_eval_mode else self.num_workers),
|
462 |
+
shuffle=(False if self.is_eval_mode else True))
|
463 |
+
|
464 |
+
return data_loader
|
465 |
+
|
466 |
+
def __call__(self, epoch=0):
|
467 |
+
return self.get_iterator(epoch)
|
468 |
+
|
469 |
+
def __len__(self):
|
470 |
+
return int(self.epoch_size / self.batch_size)
|
dataloader/CIFAR_FS.py
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataloader of Gidaris & Komodakis, CVPR 2018
|
2 |
+
# Adapted from:
|
3 |
+
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/dataloader.py
|
4 |
+
from __future__ import print_function
|
5 |
+
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
import numpy as np
|
9 |
+
import random
|
10 |
+
import pickle
|
11 |
+
import json
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.data as data
|
16 |
+
import torchvision
|
17 |
+
import torchvision.datasets as datasets
|
18 |
+
import torchvision.transforms as transforms
|
19 |
+
import torchnet as tnt
|
20 |
+
|
21 |
+
import h5py
|
22 |
+
|
23 |
+
import cv2
|
24 |
+
from PIL import Image
|
25 |
+
from PIL import ImageEnhance
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
|
28 |
+
from pdb import set_trace as breakpoint
|
29 |
+
|
30 |
+
from torchvision.transforms.transforms import ToPILImage
|
31 |
+
|
32 |
+
|
33 |
+
# Set the appropriate paths of the datasets here.
|
34 |
+
_CIFAR_FS_DATASET_DIR = './cifar/CIFAR-FS/'
|
35 |
+
|
36 |
+
|
37 |
+
def buildLabelIndex(labels):
|
38 |
+
label2inds = {}
|
39 |
+
for idx, label in enumerate(labels):
|
40 |
+
if label not in label2inds:
|
41 |
+
label2inds[label] = []
|
42 |
+
label2inds[label].append(idx)
|
43 |
+
|
44 |
+
return label2inds
|
45 |
+
|
46 |
+
|
47 |
+
def load_data(file):
|
48 |
+
try:
|
49 |
+
with open(file, 'rb') as fo:
|
50 |
+
data = pickle.load(fo)
|
51 |
+
return data
|
52 |
+
except:
|
53 |
+
with open(file, 'rb') as f:
|
54 |
+
u = pickle._Unpickler(f)
|
55 |
+
u.encoding = 'latin1'
|
56 |
+
data = u.load()
|
57 |
+
return data
|
58 |
+
|
59 |
+
|
60 |
+
class CIFAR_FS(data.Dataset):
|
61 |
+
def __init__(self, phase='train', do_not_use_random_transf=False):
|
62 |
+
|
63 |
+
assert(phase == 'train' or phase == 'val' or phase ==
|
64 |
+
'test' or phase == 'trainval')
|
65 |
+
self.phase = phase
|
66 |
+
self.name = 'CIFAR_FS_' + phase
|
67 |
+
|
68 |
+
print('Loading CIFAR-FS dataset - phase {0}'.format(phase))
|
69 |
+
file_train_categories_train_phase = os.path.join(
|
70 |
+
_CIFAR_FS_DATASET_DIR,
|
71 |
+
'CIFAR_FS_train.pickle')
|
72 |
+
file_train_categories_val_phase = os.path.join(
|
73 |
+
_CIFAR_FS_DATASET_DIR,
|
74 |
+
'CIFAR_FS_train.pickle')
|
75 |
+
file_train_categories_test_phase = os.path.join(
|
76 |
+
_CIFAR_FS_DATASET_DIR,
|
77 |
+
'CIFAR_FS_train.pickle')
|
78 |
+
file_val_categories_val_phase = os.path.join(
|
79 |
+
_CIFAR_FS_DATASET_DIR,
|
80 |
+
'CIFAR_FS_val.pickle')
|
81 |
+
file_test_categories_test_phase = os.path.join(
|
82 |
+
_CIFAR_FS_DATASET_DIR,
|
83 |
+
'CIFAR_FS_test.pickle')
|
84 |
+
|
85 |
+
if self.phase == 'train':
|
86 |
+
# During training phase we only load the training phase images
|
87 |
+
# of the training categories (aka base categories).
|
88 |
+
data_train = load_data(file_train_categories_train_phase)
|
89 |
+
self.data = data_train['data']
|
90 |
+
self.labels = data_train['labels']
|
91 |
+
|
92 |
+
self.label2ind = buildLabelIndex(self.labels)
|
93 |
+
self.labelIds = sorted(self.label2ind.keys())
|
94 |
+
|
95 |
+
self.num_cats = len(self.labelIds)
|
96 |
+
self.labelIds_base = self.labelIds
|
97 |
+
self.num_cats_base = len(self.labelIds_base)
|
98 |
+
elif self.phase == 'trainval':
|
99 |
+
# During training phase we only load the training phase images
|
100 |
+
# of the training categories (aka base categories).
|
101 |
+
data_train = load_data(file_train_categories_train_phase)
|
102 |
+
self.data = data_train['data']
|
103 |
+
self.labels = data_train['labels']
|
104 |
+
data_base = load_data(file_train_categories_val_phase)
|
105 |
+
data_novel = load_data(file_val_categories_val_phase)
|
106 |
+
self.data = np.concatenate(
|
107 |
+
[self.data, data_novel['data']], axis=0)
|
108 |
+
self.data = np.concatenate(
|
109 |
+
[self.data, data_base['data']], axis=0)
|
110 |
+
|
111 |
+
self.labels = np.concatenate(
|
112 |
+
[self.labels, data_novel['labels']], axis=0)
|
113 |
+
self.labels = np.concatenate(
|
114 |
+
[self.labels, data_base['labels']], axis=0)
|
115 |
+
|
116 |
+
self.label2ind = buildLabelIndex(self.labels)
|
117 |
+
self.labelIds = sorted(self.label2ind.keys())
|
118 |
+
self.num_cats = len(self.labelIds)
|
119 |
+
self.labelIds_base = self.labelIds
|
120 |
+
self.num_cats_base = len(self.labelIds_base)
|
121 |
+
elif self.phase == 'val' or self.phase == 'test':
|
122 |
+
if self.phase == 'test':
|
123 |
+
# load data that will be used for evaluating the recognition
|
124 |
+
# accuracy of the base categories.
|
125 |
+
data_base = load_data(file_train_categories_test_phase)
|
126 |
+
# load data that will be use for evaluating the few-shot recogniton
|
127 |
+
# accuracy on the novel categories.
|
128 |
+
data_novel = load_data(file_test_categories_test_phase)
|
129 |
+
else: # phase=='val'
|
130 |
+
# load data that will be used for evaluating the recognition
|
131 |
+
# accuracy of the base categories.
|
132 |
+
data_base = load_data(file_train_categories_val_phase)
|
133 |
+
# load data that will be use for evaluating the few-shot recogniton
|
134 |
+
# accuracy on the novel categories.
|
135 |
+
data_novel = load_data(file_val_categories_val_phase)
|
136 |
+
|
137 |
+
self.data = np.concatenate(
|
138 |
+
[data_base['data'], data_novel['data']], axis=0)
|
139 |
+
self.labels = data_base['labels'] + data_novel['labels']
|
140 |
+
|
141 |
+
self.label2ind = buildLabelIndex(self.labels)
|
142 |
+
self.labelIds = sorted(self.label2ind.keys())
|
143 |
+
self.num_cats = len(self.labelIds)
|
144 |
+
|
145 |
+
self.labelIds_base = buildLabelIndex(data_base['labels']).keys()
|
146 |
+
self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys()
|
147 |
+
self.num_cats_base = len(self.labelIds_base)
|
148 |
+
self.num_cats_novel = len(self.labelIds_novel)
|
149 |
+
intersection = set(self.labelIds_base) & set(self.labelIds_novel)
|
150 |
+
assert(len(intersection) == 0)
|
151 |
+
else:
|
152 |
+
raise ValueError('Not valid phase {0}'.format(self.phase))
|
153 |
+
|
154 |
+
mean_pix = [x/255.0 for x in [129.37731888,
|
155 |
+
124.10583864, 112.47758569]]
|
156 |
+
|
157 |
+
std_pix = [x/255.0 for x in [68.20947949, 65.43124043, 70.45866994]]
|
158 |
+
|
159 |
+
normalize = transforms.Normalize(mean=mean_pix, std=std_pix)
|
160 |
+
|
161 |
+
if (self.phase == 'test' or self.phase == 'val') or (do_not_use_random_transf == True):
|
162 |
+
|
163 |
+
self.transform = transforms.Compose([
|
164 |
+
transforms.ToPILImage(),
|
165 |
+
# lambda x: np.asarray(x),
|
166 |
+
transforms.ToTensor(),
|
167 |
+
normalize
|
168 |
+
])
|
169 |
+
else:
|
170 |
+
self.transform = transforms.Compose([
|
171 |
+
transforms.ToPILImage(),
|
172 |
+
transforms.RandomCrop(32, padding=4),
|
173 |
+
transforms.ColorJitter(
|
174 |
+
brightness=0.4, contrast=0.4, saturation=0.4),
|
175 |
+
transforms.RandomHorizontalFlip(),
|
176 |
+
transforms.ToTensor(),
|
177 |
+
# lambda x: np.asarray(x),
|
178 |
+
normalize
|
179 |
+
])
|
180 |
+
|
181 |
+
def __getitem__(self, index):
|
182 |
+
img, label = self.data[index], self.labels[index]
|
183 |
+
# doing this so that it is consistent with all other datasets
|
184 |
+
# to return a PIL Image
|
185 |
+
|
186 |
+
# img = Image.fromarray(img)
|
187 |
+
if self.transform is not None:
|
188 |
+
img = self.transform(img)
|
189 |
+
return img, label
|
190 |
+
|
191 |
+
def __len__(self):
|
192 |
+
return len(self.data)
|
193 |
+
|
194 |
+
|
195 |
+
class FewShotDataloader():
|
196 |
+
def __init__(self,
|
197 |
+
dataset,
|
198 |
+
nKnovel=5, # number of novel categories.
|
199 |
+
nKbase=-1, # number of base categories.
|
200 |
+
# number of training examples per novel category.
|
201 |
+
nExemplars=1,
|
202 |
+
# number of test examples for all the novel categories.
|
203 |
+
nTestNovel=15*5,
|
204 |
+
# number of test examples for all the base categories.
|
205 |
+
nTestBase=15*5,
|
206 |
+
batch_size=1, # number of training episodes per batch.
|
207 |
+
num_workers=4,
|
208 |
+
epoch_size=2000, # number of batches per epoch.
|
209 |
+
):
|
210 |
+
|
211 |
+
self.dataset = dataset
|
212 |
+
self.phase = self.dataset.phase
|
213 |
+
max_possible_nKnovel = (self.dataset.num_cats_base if self.phase == 'train' or self.phase == 'trainval'
|
214 |
+
else self.dataset.num_cats_novel)
|
215 |
+
assert(nKnovel >= 0 and nKnovel < max_possible_nKnovel)
|
216 |
+
self.nKnovel = nKnovel
|
217 |
+
|
218 |
+
max_possible_nKbase = self.dataset.num_cats_base
|
219 |
+
nKbase = nKbase if nKbase >= 0 else max_possible_nKbase
|
220 |
+
if (self.phase == 'train' or self.phase == 'trainval') and nKbase > 0:
|
221 |
+
nKbase -= self.nKnovel
|
222 |
+
max_possible_nKbase -= self.nKnovel
|
223 |
+
|
224 |
+
assert(nKbase >= 0 and nKbase <= max_possible_nKbase)
|
225 |
+
self.nKbase = nKbase
|
226 |
+
|
227 |
+
self.nExemplars = nExemplars
|
228 |
+
self.nTestNovel = nTestNovel
|
229 |
+
self.nTestBase = nTestBase
|
230 |
+
self.batch_size = batch_size
|
231 |
+
self.epoch_size = epoch_size
|
232 |
+
self.num_workers = num_workers
|
233 |
+
self.is_eval_mode = (self.phase == 'test') or (self.phase == 'val')
|
234 |
+
|
235 |
+
def sampleImageIdsFrom(self, cat_id, sample_size=1):
|
236 |
+
"""
|
237 |
+
Samples `sample_size` number of unique image ids picked from the
|
238 |
+
category `cat_id` (i.e., self.dataset.label2ind[cat_id]).
|
239 |
+
|
240 |
+
Args:
|
241 |
+
cat_id: a scalar with the id of the category from which images will
|
242 |
+
be sampled.
|
243 |
+
sample_size: number of images that will be sampled.
|
244 |
+
|
245 |
+
Returns:
|
246 |
+
image_ids: a list of length `sample_size` with unique image ids.
|
247 |
+
"""
|
248 |
+
assert(cat_id in self.dataset.label2ind)
|
249 |
+
assert(len(self.dataset.label2ind[cat_id]) >= sample_size)
|
250 |
+
# Note: random.sample samples elements without replacement.
|
251 |
+
# seed = random.randint(1,10000000)
|
252 |
+
# random.seed(seed)
|
253 |
+
return random.sample(self.dataset.label2ind[cat_id], sample_size)
|
254 |
+
|
255 |
+
def sampleCategories(self, cat_set, sample_size=1):
|
256 |
+
"""
|
257 |
+
Samples `sample_size` number of unique categories picked from the
|
258 |
+
`cat_set` set of categories. `cat_set` can be either 'base' or 'novel'.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
cat_set: string that specifies the set of categories from which
|
262 |
+
categories will be sampled.
|
263 |
+
sample_size: number of categories that will be sampled.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
cat_ids: a list of length `sample_size` with unique category ids.
|
267 |
+
"""
|
268 |
+
if cat_set == 'base':
|
269 |
+
labelIds = self.dataset.labelIds_base
|
270 |
+
elif cat_set == 'novel':
|
271 |
+
labelIds = self.dataset.labelIds_novel
|
272 |
+
else:
|
273 |
+
raise ValueError('Not recognized category set {}'.format(cat_set))
|
274 |
+
|
275 |
+
assert(len(labelIds) >= sample_size)
|
276 |
+
# return sample_size unique categories chosen from labelIds set of
|
277 |
+
# categories (that can be either self.labelIds_base or self.labelIds_novel)
|
278 |
+
# Note: random.sample samples elements without replacement.
|
279 |
+
return random.sample(labelIds, sample_size)
|
280 |
+
|
281 |
+
def sample_base_and_novel_categories(self, nKbase, nKnovel):
|
282 |
+
"""
|
283 |
+
Samples `nKbase` number of base categories and `nKnovel` number of novel
|
284 |
+
categories.
|
285 |
+
|
286 |
+
Args:
|
287 |
+
nKbase: number of base categories
|
288 |
+
nKnovel: number of novel categories
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
Kbase: a list of length 'nKbase' with the ids of the sampled base
|
292 |
+
categories.
|
293 |
+
Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel
|
294 |
+
categories.
|
295 |
+
"""
|
296 |
+
if self.is_eval_mode:
|
297 |
+
assert(nKnovel <= self.dataset.num_cats_novel)
|
298 |
+
# sample from the set of base categories 'nKbase' number of base
|
299 |
+
# categories.
|
300 |
+
Kbase = sorted(self.sampleCategories('base', nKbase))
|
301 |
+
# sample from the set of novel categories 'nKnovel' number of novel
|
302 |
+
# categories.
|
303 |
+
Knovel = sorted(self.sampleCategories('novel', nKnovel))
|
304 |
+
else:
|
305 |
+
# sample from the set of base categories 'nKnovel' + 'nKbase' number
|
306 |
+
# of categories.
|
307 |
+
cats_ids = self.sampleCategories('base', nKnovel+nKbase)
|
308 |
+
assert(len(cats_ids) == (nKnovel+nKbase))
|
309 |
+
# Randomly pick 'nKnovel' number of fake novel categories and keep
|
310 |
+
# the rest as base categories.
|
311 |
+
random.shuffle(cats_ids)
|
312 |
+
Knovel = sorted(cats_ids[:nKnovel])
|
313 |
+
Kbase = sorted(cats_ids[nKnovel:])
|
314 |
+
|
315 |
+
return Kbase, Knovel
|
316 |
+
|
317 |
+
def sample_test_examples_for_base_categories(self, Kbase, nTestBase):
|
318 |
+
"""
|
319 |
+
Sample `nTestBase` number of images from the `Kbase` categories.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
Kbase: a list of length `nKbase` with the ids of the categories from
|
323 |
+
where the images will be sampled.
|
324 |
+
nTestBase: the total number of images that will be sampled.
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
Tbase: a list of length `nTestBase` with 2-element tuples. The 1st
|
328 |
+
element of each tuple is the image id that was sampled and the
|
329 |
+
2nd elemend is its category label (which is in the range
|
330 |
+
[0, len(Kbase)-1]).
|
331 |
+
"""
|
332 |
+
Tbase = []
|
333 |
+
if len(Kbase) > 0:
|
334 |
+
# Sample for each base category a number images such that the total
|
335 |
+
# number sampled images of all categories to be equal to `nTestBase`.
|
336 |
+
KbaseIndices = np.random.choice(
|
337 |
+
np.arange(len(Kbase)), size=nTestBase, replace=True)
|
338 |
+
KbaseIndices, NumImagesPerCategory = np.unique(
|
339 |
+
KbaseIndices, return_counts=True)
|
340 |
+
|
341 |
+
for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory):
|
342 |
+
imd_ids = self.sampleImageIdsFrom(
|
343 |
+
Kbase[Kbase_idx], sample_size=NumImages)
|
344 |
+
Tbase += [(img_id, Kbase_idx) for img_id in imd_ids]
|
345 |
+
|
346 |
+
assert(len(Tbase) == nTestBase)
|
347 |
+
|
348 |
+
return Tbase
|
349 |
+
|
350 |
+
def sample_train_and_test_examples_for_novel_categories(
|
351 |
+
self, Knovel, nTestNovel, nExemplars, nKbase):
|
352 |
+
"""Samples train and test examples of the novel categories.
|
353 |
+
|
354 |
+
Args:
|
355 |
+
Knovel: a list with the ids of the novel categories.
|
356 |
+
nTestNovel: the total number of test images that will be sampled
|
357 |
+
from all the novel categories.
|
358 |
+
nExemplars: the number of training examples per novel category that
|
359 |
+
will be sampled.
|
360 |
+
nKbase: the number of base categories. It is used as offset of the
|
361 |
+
category index of each sampled image.
|
362 |
+
|
363 |
+
Returns:
|
364 |
+
Tnovel: a list of length `nTestNovel` with 2-element tuples. The
|
365 |
+
1st element of each tuple is the image id that was sampled and
|
366 |
+
the 2nd element is its category label (which is in the range
|
367 |
+
[nKbase, nKbase + len(Knovel) - 1]).
|
368 |
+
Exemplars: a list of length len(Knovel) * nExemplars of 2-element
|
369 |
+
tuples. The 1st element of each tuple is the image id that was
|
370 |
+
sampled and the 2nd element is its category label (which is in
|
371 |
+
the ragne [nKbase, nKbase + len(Knovel) - 1]).
|
372 |
+
"""
|
373 |
+
|
374 |
+
if len(Knovel) == 0:
|
375 |
+
return [], []
|
376 |
+
|
377 |
+
nKnovel = len(Knovel)
|
378 |
+
Tnovel = []
|
379 |
+
Exemplars = []
|
380 |
+
assert((nTestNovel % nKnovel) == 0)
|
381 |
+
nEvalExamplesPerClass = int(nTestNovel / nKnovel)
|
382 |
+
|
383 |
+
for Knovel_idx in range(nKnovel):
|
384 |
+
imd_ids = self.sampleImageIdsFrom(
|
385 |
+
Knovel[Knovel_idx],
|
386 |
+
sample_size=(nEvalExamplesPerClass + nExemplars))
|
387 |
+
|
388 |
+
imds_tnovel = imd_ids[:nEvalExamplesPerClass]
|
389 |
+
imds_ememplars = imd_ids[nEvalExamplesPerClass:]
|
390 |
+
|
391 |
+
Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel]
|
392 |
+
|
393 |
+
Exemplars += [(img_id, nKbase+Knovel_idx)
|
394 |
+
for img_id in imds_ememplars]
|
395 |
+
|
396 |
+
# print('='*60)
|
397 |
+
# print(Tnovel)
|
398 |
+
# print(Exemplars)
|
399 |
+
# print('='*60)
|
400 |
+
assert(len(Tnovel) == nTestNovel)
|
401 |
+
assert(len(Exemplars) == len(Knovel) * nExemplars)
|
402 |
+
|
403 |
+
# random.shuffle(Exemplars) # shuffle commented by me
|
404 |
+
|
405 |
+
# print(Exemplars)
|
406 |
+
|
407 |
+
return Tnovel, Exemplars
|
408 |
+
|
409 |
+
def sample_episode(self):
|
410 |
+
"""Samples a training episode."""
|
411 |
+
nKnovel = self.nKnovel
|
412 |
+
nKbase = self.nKbase
|
413 |
+
nTestNovel = self.nTestNovel
|
414 |
+
nTestBase = self.nTestBase
|
415 |
+
nExemplars = self.nExemplars
|
416 |
+
|
417 |
+
Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel)
|
418 |
+
|
419 |
+
Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase)
|
420 |
+
|
421 |
+
# print(Tbase,Knovel)
|
422 |
+
|
423 |
+
Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories(
|
424 |
+
Knovel, nTestNovel, nExemplars, nKbase)
|
425 |
+
|
426 |
+
# concatenate the base and novel category examples.
|
427 |
+
Test = Tbase + Tnovel
|
428 |
+
# random.shuffle(Test)
|
429 |
+
|
430 |
+
# print(Test)
|
431 |
+
|
432 |
+
Kall = Kbase + Knovel
|
433 |
+
|
434 |
+
return Exemplars, Test, Kall, nKbase
|
435 |
+
|
436 |
+
def createExamplesTensorData(self, examples):
|
437 |
+
"""
|
438 |
+
Creates the examples image and label tensor data.
|
439 |
+
|
440 |
+
Args:
|
441 |
+
examples: a list of 2-element tuples, each representing a
|
442 |
+
train or test example. The 1st element of each tuple
|
443 |
+
is the image id of the example and 2nd element is the
|
444 |
+
category label of the example, which is in the range
|
445 |
+
[0, nK - 1], where nK is the total number of categories
|
446 |
+
(both novel and base).
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
images: a tensor of shape [nExamples, Height, Width, 3] with the
|
450 |
+
example images, where nExamples is the number of examples
|
451 |
+
(i.e., nExamples = len(examples)).
|
452 |
+
labels: a tensor of shape [nExamples] with the category label
|
453 |
+
of each example.
|
454 |
+
"""
|
455 |
+
images = torch.stack(
|
456 |
+
[self.dataset[img_idx][0] for img_idx, _ in examples], dim=0)
|
457 |
+
labels = torch.LongTensor([label for _, label in examples])
|
458 |
+
return images, labels
|
459 |
+
|
460 |
+
def get_iterator(self, epoch=0):
|
461 |
+
rand_seed = epoch
|
462 |
+
random.seed(rand_seed)
|
463 |
+
np.random.seed(rand_seed)
|
464 |
+
|
465 |
+
def load_function(iter_idx):
|
466 |
+
Exemplars, Test, Kall, nKbase = self.sample_episode()
|
467 |
+
Xt, Yt = self.createExamplesTensorData(Test)
|
468 |
+
Kall = torch.LongTensor(Kall)
|
469 |
+
if len(Exemplars) > 0:
|
470 |
+
Xe, Ye = self.createExamplesTensorData(Exemplars)
|
471 |
+
return Xe, Ye, Xt, Yt, Kall, nKbase
|
472 |
+
else:
|
473 |
+
return Xt, Yt, Kall, nKbase
|
474 |
+
|
475 |
+
tnt_dataset = tnt.dataset.ListDataset(
|
476 |
+
elem_list=range(self.epoch_size), load=load_function)
|
477 |
+
data_loader = tnt_dataset.parallel(
|
478 |
+
batch_size=self.batch_size,
|
479 |
+
num_workers=(1 if self.is_eval_mode else self.num_workers),
|
480 |
+
shuffle=(False if self.is_eval_mode else True))
|
481 |
+
|
482 |
+
return data_loader
|
483 |
+
|
484 |
+
def __call__(self, epoch=0):
|
485 |
+
return self.get_iterator(epoch)
|
486 |
+
|
487 |
+
def __len__(self):
|
488 |
+
return int(self.epoch_size / self.batch_size)
|
dataloader/FC100.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataloader of Gidaris & Komodakis, CVPR 2018
|
2 |
+
# Adapted from:
|
3 |
+
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/dataloader.py
|
4 |
+
from __future__ import print_function
|
5 |
+
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
import numpy as np
|
9 |
+
import random
|
10 |
+
import pickle
|
11 |
+
import json
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.data as data
|
16 |
+
import torchvision
|
17 |
+
import torchvision.datasets as datasets
|
18 |
+
import torchvision.transforms as transforms
|
19 |
+
import torchnet as tnt
|
20 |
+
|
21 |
+
import h5py
|
22 |
+
|
23 |
+
from PIL import Image
|
24 |
+
from PIL import ImageEnhance
|
25 |
+
|
26 |
+
from pdb import set_trace as breakpoint
|
27 |
+
|
28 |
+
|
29 |
+
# Set the appropriate paths of the datasets here.
|
30 |
+
_FC100_DATASET_DIR = './cifar/FC100/'
|
31 |
+
|
32 |
+
def buildLabelIndex(labels):
|
33 |
+
label2inds = {}
|
34 |
+
for idx, label in enumerate(labels):
|
35 |
+
if label not in label2inds:
|
36 |
+
label2inds[label] = []
|
37 |
+
label2inds[label].append(idx)
|
38 |
+
|
39 |
+
return label2inds
|
40 |
+
|
41 |
+
def load_data(file):
|
42 |
+
try:
|
43 |
+
with open(file, 'rb') as fo:
|
44 |
+
data = pickle.load(fo)
|
45 |
+
return data
|
46 |
+
except:
|
47 |
+
with open(file, 'rb') as f:
|
48 |
+
u = pickle._Unpickler(f)
|
49 |
+
u.encoding = 'latin1'
|
50 |
+
data = u.load()
|
51 |
+
return data
|
52 |
+
|
53 |
+
class FC100(data.Dataset):
|
54 |
+
def __init__(self, phase='train', do_not_use_random_transf=False):
|
55 |
+
|
56 |
+
assert(phase=='train' or phase=='val' or phase=='test'or phase=='trainval')
|
57 |
+
self.phase = phase
|
58 |
+
self.name = 'FC100_' + phase
|
59 |
+
|
60 |
+
print('Loading FC100 dataset - phase {0}'.format(phase))
|
61 |
+
file_train_categories_train_phase = os.path.join(
|
62 |
+
_FC100_DATASET_DIR,
|
63 |
+
'FC100_train.pickle')
|
64 |
+
file_train_categories_val_phase = os.path.join(
|
65 |
+
_FC100_DATASET_DIR,
|
66 |
+
'FC100_train.pickle')
|
67 |
+
file_train_categories_test_phase = os.path.join(
|
68 |
+
_FC100_DATASET_DIR,
|
69 |
+
'FC100_train.pickle')
|
70 |
+
file_val_categories_val_phase = os.path.join(
|
71 |
+
_FC100_DATASET_DIR,
|
72 |
+
'FC100_val.pickle')
|
73 |
+
file_test_categories_test_phase = os.path.join(
|
74 |
+
_FC100_DATASET_DIR,
|
75 |
+
'FC100_test.pickle')
|
76 |
+
|
77 |
+
if self.phase=='train':
|
78 |
+
# During training phase we only load the training phase images
|
79 |
+
# of the training categories (aka base categories).
|
80 |
+
data_train = load_data(file_train_categories_train_phase)
|
81 |
+
self.data = data_train['data']
|
82 |
+
self.labels = data_train['labels']
|
83 |
+
|
84 |
+
#print (self.labels)
|
85 |
+
self.label2ind = buildLabelIndex(self.labels)
|
86 |
+
self.labelIds = sorted(self.label2ind.keys())
|
87 |
+
self.num_cats = len(self.labelIds)
|
88 |
+
self.labelIds_base = self.labelIds
|
89 |
+
self.num_cats_base = len(self.labelIds_base)
|
90 |
+
#print (self.data.shape)
|
91 |
+
elif self.phase == 'trainval':
|
92 |
+
# During training phase we only load the training phase images
|
93 |
+
# of the training categories (aka base categories).
|
94 |
+
data_train = load_data(file_train_categories_train_phase)
|
95 |
+
self.data = data_train['data']
|
96 |
+
self.labels = data_train['labels']
|
97 |
+
data_base = load_data(file_train_categories_val_phase)
|
98 |
+
data_novel = load_data(file_val_categories_val_phase)
|
99 |
+
self.data = np.concatenate(
|
100 |
+
[self.data, data_novel['data']], axis=0)
|
101 |
+
self.data = np.concatenate(
|
102 |
+
[self.data, data_base['data']], axis=0)
|
103 |
+
|
104 |
+
self.labels = np.concatenate(
|
105 |
+
[self.labels, data_novel['labels']], axis=0)
|
106 |
+
self.labels = np.concatenate(
|
107 |
+
[self.labels, data_base['labels']], axis=0)
|
108 |
+
|
109 |
+
# print (self.labels)
|
110 |
+
self.label2ind = buildLabelIndex(self.labels)
|
111 |
+
self.labelIds = sorted(self.label2ind.keys())
|
112 |
+
self.num_cats = len(self.labelIds)
|
113 |
+
self.labelIds_base = self.labelIds
|
114 |
+
self.num_cats_base = len(self.labelIds_base)
|
115 |
+
elif self.phase=='val' or self.phase=='test':
|
116 |
+
if self.phase=='test':
|
117 |
+
# load data that will be used for evaluating the recognition
|
118 |
+
# accuracy of the base categories.
|
119 |
+
data_base = load_data(file_train_categories_test_phase)
|
120 |
+
# load data that will be use for evaluating the few-shot recogniton
|
121 |
+
# accuracy on the novel categories.
|
122 |
+
data_novel = load_data(file_test_categories_test_phase)
|
123 |
+
else: # phase=='val'
|
124 |
+
# load data that will be used for evaluating the recognition
|
125 |
+
# accuracy of the base categories.
|
126 |
+
data_base = load_data(file_train_categories_val_phase)
|
127 |
+
# load data that will be use for evaluating the few-shot recogniton
|
128 |
+
# accuracy on the novel categories.
|
129 |
+
data_novel = load_data(file_val_categories_val_phase)
|
130 |
+
|
131 |
+
self.data = np.concatenate(
|
132 |
+
[data_base['data'], data_novel['data']], axis=0)
|
133 |
+
self.labels = data_base['labels'] + data_novel['labels']
|
134 |
+
|
135 |
+
self.label2ind = buildLabelIndex(self.labels)
|
136 |
+
self.labelIds = sorted(self.label2ind.keys())
|
137 |
+
self.num_cats = len(self.labelIds)
|
138 |
+
|
139 |
+
self.labelIds_base = buildLabelIndex(data_base['labels']).keys()
|
140 |
+
self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys()
|
141 |
+
self.num_cats_base = len(self.labelIds_base)
|
142 |
+
self.num_cats_novel = len(self.labelIds_novel)
|
143 |
+
intersection = set(self.labelIds_base) & set(self.labelIds_novel)
|
144 |
+
assert(len(intersection) == 0)
|
145 |
+
else:
|
146 |
+
raise ValueError('Not valid phase {0}'.format(self.phase))
|
147 |
+
|
148 |
+
mean_pix = [x/255.0 for x in [129.37731888, 124.10583864, 112.47758569]]
|
149 |
+
|
150 |
+
std_pix = [x/255.0 for x in [68.20947949, 65.43124043, 70.45866994]]
|
151 |
+
|
152 |
+
normalize = transforms.Normalize(mean=mean_pix, std=std_pix)
|
153 |
+
|
154 |
+
if (self.phase=='test' or self.phase=='val') or (do_not_use_random_transf==True):
|
155 |
+
self.transform = transforms.Compose([
|
156 |
+
lambda x: np.asarray(x),
|
157 |
+
transforms.ToTensor(),
|
158 |
+
normalize
|
159 |
+
])
|
160 |
+
else:
|
161 |
+
self.transform = transforms.Compose([
|
162 |
+
transforms.RandomCrop(32, padding=4),
|
163 |
+
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
|
164 |
+
transforms.RandomHorizontalFlip(),
|
165 |
+
lambda x: np.asarray(x),
|
166 |
+
transforms.ToTensor(),
|
167 |
+
normalize
|
168 |
+
])
|
169 |
+
|
170 |
+
def __getitem__(self, index):
|
171 |
+
img, label = self.data[index], self.labels[index]
|
172 |
+
# doing this so that it is consistent with all other datasets
|
173 |
+
# to return a PIL Image
|
174 |
+
img = Image.fromarray(img)
|
175 |
+
if self.transform is not None:
|
176 |
+
img = self.transform(img)
|
177 |
+
return img, label
|
178 |
+
|
179 |
+
def __len__(self):
|
180 |
+
return len(self.data)
|
181 |
+
|
182 |
+
|
183 |
+
class FewShotDataloader():
|
184 |
+
def __init__(self,
|
185 |
+
dataset,
|
186 |
+
nKnovel=5, # number of novel categories.
|
187 |
+
nKbase=-1, # number of base categories.
|
188 |
+
nExemplars=1, # number of training examples per novel category.
|
189 |
+
nTestNovel=15*5, # number of test examples for all the novel categories.
|
190 |
+
nTestBase=15*5, # number of test examples for all the base categories.
|
191 |
+
batch_size=1, # number of training episodes per batch.
|
192 |
+
num_workers=4,
|
193 |
+
epoch_size=2000, # number of batches per epoch.
|
194 |
+
):
|
195 |
+
|
196 |
+
self.dataset = dataset
|
197 |
+
self.phase = self.dataset.phase
|
198 |
+
max_possible_nKnovel = (self.dataset.num_cats_base if self.phase=='train' or self.phase=='trainval'
|
199 |
+
else self.dataset.num_cats_novel)
|
200 |
+
assert(nKnovel >= 0 and nKnovel < max_possible_nKnovel)
|
201 |
+
self.nKnovel = nKnovel
|
202 |
+
|
203 |
+
max_possible_nKbase = self.dataset.num_cats_base
|
204 |
+
nKbase = nKbase if nKbase >= 0 else max_possible_nKbase
|
205 |
+
if (self.phase=='train' or self.phase=='trainval') and nKbase > 0:
|
206 |
+
nKbase -= self.nKnovel
|
207 |
+
max_possible_nKbase -= self.nKnovel
|
208 |
+
|
209 |
+
assert(nKbase >= 0 and nKbase <= max_possible_nKbase)
|
210 |
+
self.nKbase = nKbase
|
211 |
+
|
212 |
+
self.nExemplars = nExemplars
|
213 |
+
self.nTestNovel = nTestNovel
|
214 |
+
self.nTestBase = nTestBase
|
215 |
+
self.batch_size = batch_size
|
216 |
+
self.epoch_size = epoch_size
|
217 |
+
self.num_workers = num_workers
|
218 |
+
self.is_eval_mode = (self.phase=='test') or (self.phase=='val')
|
219 |
+
|
220 |
+
def sampleImageIdsFrom(self, cat_id, sample_size=1):
|
221 |
+
"""
|
222 |
+
Samples `sample_size` number of unique image ids picked from the
|
223 |
+
category `cat_id` (i.e., self.dataset.label2ind[cat_id]).
|
224 |
+
|
225 |
+
Args:
|
226 |
+
cat_id: a scalar with the id of the category from which images will
|
227 |
+
be sampled.
|
228 |
+
sample_size: number of images that will be sampled.
|
229 |
+
|
230 |
+
Returns:
|
231 |
+
image_ids: a list of length `sample_size` with unique image ids.
|
232 |
+
"""
|
233 |
+
assert(cat_id in self.dataset.label2ind)
|
234 |
+
assert(len(self.dataset.label2ind[cat_id]) >= sample_size)
|
235 |
+
# Note: random.sample samples elements without replacement.
|
236 |
+
return random.sample(self.dataset.label2ind[cat_id], sample_size)
|
237 |
+
|
238 |
+
def sampleCategories(self, cat_set, sample_size=1):
|
239 |
+
"""
|
240 |
+
Samples `sample_size` number of unique categories picked from the
|
241 |
+
`cat_set` set of categories. `cat_set` can be either 'base' or 'novel'.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
cat_set: string that specifies the set of categories from which
|
245 |
+
categories will be sampled.
|
246 |
+
sample_size: number of categories that will be sampled.
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
cat_ids: a list of length `sample_size` with unique category ids.
|
250 |
+
"""
|
251 |
+
if cat_set=='base':
|
252 |
+
labelIds = self.dataset.labelIds_base
|
253 |
+
elif cat_set=='novel':
|
254 |
+
labelIds = self.dataset.labelIds_novel
|
255 |
+
else:
|
256 |
+
raise ValueError('Not recognized category set {}'.format(cat_set))
|
257 |
+
|
258 |
+
assert(len(labelIds) >= sample_size)
|
259 |
+
# return sample_size unique categories chosen from labelIds set of
|
260 |
+
# categories (that can be either self.labelIds_base or self.labelIds_novel)
|
261 |
+
# Note: random.sample samples elements without replacement.
|
262 |
+
return random.sample(labelIds, sample_size)
|
263 |
+
|
264 |
+
def sample_base_and_novel_categories(self, nKbase, nKnovel):
|
265 |
+
"""
|
266 |
+
Samples `nKbase` number of base categories and `nKnovel` number of novel
|
267 |
+
categories.
|
268 |
+
|
269 |
+
Args:
|
270 |
+
nKbase: number of base categories
|
271 |
+
nKnovel: number of novel categories
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
Kbase: a list of length 'nKbase' with the ids of the sampled base
|
275 |
+
categories.
|
276 |
+
Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel
|
277 |
+
categories.
|
278 |
+
"""
|
279 |
+
if self.is_eval_mode:
|
280 |
+
assert(nKnovel <= self.dataset.num_cats_novel)
|
281 |
+
# sample from the set of base categories 'nKbase' number of base
|
282 |
+
# categories.
|
283 |
+
Kbase = sorted(self.sampleCategories('base', nKbase))
|
284 |
+
# sample from the set of novel categories 'nKnovel' number of novel
|
285 |
+
# categories.
|
286 |
+
Knovel = sorted(self.sampleCategories('novel', nKnovel))
|
287 |
+
else:
|
288 |
+
# sample from the set of base categories 'nKnovel' + 'nKbase' number
|
289 |
+
# of categories.
|
290 |
+
cats_ids = self.sampleCategories('base', nKnovel+nKbase)
|
291 |
+
assert(len(cats_ids) == (nKnovel+nKbase))
|
292 |
+
# Randomly pick 'nKnovel' number of fake novel categories and keep
|
293 |
+
# the rest as base categories.
|
294 |
+
random.shuffle(cats_ids)
|
295 |
+
Knovel = sorted(cats_ids[:nKnovel])
|
296 |
+
Kbase = sorted(cats_ids[nKnovel:])
|
297 |
+
|
298 |
+
return Kbase, Knovel
|
299 |
+
|
300 |
+
def sample_test_examples_for_base_categories(self, Kbase, nTestBase):
|
301 |
+
"""
|
302 |
+
Sample `nTestBase` number of images from the `Kbase` categories.
|
303 |
+
|
304 |
+
Args:
|
305 |
+
Kbase: a list of length `nKbase` with the ids of the categories from
|
306 |
+
where the images will be sampled.
|
307 |
+
nTestBase: the total number of images that will be sampled.
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
Tbase: a list of length `nTestBase` with 2-element tuples. The 1st
|
311 |
+
element of each tuple is the image id that was sampled and the
|
312 |
+
2nd elemend is its category label (which is in the range
|
313 |
+
[0, len(Kbase)-1]).
|
314 |
+
"""
|
315 |
+
Tbase = []
|
316 |
+
if len(Kbase) > 0:
|
317 |
+
# Sample for each base category a number images such that the total
|
318 |
+
# number sampled images of all categories to be equal to `nTestBase`.
|
319 |
+
KbaseIndices = np.random.choice(
|
320 |
+
np.arange(len(Kbase)), size=nTestBase, replace=True)
|
321 |
+
KbaseIndices, NumImagesPerCategory = np.unique(
|
322 |
+
KbaseIndices, return_counts=True)
|
323 |
+
|
324 |
+
for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory):
|
325 |
+
imd_ids = self.sampleImageIdsFrom(
|
326 |
+
Kbase[Kbase_idx], sample_size=NumImages)
|
327 |
+
Tbase += [(img_id, Kbase_idx) for img_id in imd_ids]
|
328 |
+
|
329 |
+
assert(len(Tbase) == nTestBase)
|
330 |
+
|
331 |
+
return Tbase
|
332 |
+
|
333 |
+
def sample_train_and_test_examples_for_novel_categories(
|
334 |
+
self, Knovel, nTestNovel, nExemplars, nKbase):
|
335 |
+
"""Samples train and test examples of the novel categories.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
Knovel: a list with the ids of the novel categories.
|
339 |
+
nTestNovel: the total number of test images that will be sampled
|
340 |
+
from all the novel categories.
|
341 |
+
nExemplars: the number of training examples per novel category that
|
342 |
+
will be sampled.
|
343 |
+
nKbase: the number of base categories. It is used as offset of the
|
344 |
+
category index of each sampled image.
|
345 |
+
|
346 |
+
Returns:
|
347 |
+
Tnovel: a list of length `nTestNovel` with 2-element tuples. The
|
348 |
+
1st element of each tuple is the image id that was sampled and
|
349 |
+
the 2nd element is its category label (which is in the range
|
350 |
+
[nKbase, nKbase + len(Knovel) - 1]).
|
351 |
+
Exemplars: a list of length len(Knovel) * nExemplars of 2-element
|
352 |
+
tuples. The 1st element of each tuple is the image id that was
|
353 |
+
sampled and the 2nd element is its category label (which is in
|
354 |
+
the ragne [nKbase, nKbase + len(Knovel) - 1]).
|
355 |
+
"""
|
356 |
+
|
357 |
+
if len(Knovel) == 0:
|
358 |
+
return [], []
|
359 |
+
|
360 |
+
nKnovel = len(Knovel)
|
361 |
+
Tnovel = []
|
362 |
+
Exemplars = []
|
363 |
+
assert((nTestNovel % nKnovel) == 0)
|
364 |
+
nEvalExamplesPerClass = int(nTestNovel / nKnovel)
|
365 |
+
|
366 |
+
for Knovel_idx in range(len(Knovel)):
|
367 |
+
imd_ids = self.sampleImageIdsFrom(
|
368 |
+
Knovel[Knovel_idx],
|
369 |
+
sample_size=(nEvalExamplesPerClass + nExemplars))
|
370 |
+
|
371 |
+
imds_tnovel = imd_ids[:nEvalExamplesPerClass]
|
372 |
+
imds_ememplars = imd_ids[nEvalExamplesPerClass:]
|
373 |
+
|
374 |
+
Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel]
|
375 |
+
Exemplars += [(img_id, nKbase+Knovel_idx) for img_id in imds_ememplars]
|
376 |
+
assert(len(Tnovel) == nTestNovel)
|
377 |
+
assert(len(Exemplars) == len(Knovel) * nExemplars)
|
378 |
+
random.shuffle(Exemplars)
|
379 |
+
|
380 |
+
return Tnovel, Exemplars
|
381 |
+
|
382 |
+
def sample_episode(self):
|
383 |
+
"""Samples a training episode."""
|
384 |
+
nKnovel = self.nKnovel
|
385 |
+
nKbase = self.nKbase
|
386 |
+
nTestNovel = self.nTestNovel
|
387 |
+
nTestBase = self.nTestBase
|
388 |
+
nExemplars = self.nExemplars
|
389 |
+
|
390 |
+
Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel)
|
391 |
+
Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase)
|
392 |
+
Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories(
|
393 |
+
Knovel, nTestNovel, nExemplars, nKbase)
|
394 |
+
|
395 |
+
# concatenate the base and novel category examples.
|
396 |
+
Test = Tbase + Tnovel
|
397 |
+
random.shuffle(Test)
|
398 |
+
Kall = Kbase + Knovel
|
399 |
+
|
400 |
+
return Exemplars, Test, Kall, nKbase
|
401 |
+
|
402 |
+
def createExamplesTensorData(self, examples):
|
403 |
+
"""
|
404 |
+
Creates the examples image and label tensor data.
|
405 |
+
|
406 |
+
Args:
|
407 |
+
examples: a list of 2-element tuples, each representing a
|
408 |
+
train or test example. The 1st element of each tuple
|
409 |
+
is the image id of the example and 2nd element is the
|
410 |
+
category label of the example, which is in the range
|
411 |
+
[0, nK - 1], where nK is the total number of categories
|
412 |
+
(both novel and base).
|
413 |
+
|
414 |
+
Returns:
|
415 |
+
images: a tensor of shape [nExamples, Height, Width, 3] with the
|
416 |
+
example images, where nExamples is the number of examples
|
417 |
+
(i.e., nExamples = len(examples)).
|
418 |
+
labels: a tensor of shape [nExamples] with the category label
|
419 |
+
of each example.
|
420 |
+
"""
|
421 |
+
images = torch.stack(
|
422 |
+
[self.dataset[img_idx][0] for img_idx, _ in examples], dim=0)
|
423 |
+
labels = torch.LongTensor([label for _, label in examples])
|
424 |
+
return images, labels
|
425 |
+
|
426 |
+
def get_iterator(self, epoch=0):
|
427 |
+
rand_seed = epoch
|
428 |
+
random.seed(rand_seed)
|
429 |
+
np.random.seed(rand_seed)
|
430 |
+
def load_function(iter_idx):
|
431 |
+
Exemplars, Test, Kall, nKbase = self.sample_episode()
|
432 |
+
Xt, Yt = self.createExamplesTensorData(Test)
|
433 |
+
Kall = torch.LongTensor(Kall)
|
434 |
+
if len(Exemplars) > 0:
|
435 |
+
Xe, Ye = self.createExamplesTensorData(Exemplars)
|
436 |
+
return Xe, Ye, Xt, Yt, Kall, nKbase
|
437 |
+
else:
|
438 |
+
return Xt, Yt, Kall, nKbase
|
439 |
+
|
440 |
+
tnt_dataset = tnt.dataset.ListDataset(
|
441 |
+
elem_list=range(self.epoch_size), load=load_function)
|
442 |
+
data_loader = tnt_dataset.parallel(
|
443 |
+
batch_size=self.batch_size,
|
444 |
+
num_workers=(0 if self.is_eval_mode else self.num_workers),
|
445 |
+
shuffle=(False if self.is_eval_mode else True))
|
446 |
+
|
447 |
+
return data_loader
|
448 |
+
|
449 |
+
def __call__(self, epoch=0):
|
450 |
+
return self.get_iterator(epoch)
|
451 |
+
|
452 |
+
def __len__(self):
|
453 |
+
return int(self.epoch_size / self.batch_size)
|
dataloader/__pycache__/chest.cpython-36.pyc
ADDED
Binary file (13.2 kB). View file
|
|
dataloader/__pycache__/chest.cpython-37.pyc
ADDED
Binary file (13.3 kB). View file
|
|
dataloader/__pycache__/chest.cpython-38.pyc
ADDED
Binary file (13.4 kB). View file
|
|
dataloader/chest.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataloader of Gidaris & Komodakis, CVPR 2018
|
2 |
+
# Adapted from:
|
3 |
+
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/dataloader.py
|
4 |
+
from __future__ import print_function
|
5 |
+
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
import numpy as npw
|
9 |
+
import random
|
10 |
+
import pickle
|
11 |
+
import json
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.data as data
|
16 |
+
import torchvision
|
17 |
+
import torchvision.datasets as datasets
|
18 |
+
import torchvision.transforms as transforms
|
19 |
+
import torchnet as tnt
|
20 |
+
import numpy as np
|
21 |
+
import pandas as pd
|
22 |
+
|
23 |
+
|
24 |
+
import h5py
|
25 |
+
|
26 |
+
import cv2
|
27 |
+
from PIL import Image
|
28 |
+
from PIL import ImageEnhance
|
29 |
+
import matplotlib.pyplot as plt
|
30 |
+
|
31 |
+
|
32 |
+
from torchvision.transforms.transforms import ToPILImage
|
33 |
+
|
34 |
+
|
35 |
+
# Set the appropriate paths of the datasets here.
|
36 |
+
# _CIFAR_FS_DATASET_DIR = './cifar/CIFAR-FS/'
|
37 |
+
_CHEST_DATASET_DIR = './NIH'
|
38 |
+
image_path = './NIH/images'
|
39 |
+
|
40 |
+
|
41 |
+
label_dict = {'Cardiomegaly': 0, 'Edema': 1, 'Effusion': 2, 'Emphysema': 3, 'Infiltration': 4, 'Mass': 5, 'Atelectasis': 6, 'Consolidation': 7,
|
42 |
+
'Pleural_Thickening': 8, 'Fibrosis': 9, 'Hernia': 10, 'Pneumonia': 11, 'Nodule': 12, 'Pneumothorax': 13, 'No Finding': 14}
|
43 |
+
|
44 |
+
|
45 |
+
def buildLabelIndex(labels):
|
46 |
+
label2inds = {}
|
47 |
+
for idx, label in enumerate(labels):
|
48 |
+
label = label_dict[label]
|
49 |
+
if label not in label2inds:
|
50 |
+
label2inds[label] = []
|
51 |
+
label2inds[label].append(idx)
|
52 |
+
|
53 |
+
return label2inds
|
54 |
+
|
55 |
+
|
56 |
+
def load_data(file):
|
57 |
+
try:
|
58 |
+
with open(file, 'rb') as fo:
|
59 |
+
data = pickle.load(fo)
|
60 |
+
return data
|
61 |
+
except:
|
62 |
+
with open(file, 'rb') as f:
|
63 |
+
u = pickle._Unpickler(f)
|
64 |
+
u.encoding = 'latin1'
|
65 |
+
data = u.load()
|
66 |
+
return data
|
67 |
+
|
68 |
+
|
69 |
+
class Chest(data.Dataset):
|
70 |
+
def __init__(self, phase='train', idx = 1, do_not_use_random_transf=False):
|
71 |
+
|
72 |
+
assert(phase == 'train' or phase == 'val' or phase ==
|
73 |
+
'test' or phase == 'trainval')
|
74 |
+
self.phase = phase
|
75 |
+
# self.name = phase + '.csv'
|
76 |
+
|
77 |
+
# idx = 3 # represents group for experimentation
|
78 |
+
|
79 |
+
print('Loading Chest-XRay dataset - phase {0}'.format(phase))
|
80 |
+
|
81 |
+
train_path = os.path.join(_CHEST_DATASET_DIR, f'train{idx}.csv')
|
82 |
+
val_path = os.path.join(_CHEST_DATASET_DIR, f'val{idx}.csv')
|
83 |
+
test_path = os.path.join(_CHEST_DATASET_DIR, f'test{idx}.csv')
|
84 |
+
|
85 |
+
if self.phase == 'train':
|
86 |
+
# # During training phase we only load the training phase images
|
87 |
+
# # of the training categories (aka base categories).
|
88 |
+
# data_train = load_data(file_train_categories_train_phase)
|
89 |
+
# # self.data = data_train['data']
|
90 |
+
# self.labels = data_train['labels']
|
91 |
+
|
92 |
+
file = pd.read_csv(train_path)
|
93 |
+
|
94 |
+
self.data = file['image_id'].values
|
95 |
+
|
96 |
+
self.labels = file['class_name'].values
|
97 |
+
|
98 |
+
self.label2ind = buildLabelIndex(self.labels)
|
99 |
+
|
100 |
+
self.labelIds = sorted(self.label2ind.keys())
|
101 |
+
self.num_cats = len(self.labelIds)
|
102 |
+
self.labelIds_base = self.labelIds
|
103 |
+
self.num_cats_base = len(self.labelIds_base)
|
104 |
+
|
105 |
+
# elif self.phase == 'trainval':
|
106 |
+
# # During training phase we only load the training phase images
|
107 |
+
# # of the training categories (aka base categories).
|
108 |
+
# data_train = load_data(file_train_categories_train_phase)
|
109 |
+
# self.data = data_train['data']
|
110 |
+
# self.labels = data_train['labels']
|
111 |
+
# data_base = load_data(file_train_categories_val_phase)
|
112 |
+
# data_novel = load_data(file_val_categories_val_phase)
|
113 |
+
# self.data = np.concatenate(
|
114 |
+
# [self.data, data_novel['data']], axis=0)
|
115 |
+
# self.data = np.concatenate(
|
116 |
+
# [self.data, data_base['data']], axis=0)
|
117 |
+
|
118 |
+
# self.labels = np.concatenate(
|
119 |
+
# [self.labels, data_novel['labels']], axis=0)
|
120 |
+
# self.labels = np.concatenate(
|
121 |
+
# [self.labels, data_base['labels']], axis=0)
|
122 |
+
|
123 |
+
# self.label2ind = buildLabelIndex(self.labels)
|
124 |
+
# self.labelIds = sorted(self.label2ind.keys())
|
125 |
+
# self.num_cats = len(self.labelIds)
|
126 |
+
# self.labelIds_base = self.labelIds
|
127 |
+
# self.num_cats_base = len(self.labelIds_base)
|
128 |
+
|
129 |
+
elif self.phase == 'val' or self.phase == 'test':
|
130 |
+
if self.phase == 'test':
|
131 |
+
# # load data that will be used for evaluating the recognition
|
132 |
+
# # accuracy of the base categories.
|
133 |
+
# data_base = load_data(file_train_categories_test_phase)
|
134 |
+
# # load data that will be use for evaluating the few-shot recogniton
|
135 |
+
# # accuracy on the novel categories.
|
136 |
+
# data_novel = load_data(file_test_categories_test_phase)
|
137 |
+
|
138 |
+
train_file = pd.read_csv(train_path)
|
139 |
+
file = pd.read_csv(test_path)
|
140 |
+
else: # phase=='val'
|
141 |
+
# # load data that will be used for evaluating the recognition
|
142 |
+
# # accuracy of the base categories.
|
143 |
+
# data_base = load_data(file_train_categories_val_phase)
|
144 |
+
# # load data that will be use for evaluating the few-shot recogniton
|
145 |
+
# # accuracy on the novel categories.
|
146 |
+
# data_novel = load_data(file_val_categories_val_phase)
|
147 |
+
|
148 |
+
train_file = pd.read_csv(train_path)
|
149 |
+
file = pd.read_csv(val_path)
|
150 |
+
|
151 |
+
# self.data = np.concatenate(
|
152 |
+
# [data_base['data'], data_novel['data']], axis=0)
|
153 |
+
# self.labels = data_base['labels'] + data_novel['labels']
|
154 |
+
|
155 |
+
train_labels = train_file['class_name'].values
|
156 |
+
novel_labels = file['class_name'].values
|
157 |
+
|
158 |
+
self.data = np.concatenate(
|
159 |
+
[train_file['image_id'].values, file['image_id'].values], axis=0)
|
160 |
+
self.labels = np.concatenate(
|
161 |
+
[train_file['class_name'].values, file['class_name'].values], axis=0)
|
162 |
+
|
163 |
+
self.label2ind = buildLabelIndex(self.labels)
|
164 |
+
self.labelIds = sorted(self.label2ind.keys())
|
165 |
+
self.num_cats = len(self.labelIds)
|
166 |
+
|
167 |
+
# self.labelIds_base = buildLabelIndex(data_base['labels']).keys()
|
168 |
+
# self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys()
|
169 |
+
|
170 |
+
self.labelIds_base = buildLabelIndex(train_labels).keys()
|
171 |
+
self.labelIds_novel = buildLabelIndex(novel_labels).keys()
|
172 |
+
print('='*60)
|
173 |
+
print(self.labelIds_novel)
|
174 |
+
print('='*60)
|
175 |
+
|
176 |
+
self.num_cats_base = len(self.labelIds_base)
|
177 |
+
self.num_cats_novel = len(self.labelIds_novel)
|
178 |
+
# print(self.labelIds_novel)
|
179 |
+
# print(self.num_cats_novel)
|
180 |
+
intersection = set(self.labelIds_base) & set(self.labelIds_novel)
|
181 |
+
assert(len(intersection) == 0)
|
182 |
+
else:
|
183 |
+
raise ValueError('Not valid phase {0}'.format(self.phase))
|
184 |
+
|
185 |
+
# mean_pix = [x/255.0 for x in [129.37731888,
|
186 |
+
# 124.10583864, 112.47758569]]
|
187 |
+
|
188 |
+
# std_pix = [x/255.0 for x in [68.20947949, 65.43124043, 70.45866994]]
|
189 |
+
|
190 |
+
mean_pix = [0.52024849, 0.52024849, 0.52024849]
|
191 |
+
std_pix = [0.22699496, 0.22699496, 0.22699496]
|
192 |
+
|
193 |
+
|
194 |
+
normalize = transforms.Normalize(mean=mean_pix, std=std_pix)
|
195 |
+
|
196 |
+
if (self.phase == 'test' or self.phase == 'val') or (do_not_use_random_transf == True):
|
197 |
+
|
198 |
+
self.transform = transforms.Compose([
|
199 |
+
transforms.ToPILImage(),
|
200 |
+
# lambda x: np.asarray(x),
|
201 |
+
transforms.ToTensor(),
|
202 |
+
# lambda x: x/255.0,
|
203 |
+
normalize
|
204 |
+
])
|
205 |
+
else:
|
206 |
+
self.transform = transforms.Compose([
|
207 |
+
transforms.ToPILImage(),
|
208 |
+
# transforms.RandomCrop(32, padding=4),
|
209 |
+
# transforms.ColorJitter(
|
210 |
+
# brightness=0.4, contrast=0.4, saturation=0.4),
|
211 |
+
transforms.RandomHorizontalFlip(),
|
212 |
+
transforms.ToTensor(),
|
213 |
+
# lambda x: np.asarray(x),
|
214 |
+
# lambda x: x/255.0,
|
215 |
+
normalize
|
216 |
+
])
|
217 |
+
|
218 |
+
def __getitem__(self, index):
|
219 |
+
img, label = cv2.imread(os.path.join(
|
220 |
+
image_path, self.data[index]))[:,:,::-1], self.labels[index]
|
221 |
+
img = cv2.resize(img,(128,128)) # resize by Garvit
|
222 |
+
# img = cv2.resize(img,(84, 84)) # resize by kshitiz
|
223 |
+
|
224 |
+
# img = Image.fromarray(img)
|
225 |
+
if self.transform is not None:
|
226 |
+
img = self.transform(img)
|
227 |
+
return img, label
|
228 |
+
|
229 |
+
def __len__(self):
|
230 |
+
return len(self.data)
|
231 |
+
|
232 |
+
|
233 |
+
class FewShotDataloader():
|
234 |
+
def __init__(self,
|
235 |
+
dataset,
|
236 |
+
nKnovel=5, # number of novel categories.
|
237 |
+
nKbase=-1, # number of base categories.
|
238 |
+
# number of training examples per novel category.
|
239 |
+
nExemplars=1,
|
240 |
+
# number of test examples for all the novel categories.
|
241 |
+
nTestNovel=15*5,
|
242 |
+
# number of test examples for all the base categories.
|
243 |
+
nTestBase=15*5,
|
244 |
+
batch_size=1, # number of training episodes per batch.
|
245 |
+
num_workers=4,
|
246 |
+
epoch_size=2000, # number of batches per epoch.
|
247 |
+
):
|
248 |
+
|
249 |
+
self.dataset = dataset
|
250 |
+
self.phase = self.dataset.phase
|
251 |
+
max_possible_nKnovel = (self.dataset.num_cats_base if self.phase == 'train' or self.phase == 'trainval'
|
252 |
+
else self.dataset.num_cats_novel)
|
253 |
+
|
254 |
+
assert(nKnovel >= 0 and nKnovel <= max_possible_nKnovel)
|
255 |
+
self.nKnovel = nKnovel
|
256 |
+
|
257 |
+
max_possible_nKbase = self.dataset.num_cats_base
|
258 |
+
nKbase = nKbase if nKbase >= 0 else max_possible_nKbase
|
259 |
+
if (self.phase == 'train' or self.phase == 'trainval') and nKbase > 0:
|
260 |
+
nKbase -= self.nKnovel
|
261 |
+
max_possible_nKbase -= self.nKnovel
|
262 |
+
|
263 |
+
assert(nKbase >= 0 and nKbase <= max_possible_nKbase)
|
264 |
+
self.nKbase = nKbase
|
265 |
+
|
266 |
+
self.nExemplars = nExemplars
|
267 |
+
self.nTestNovel = nTestNovel
|
268 |
+
self.nTestBase = nTestBase
|
269 |
+
self.batch_size = batch_size
|
270 |
+
self.epoch_size = epoch_size
|
271 |
+
self.num_workers = num_workers
|
272 |
+
self.is_eval_mode = (self.phase == 'test') or (self.phase == 'val')
|
273 |
+
|
274 |
+
def sampleImageIdsFrom(self, cat_id, sample_size=1):
|
275 |
+
"""
|
276 |
+
Samples `sample_size` number of unique image ids picked from the
|
277 |
+
category `cat_id` (i.e., self.dataset.label2ind[cat_id]).
|
278 |
+
|
279 |
+
Args:
|
280 |
+
cat_id: a scalar with the id of the category from which images will
|
281 |
+
be sampled.
|
282 |
+
sample_size: number of images that will be sampled.
|
283 |
+
|
284 |
+
Returns:
|
285 |
+
image_ids: a list of length `sample_size` with unique image ids.
|
286 |
+
"""
|
287 |
+
assert(cat_id in self.dataset.label2ind)
|
288 |
+
assert(len(self.dataset.label2ind[cat_id]) >= sample_size)
|
289 |
+
# Note: random.sample samples elements without replacement.
|
290 |
+
# seed = random.randint(1,10000000)
|
291 |
+
# random.seed(seed)
|
292 |
+
return random.sample(self.dataset.label2ind[cat_id], sample_size)
|
293 |
+
|
294 |
+
def sampleCategories(self, cat_set, sample_size=1):
|
295 |
+
"""
|
296 |
+
Samples `sample_size` number of unique categories picked from the
|
297 |
+
`cat_set` set of categories. `cat_set` can be either 'base' or 'novel'.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
cat_set: string that specifies the set of categories from which
|
301 |
+
categories will be sampled.
|
302 |
+
sample_size: number of categories that will be sampled.
|
303 |
+
|
304 |
+
Returns:
|
305 |
+
cat_ids: a list of length `sample_size` with unique category ids.
|
306 |
+
"""
|
307 |
+
if cat_set == 'base':
|
308 |
+
labelIds = self.dataset.labelIds_base
|
309 |
+
elif cat_set == 'novel':
|
310 |
+
labelIds = self.dataset.labelIds_novel
|
311 |
+
else:
|
312 |
+
raise ValueError('Not recognized category set {}'.format(cat_set))
|
313 |
+
|
314 |
+
assert(len(labelIds) >= sample_size)
|
315 |
+
# return sample_size unique categories chosen from labelIds set of
|
316 |
+
# categories (that can be either self.labelIds_base or self.labelIds_novel)
|
317 |
+
# Note: random.sample samples elements without replacement.
|
318 |
+
return random.sample(labelIds, sample_size)
|
319 |
+
|
320 |
+
def sample_base_and_novel_categories(self, nKbase, nKnovel):
|
321 |
+
"""
|
322 |
+
Samples `nKbase` number of base categories and `nKnovel` number of novel
|
323 |
+
categories.
|
324 |
+
|
325 |
+
Args:
|
326 |
+
nKbase: number of base categories
|
327 |
+
nKnovel: number of novel categories
|
328 |
+
|
329 |
+
Returns:
|
330 |
+
Kbase: a list of length 'nKbase' with the ids of the sampled base
|
331 |
+
categories.
|
332 |
+
Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel
|
333 |
+
categories.
|
334 |
+
"""
|
335 |
+
if self.is_eval_mode:
|
336 |
+
assert(nKnovel <= self.dataset.num_cats_novel)
|
337 |
+
# sample from the set of base categories 'nKbase' number of base
|
338 |
+
# categories.
|
339 |
+
Kbase = sorted(self.sampleCategories('base', nKbase))
|
340 |
+
# sample from the set of novel categories 'nKnovel' number of novel
|
341 |
+
# categories.
|
342 |
+
Knovel = sorted(self.sampleCategories('novel', nKnovel))
|
343 |
+
else:
|
344 |
+
# sample from the set of base categories 'nKnovel' + 'nKbase' number
|
345 |
+
# of categories.
|
346 |
+
cats_ids = self.sampleCategories('base', nKnovel+nKbase)
|
347 |
+
assert(len(cats_ids) == (nKnovel+nKbase))
|
348 |
+
# Randomly pick 'nKnovel' number of fake novel categories and keep
|
349 |
+
# the rest as base categories.
|
350 |
+
random.shuffle(cats_ids)
|
351 |
+
Knovel = sorted(cats_ids[:nKnovel])
|
352 |
+
Kbase = sorted(cats_ids[nKnovel:])
|
353 |
+
|
354 |
+
|
355 |
+
return Kbase, Knovel
|
356 |
+
|
357 |
+
def sample_test_examples_for_base_categories(self, Kbase, nTestBase):
|
358 |
+
"""
|
359 |
+
Sample `nTestBase` number of images from the `Kbase` categories.
|
360 |
+
|
361 |
+
Args:
|
362 |
+
Kbase: a list of length `nKbase` with the ids of the categories from
|
363 |
+
where the images will be sampled.
|
364 |
+
nTestBase: the total number of images that will be sampled.
|
365 |
+
|
366 |
+
Returns:
|
367 |
+
Tbase: a list of length `nTestBase` with 2-element tuples. The 1st
|
368 |
+
element of each tuple is the image id that was sampled and the
|
369 |
+
2nd elemend is its category label (which is in the range
|
370 |
+
[0, len(Kbase)-1]).
|
371 |
+
"""
|
372 |
+
Tbase = []
|
373 |
+
if len(Kbase) > 0:
|
374 |
+
# Sample for each base category a number images such that the total
|
375 |
+
# number sampled images of all categories to be equal to `nTestBase`.
|
376 |
+
KbaseIndices = np.random.choice(
|
377 |
+
np.arange(len(Kbase)), size=nTestBase, replace=True)
|
378 |
+
KbaseIndices, NumImagesPerCategory = np.unique(
|
379 |
+
KbaseIndices, return_counts=True)
|
380 |
+
|
381 |
+
for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory):
|
382 |
+
imd_ids = self.sampleImageIdsFrom(
|
383 |
+
Kbase[Kbase_idx], sample_size=NumImages)
|
384 |
+
Tbase += [(img_id, Kbase_idx) for img_id in imd_ids]
|
385 |
+
|
386 |
+
assert(len(Tbase) == nTestBase)
|
387 |
+
|
388 |
+
return Tbase
|
389 |
+
|
390 |
+
def sample_train_and_test_examples_for_novel_categories(
|
391 |
+
self, Knovel, nTestNovel, nExemplars, nKbase):
|
392 |
+
"""Samples train and test examples of the novel categories.
|
393 |
+
|
394 |
+
Args:
|
395 |
+
Knovel: a list with the ids of the novel categories.
|
396 |
+
nTestNovel: the total number of test images that will be sampled
|
397 |
+
from all the novel categories.
|
398 |
+
nExemplars: the number of training examples per novel category that
|
399 |
+
will be sampled.
|
400 |
+
nKbase: the number of base categories. It is used as offset of the
|
401 |
+
category index of each sampled image.
|
402 |
+
|
403 |
+
Returns:
|
404 |
+
Tnovel: a list of length `nTestNovel` with 2-element tuples. The
|
405 |
+
1st element of each tuple is the image id that was sampled and
|
406 |
+
the 2nd element is its category label (which is in the range
|
407 |
+
[nKbase, nKbase + len(Knovel) - 1]).
|
408 |
+
Exemplars: a list of length len(Knovel) * nExemplars of 2-element
|
409 |
+
tuples. The 1st element of each tuple is the image id that was
|
410 |
+
sampled and the 2nd element is its category label (which is in
|
411 |
+
the ragne [nKbase, nKbase + len(Knovel) - 1]).
|
412 |
+
"""
|
413 |
+
|
414 |
+
if len(Knovel) == 0:
|
415 |
+
return [], []
|
416 |
+
|
417 |
+
nKnovel = len(Knovel)
|
418 |
+
Tnovel = []
|
419 |
+
Exemplars = []
|
420 |
+
assert((nTestNovel % nKnovel) == 0)
|
421 |
+
nEvalExamplesPerClass = int(nTestNovel / nKnovel)
|
422 |
+
|
423 |
+
for Knovel_idx in range(len(Knovel)):
|
424 |
+
imd_ids = self.sampleImageIdsFrom(
|
425 |
+
Knovel[Knovel_idx],
|
426 |
+
sample_size=(nEvalExamplesPerClass + nExemplars))
|
427 |
+
|
428 |
+
imds_tnovel = imd_ids[:nEvalExamplesPerClass]
|
429 |
+
imds_ememplars = imd_ids[nEvalExamplesPerClass:]
|
430 |
+
|
431 |
+
Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel]
|
432 |
+
Exemplars += [(img_id, nKbase+Knovel_idx)
|
433 |
+
for img_id in imds_ememplars]
|
434 |
+
assert(len(Tnovel) == nTestNovel)
|
435 |
+
assert(len(Exemplars) == len(Knovel) * nExemplars)
|
436 |
+
# random.shuffle(Exemplars)
|
437 |
+
|
438 |
+
return Tnovel, Exemplars
|
439 |
+
|
440 |
+
def sample_episode(self):
|
441 |
+
"""Samples a training episode."""
|
442 |
+
nKnovel = self.nKnovel
|
443 |
+
nKbase = self.nKbase
|
444 |
+
nTestNovel = self.nTestNovel
|
445 |
+
nTestBase = self.nTestBase
|
446 |
+
nExemplars = self.nExemplars
|
447 |
+
|
448 |
+
Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel)
|
449 |
+
Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase)
|
450 |
+
Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories(
|
451 |
+
Knovel, nTestNovel, nExemplars, nKbase)
|
452 |
+
|
453 |
+
# concatenate the base and novel category examples.
|
454 |
+
Test = Tbase + Tnovel
|
455 |
+
# random.shuffle(Test)
|
456 |
+
Kall = Kbase + Knovel
|
457 |
+
|
458 |
+
return Exemplars, Test, Kall, nKbase
|
459 |
+
|
460 |
+
def createExamplesTensorData(self, examples):
|
461 |
+
"""
|
462 |
+
Creates the examples image and label tensor data.
|
463 |
+
|
464 |
+
Args:
|
465 |
+
examples: a list of 2-element tuples, each representing a
|
466 |
+
train or test example. The 1st element of each tuple
|
467 |
+
is the image id of the example and 2nd element is the
|
468 |
+
category label of the example, which is in the range
|
469 |
+
[0, nK - 1], where nK is the total number of categories
|
470 |
+
(both novel and base).
|
471 |
+
|
472 |
+
Returns:
|
473 |
+
images: a tensor of shape [nExamples, Height, Width, 3] with the
|
474 |
+
example images, where nExamples is the number of examples
|
475 |
+
(i.e., nExamples = len(examples)).
|
476 |
+
labels: a tensor of shape [nExamples] with the category label
|
477 |
+
of each example.
|
478 |
+
"""
|
479 |
+
images = torch.stack(
|
480 |
+
[self.dataset[img_idx][0] for img_idx, _ in examples], dim=0)
|
481 |
+
labels = torch.LongTensor([label for _, label in examples])
|
482 |
+
return images, labels
|
483 |
+
|
484 |
+
def get_iterator(self, epoch=0):
|
485 |
+
rand_seed = epoch
|
486 |
+
random.seed(rand_seed)
|
487 |
+
np.random.seed(rand_seed)
|
488 |
+
|
489 |
+
def load_function(iter_idx):
|
490 |
+
Exemplars, Test, Kall, nKbase = self.sample_episode()
|
491 |
+
Xt, Yt = self.createExamplesTensorData(Test)
|
492 |
+
Kall = torch.LongTensor(Kall)
|
493 |
+
if len(Exemplars) > 0:
|
494 |
+
Xe, Ye = self.createExamplesTensorData(Exemplars)
|
495 |
+
return Xe, Ye, Xt, Yt, Kall, nKbase
|
496 |
+
else:
|
497 |
+
return Xt, Yt, Kall, nKbase
|
498 |
+
|
499 |
+
tnt_dataset = tnt.dataset.ListDataset(
|
500 |
+
elem_list=range(self.epoch_size), load=load_function)
|
501 |
+
data_loader = tnt_dataset.parallel(
|
502 |
+
batch_size=self.batch_size,
|
503 |
+
num_workers=(0 if self.is_eval_mode else self.num_workers),
|
504 |
+
shuffle=(False if self.is_eval_mode else True),)
|
505 |
+
|
506 |
+
return data_loader
|
507 |
+
|
508 |
+
def __call__(self, epoch=0):
|
509 |
+
return self.get_iterator(epoch)
|
510 |
+
|
511 |
+
def __len__(self):
|
512 |
+
return int(self.epoch_size / self.batch_size)
|
dataloader/chest1.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataloader of Gidaris & Komodakis, CVPR 2018
|
2 |
+
# Adapted from:
|
3 |
+
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/dataloader.py
|
4 |
+
from __future__ import print_function
|
5 |
+
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
import numpy as npw
|
9 |
+
import random
|
10 |
+
import pickle
|
11 |
+
import json
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.data as data
|
16 |
+
import torchvision
|
17 |
+
import torchvision.datasets as datasets
|
18 |
+
import torchvision.transforms as transforms
|
19 |
+
import torchnet as tnt
|
20 |
+
import numpy as np
|
21 |
+
import pandas as pd
|
22 |
+
|
23 |
+
|
24 |
+
import h5py
|
25 |
+
|
26 |
+
import cv2
|
27 |
+
from PIL import Image
|
28 |
+
from PIL import ImageEnhance
|
29 |
+
import matplotlib.pyplot as plt
|
30 |
+
|
31 |
+
|
32 |
+
from torchvision.transforms.transforms import ToPILImage
|
33 |
+
|
34 |
+
|
35 |
+
# Set the appropriate paths of the datasets here.
|
36 |
+
# _CIFAR_FS_DATASET_DIR = './cifar/CIFAR-FS/'
|
37 |
+
_CHEST_DATASET_DIR = './NIH'
|
38 |
+
image_path = './NIH/images'
|
39 |
+
|
40 |
+
|
41 |
+
label_dict = {'Cardiomegaly': 0, 'Edema': 1, 'Effusion': 2, 'Emphysema': 3, 'Infiltration': 4, 'Mass': 5, 'Atelectasis': 6, 'Consolidation': 7,
|
42 |
+
'Pleural_Thickening': 8, 'Fibrosis': 9, 'Hernia': 10, 'Pneumonia': 11, 'Nodule': 12, 'Pneumothorax': 13, 'No Finding': 14}
|
43 |
+
|
44 |
+
|
45 |
+
def buildLabelIndex(labels):
|
46 |
+
label2inds = {}
|
47 |
+
for idx, label in enumerate(labels):
|
48 |
+
label = label_dict[label]
|
49 |
+
if label not in label2inds:
|
50 |
+
label2inds[label] = []
|
51 |
+
label2inds[label].append(idx)
|
52 |
+
|
53 |
+
return label2inds
|
54 |
+
|
55 |
+
|
56 |
+
def load_data(file):
|
57 |
+
try:
|
58 |
+
with open(file, 'rb') as fo:
|
59 |
+
data = pickle.load(fo)
|
60 |
+
return data
|
61 |
+
except:
|
62 |
+
with open(file, 'rb') as f:
|
63 |
+
u = pickle._Unpickler(f)
|
64 |
+
u.encoding = 'latin1'
|
65 |
+
data = u.load()
|
66 |
+
return data
|
67 |
+
|
68 |
+
|
69 |
+
class Chest(data.Dataset):
|
70 |
+
def __init__(self, phase='train', do_not_use_random_transf=False):
|
71 |
+
|
72 |
+
assert(phase == 'train' or phase == 'val' or phase ==
|
73 |
+
'test' or phase == 'trainval')
|
74 |
+
self.phase = phase
|
75 |
+
# self.name = phase + '.csv'
|
76 |
+
|
77 |
+
idx = 1 # represents group for experimentation
|
78 |
+
|
79 |
+
print('Loading Chest-XRay dataset - phase {0}'.format(phase))
|
80 |
+
|
81 |
+
train_path = os.path.join(_CHEST_DATASET_DIR, f'train{idx}.csv')
|
82 |
+
val_path = os.path.join(_CHEST_DATASET_DIR, f'val{idx}.csv')
|
83 |
+
test_path = os.path.join(_CHEST_DATASET_DIR, f'test{idx}.csv')
|
84 |
+
|
85 |
+
if self.phase == 'train':
|
86 |
+
# # During training phase we only load the training phase images
|
87 |
+
# # of the training categories (aka base categories).
|
88 |
+
# data_train = load_data(file_train_categories_train_phase)
|
89 |
+
# # self.data = data_train['data']
|
90 |
+
# self.labels = data_train['labels']
|
91 |
+
|
92 |
+
file = pd.read_csv(train_path)
|
93 |
+
|
94 |
+
self.data = file['image_id'].values
|
95 |
+
|
96 |
+
self.labels = file['class_name'].values
|
97 |
+
|
98 |
+
self.label2ind = buildLabelIndex(self.labels)
|
99 |
+
|
100 |
+
self.labelIds = sorted(self.label2ind.keys())
|
101 |
+
self.num_cats = len(self.labelIds)
|
102 |
+
self.labelIds_base = self.labelIds
|
103 |
+
self.num_cats_base = len(self.labelIds_base)
|
104 |
+
|
105 |
+
# elif self.phase == 'trainval':
|
106 |
+
# # During training phase we only load the training phase images
|
107 |
+
# # of the training categories (aka base categories).
|
108 |
+
# data_train = load_data(file_train_categories_train_phase)
|
109 |
+
# self.data = data_train['data']
|
110 |
+
# self.labels = data_train['labels']
|
111 |
+
# data_base = load_data(file_train_categories_val_phase)
|
112 |
+
# data_novel = load_data(file_val_categories_val_phase)
|
113 |
+
# self.data = np.concatenate(
|
114 |
+
# [self.data, data_novel['data']], axis=0)
|
115 |
+
# self.data = np.concatenate(
|
116 |
+
# [self.data, data_base['data']], axis=0)
|
117 |
+
|
118 |
+
# self.labels = np.concatenate(
|
119 |
+
# [self.labels, data_novel['labels']], axis=0)
|
120 |
+
# self.labels = np.concatenate(
|
121 |
+
# [self.labels, data_base['labels']], axis=0)
|
122 |
+
|
123 |
+
# self.label2ind = buildLabelIndex(self.labels)
|
124 |
+
# self.labelIds = sorted(self.label2ind.keys())
|
125 |
+
# self.num_cats = len(self.labelIds)
|
126 |
+
# self.labelIds_base = self.labelIds
|
127 |
+
# self.num_cats_base = len(self.labelIds_base)
|
128 |
+
|
129 |
+
elif self.phase == 'val' or self.phase == 'test':
|
130 |
+
if self.phase == 'test':
|
131 |
+
# # load data that will be used for evaluating the recognition
|
132 |
+
# # accuracy of the base categories.
|
133 |
+
# data_base = load_data(file_train_categories_test_phase)
|
134 |
+
# # load data that will be use for evaluating the few-shot recogniton
|
135 |
+
# # accuracy on the novel categories.
|
136 |
+
# data_novel = load_data(file_test_categories_test_phase)
|
137 |
+
|
138 |
+
train_file = pd.read_csv(train_path)
|
139 |
+
file = pd.read_csv(test_path)
|
140 |
+
else: # phase=='val'
|
141 |
+
# # load data that will be used for evaluating the recognition
|
142 |
+
# # accuracy of the base categories.
|
143 |
+
# data_base = load_data(file_train_categories_val_phase)
|
144 |
+
# # load data that will be use for evaluating the few-shot recogniton
|
145 |
+
# # accuracy on the novel categories.
|
146 |
+
# data_novel = load_data(file_val_categories_val_phase)
|
147 |
+
|
148 |
+
train_file = pd.read_csv(train_path)
|
149 |
+
file = pd.read_csv(val_path)
|
150 |
+
|
151 |
+
# self.data = np.concatenate(
|
152 |
+
# [data_base['data'], data_novel['data']], axis=0)
|
153 |
+
# self.labels = data_base['labels'] + data_novel['labels']
|
154 |
+
|
155 |
+
train_labels = train_file['class_name'].values
|
156 |
+
novel_labels = file['class_name'].values
|
157 |
+
|
158 |
+
self.data = np.concatenate(
|
159 |
+
[train_file['image_id'].values, file['image_id'].values], axis=0)
|
160 |
+
self.labels = np.concatenate(
|
161 |
+
[train_file['class_name'].values, file['class_name'].values], axis=0)
|
162 |
+
|
163 |
+
|
164 |
+
self.label2ind = buildLabelIndex(self.labels)
|
165 |
+
self.labelIds = sorted(self.label2ind.keys())
|
166 |
+
self.num_cats = len(self.labelIds)
|
167 |
+
|
168 |
+
# self.labelIds_base = buildLabelIndex(data_base['labels']).keys()
|
169 |
+
# self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys()
|
170 |
+
|
171 |
+
self.labelIds_base = buildLabelIndex(train_labels).keys()
|
172 |
+
self.labelIds_novel = buildLabelIndex(novel_labels).keys()
|
173 |
+
print('='*60)
|
174 |
+
print(self.labelIds_novel)
|
175 |
+
print('='*60)
|
176 |
+
|
177 |
+
self.num_cats_base = len(self.labelIds_base)
|
178 |
+
self.num_cats_novel = len(self.labelIds_novel)
|
179 |
+
# print(self.labelIds_novel)
|
180 |
+
# print(self.num_cats_novel)
|
181 |
+
intersection = set(self.labelIds_base) & set(self.labelIds_novel)
|
182 |
+
assert(len(intersection) == 0)
|
183 |
+
else:
|
184 |
+
raise ValueError('Not valid phase {0}'.format(self.phase))
|
185 |
+
|
186 |
+
# mean_pix = [x/255.0 for x in [129.37731888,
|
187 |
+
# 124.10583864, 112.47758569]]
|
188 |
+
|
189 |
+
# std_pix = [x/255.0 for x in [68.20947949, 65.43124043, 70.45866994]]
|
190 |
+
|
191 |
+
mean_pix = [0.52024849, 0.52024849, 0.52024849]
|
192 |
+
std_pix = [0.22699496, 0.22699496, 0.22699496]
|
193 |
+
|
194 |
+
|
195 |
+
normalize = transforms.Normalize(mean=mean_pix, std=std_pix)
|
196 |
+
|
197 |
+
if (self.phase == 'test' or self.phase == 'val') or (do_not_use_random_transf == True):
|
198 |
+
|
199 |
+
self.transform = transforms.Compose([
|
200 |
+
transforms.ToPILImage(),
|
201 |
+
# lambda x: np.asarray(x),
|
202 |
+
transforms.ToTensor(),
|
203 |
+
# lambda x: x/255.0,
|
204 |
+
normalize
|
205 |
+
])
|
206 |
+
else:
|
207 |
+
self.transform = transforms.Compose([
|
208 |
+
transforms.ToPILImage(),
|
209 |
+
# transforms.RandomCrop(32, padding=4),
|
210 |
+
# transforms.ColorJitter(
|
211 |
+
# brightness=0.4, contrast=0.4, saturation=0.4),
|
212 |
+
transforms.RandomHorizontalFlip(),
|
213 |
+
transforms.ToTensor(),
|
214 |
+
# lambda x: np.asarray(x),
|
215 |
+
# lambda x: x/255.0,
|
216 |
+
normalize
|
217 |
+
])
|
218 |
+
|
219 |
+
def __getitem__(self, index):
|
220 |
+
img, label = cv2.imread(os.path.join(
|
221 |
+
image_path, self.data[index]))[:,:,::-1], self.labels[index]
|
222 |
+
img = cv2.resize(img,(128,128)) # resize by Garvit
|
223 |
+
# img = cv2.resize(img,(84, 84)) # resize by kshitiz
|
224 |
+
|
225 |
+
# img = Image.fromarray(img)
|
226 |
+
if self.transform is not None:
|
227 |
+
img = self.transform(img)
|
228 |
+
return img, label, self.data[index]
|
229 |
+
# return img, label
|
230 |
+
|
231 |
+
def __len__(self):
|
232 |
+
return len(self.data)
|
233 |
+
|
234 |
+
|
235 |
+
class FewShotDataloader():
|
236 |
+
def __init__(self,
|
237 |
+
dataset,
|
238 |
+
nKnovel=5, # number of novel categories.
|
239 |
+
nKbase=-1, # number of base categories.
|
240 |
+
# number of training examples per novel category.
|
241 |
+
nExemplars=1,
|
242 |
+
# number of test examples for all the novel categories.
|
243 |
+
nTestNovel=15*5,
|
244 |
+
# number of test examples for all the base categories.
|
245 |
+
nTestBase=15*5,
|
246 |
+
batch_size=1, # number of training episodes per batch.
|
247 |
+
num_workers=4,
|
248 |
+
epoch_size=2000, # number of batches per epoch.
|
249 |
+
):
|
250 |
+
|
251 |
+
self.dataset = dataset
|
252 |
+
self.phase = self.dataset.phase
|
253 |
+
max_possible_nKnovel = (self.dataset.num_cats_base if self.phase == 'train' or self.phase == 'trainval'
|
254 |
+
else self.dataset.num_cats_novel)
|
255 |
+
|
256 |
+
assert(nKnovel >= 0 and nKnovel <= max_possible_nKnovel)
|
257 |
+
self.nKnovel = nKnovel
|
258 |
+
|
259 |
+
max_possible_nKbase = self.dataset.num_cats_base
|
260 |
+
nKbase = nKbase if nKbase >= 0 else max_possible_nKbase
|
261 |
+
if (self.phase == 'train' or self.phase == 'trainval') and nKbase > 0:
|
262 |
+
nKbase -= self.nKnovel
|
263 |
+
max_possible_nKbase -= self.nKnovel
|
264 |
+
|
265 |
+
assert(nKbase >= 0 and nKbase <= max_possible_nKbase)
|
266 |
+
self.nKbase = nKbase
|
267 |
+
|
268 |
+
self.nExemplars = nExemplars
|
269 |
+
self.nTestNovel = nTestNovel
|
270 |
+
self.nTestBase = nTestBase
|
271 |
+
self.batch_size = batch_size
|
272 |
+
self.epoch_size = epoch_size
|
273 |
+
self.num_workers = num_workers
|
274 |
+
self.is_eval_mode = (self.phase == 'test') or (self.phase == 'val')
|
275 |
+
|
276 |
+
def sampleImageIdsFrom(self, cat_id, sample_size=1):
|
277 |
+
"""
|
278 |
+
Samples `sample_size` number of unique image ids picked from the
|
279 |
+
category `cat_id` (i.e., self.dataset.label2ind[cat_id]).
|
280 |
+
|
281 |
+
Args:
|
282 |
+
cat_id: a scalar with the id of the category from which images will
|
283 |
+
be sampled.
|
284 |
+
sample_size: number of images that will be sampled.
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
image_ids: a list of length `sample_size` with unique image ids.
|
288 |
+
"""
|
289 |
+
assert(cat_id in self.dataset.label2ind)
|
290 |
+
assert(len(self.dataset.label2ind[cat_id]) >= sample_size)
|
291 |
+
# Note: random.sample samples elements without replacement.
|
292 |
+
# seed = random.randint(1,10000000)
|
293 |
+
# random.seed(seed)
|
294 |
+
return random.sample(self.dataset.label2ind[cat_id], sample_size)
|
295 |
+
|
296 |
+
def sampleCategories(self, cat_set, sample_size=1):
|
297 |
+
"""
|
298 |
+
Samples `sample_size` number of unique categories picked from the
|
299 |
+
`cat_set` set of categories. `cat_set` can be either 'base' or 'novel'.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
cat_set: string that specifies the set of categories from which
|
303 |
+
categories will be sampled.
|
304 |
+
sample_size: number of categories that will be sampled.
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
cat_ids: a list of length `sample_size` with unique category ids.
|
308 |
+
"""
|
309 |
+
if cat_set == 'base':
|
310 |
+
labelIds = self.dataset.labelIds_base
|
311 |
+
elif cat_set == 'novel':
|
312 |
+
labelIds = self.dataset.labelIds_novel
|
313 |
+
else:
|
314 |
+
raise ValueError('Not recognized category set {}'.format(cat_set))
|
315 |
+
|
316 |
+
assert(len(labelIds) >= sample_size)
|
317 |
+
# return sample_size unique categories chosen from labelIds set of
|
318 |
+
# categories (that can be either self.labelIds_base or self.labelIds_novel)
|
319 |
+
# Note: random.sample samples elements without replacement.
|
320 |
+
return random.sample(labelIds, sample_size)
|
321 |
+
|
322 |
+
def sample_base_and_novel_categories(self, nKbase, nKnovel):
|
323 |
+
"""
|
324 |
+
Samples `nKbase` number of base categories and `nKnovel` number of novel
|
325 |
+
categories.
|
326 |
+
|
327 |
+
Args:
|
328 |
+
nKbase: number of base categories
|
329 |
+
nKnovel: number of novel categories
|
330 |
+
|
331 |
+
Returns:
|
332 |
+
Kbase: a list of length 'nKbase' with the ids of the sampled base
|
333 |
+
categories.
|
334 |
+
Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel
|
335 |
+
categories.
|
336 |
+
"""
|
337 |
+
if self.is_eval_mode:
|
338 |
+
assert(nKnovel <= self.dataset.num_cats_novel)
|
339 |
+
# sample from the set of base categories 'nKbase' number of base
|
340 |
+
# categories.
|
341 |
+
Kbase = sorted(self.sampleCategories('base', nKbase))
|
342 |
+
# sample from the set of novel categories 'nKnovel' number of novel
|
343 |
+
# categories.
|
344 |
+
Knovel = sorted(self.sampleCategories('novel', nKnovel))
|
345 |
+
else:
|
346 |
+
# sample from the set of base categories 'nKnovel' + 'nKbase' number
|
347 |
+
# of categories.
|
348 |
+
cats_ids = self.sampleCategories('base', nKnovel+nKbase)
|
349 |
+
assert(len(cats_ids) == (nKnovel+nKbase))
|
350 |
+
# Randomly pick 'nKnovel' number of fake novel categories and keep
|
351 |
+
# the rest as base categories.
|
352 |
+
random.shuffle(cats_ids)
|
353 |
+
Knovel = sorted(cats_ids[:nKnovel])
|
354 |
+
Kbase = sorted(cats_ids[nKnovel:])
|
355 |
+
|
356 |
+
|
357 |
+
return Kbase, Knovel
|
358 |
+
|
359 |
+
def sample_test_examples_for_base_categories(self, Kbase, nTestBase):
|
360 |
+
"""
|
361 |
+
Sample `nTestBase` number of images from the `Kbase` categories.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
Kbase: a list of length `nKbase` with the ids of the categories from
|
365 |
+
where the images will be sampled.
|
366 |
+
nTestBase: the total number of images that will be sampled.
|
367 |
+
|
368 |
+
Returns:
|
369 |
+
Tbase: a list of length `nTestBase` with 2-element tuples. The 1st
|
370 |
+
element of each tuple is the image id that was sampled and the
|
371 |
+
2nd elemend is its category label (which is in the range
|
372 |
+
[0, len(Kbase)-1]).
|
373 |
+
"""
|
374 |
+
Tbase = []
|
375 |
+
if len(Kbase) > 0:
|
376 |
+
# Sample for each base category a number images such that the total
|
377 |
+
# number sampled images of all categories to be equal to `nTestBase`.
|
378 |
+
KbaseIndices = np.random.choice(
|
379 |
+
np.arange(len(Kbase)), size=nTestBase, replace=True)
|
380 |
+
KbaseIndices, NumImagesPerCategory = np.unique(
|
381 |
+
KbaseIndices, return_counts=True)
|
382 |
+
|
383 |
+
for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory):
|
384 |
+
imd_ids = self.sampleImageIdsFrom(
|
385 |
+
Kbase[Kbase_idx], sample_size=NumImages)
|
386 |
+
Tbase += [(img_id, Kbase_idx) for img_id in imd_ids]
|
387 |
+
|
388 |
+
assert(len(Tbase) == nTestBase)
|
389 |
+
|
390 |
+
return Tbase
|
391 |
+
|
392 |
+
def sample_train_and_test_examples_for_novel_categories(
|
393 |
+
self, Knovel, nTestNovel, nExemplars, nKbase):
|
394 |
+
"""Samples train and test examples of the novel categories.
|
395 |
+
|
396 |
+
Args:
|
397 |
+
Knovel: a list with the ids of the novel categories.
|
398 |
+
nTestNovel: the total number of test images that will be sampled
|
399 |
+
from all the novel categories.
|
400 |
+
nExemplars: the number of training examples per novel category that
|
401 |
+
will be sampled.
|
402 |
+
nKbase: the number of base categories. It is used as offset of the
|
403 |
+
category index of each sampled image.
|
404 |
+
|
405 |
+
Returns:
|
406 |
+
Tnovel: a list of length `nTestNovel` with 2-element tuples. The
|
407 |
+
1st element of each tuple is the image id that was sampled and
|
408 |
+
the 2nd element is its category label (which is in the range
|
409 |
+
[nKbase, nKbase + len(Knovel) - 1]).
|
410 |
+
Exemplars: a list of length len(Knovel) * nExemplars of 2-element
|
411 |
+
tuples. The 1st element of each tuple is the image id that was
|
412 |
+
sampled and the 2nd element is its category label (which is in
|
413 |
+
the ragne [nKbase, nKbase + len(Knovel) - 1]).
|
414 |
+
"""
|
415 |
+
|
416 |
+
if len(Knovel) == 0:
|
417 |
+
return [], []
|
418 |
+
|
419 |
+
nKnovel = len(Knovel)
|
420 |
+
Tnovel = []
|
421 |
+
Exemplars = []
|
422 |
+
assert((nTestNovel % nKnovel) == 0)
|
423 |
+
nEvalExamplesPerClass = int(nTestNovel / nKnovel)
|
424 |
+
|
425 |
+
for Knovel_idx in range(len(Knovel)):
|
426 |
+
imd_ids = self.sampleImageIdsFrom(
|
427 |
+
Knovel[Knovel_idx],
|
428 |
+
sample_size=(nEvalExamplesPerClass + nExemplars))
|
429 |
+
|
430 |
+
imds_tnovel = imd_ids[:nEvalExamplesPerClass]
|
431 |
+
imds_ememplars = imd_ids[nEvalExamplesPerClass:]
|
432 |
+
|
433 |
+
Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel]
|
434 |
+
Exemplars += [(img_id, nKbase+Knovel_idx)
|
435 |
+
for img_id in imds_ememplars]
|
436 |
+
assert(len(Tnovel) == nTestNovel)
|
437 |
+
assert(len(Exemplars) == len(Knovel) * nExemplars)
|
438 |
+
# random.shuffle(Exemplars)
|
439 |
+
|
440 |
+
return Tnovel, Exemplars
|
441 |
+
|
442 |
+
def sample_episode(self):
|
443 |
+
"""Samples a training episode."""
|
444 |
+
nKnovel = self.nKnovel
|
445 |
+
nKbase = self.nKbase
|
446 |
+
nTestNovel = self.nTestNovel
|
447 |
+
nTestBase = self.nTestBase
|
448 |
+
nExemplars = self.nExemplars
|
449 |
+
|
450 |
+
Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel)
|
451 |
+
Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase)
|
452 |
+
Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories(
|
453 |
+
Knovel, nTestNovel, nExemplars, nKbase)
|
454 |
+
|
455 |
+
# concatenate the base and novel category examples.
|
456 |
+
Test = Tbase + Tnovel
|
457 |
+
# random.shuffle(Test)
|
458 |
+
Kall = Kbase + Knovel
|
459 |
+
|
460 |
+
return Exemplars, Test, Kall, nKbase
|
461 |
+
|
462 |
+
def createExamplesTensorData(self, examples):
|
463 |
+
"""
|
464 |
+
Creates the examples image and label tensor data.
|
465 |
+
|
466 |
+
Args:
|
467 |
+
examples: a list of 2-element tuples, each representing a
|
468 |
+
train or test example. The 1st element of each tuple
|
469 |
+
is the image id of the example and 2nd element is the
|
470 |
+
category label of the example, which is in the range
|
471 |
+
[0, nK - 1], where nK is the total number of categories
|
472 |
+
(both novel and base).
|
473 |
+
|
474 |
+
Returns:
|
475 |
+
images: a tensor of shape [nExamples, Height, Width, 3] with the
|
476 |
+
example images, where nExamples is the number of examples
|
477 |
+
(i.e., nExamples = len(examples)).
|
478 |
+
labels: a tensor of shape [nExamples] with the category label
|
479 |
+
of each example.
|
480 |
+
"""
|
481 |
+
images = torch.stack(
|
482 |
+
[self.dataset[img_idx][0] for img_idx, _ in examples], dim=0)
|
483 |
+
names = np.stack(
|
484 |
+
[self.dataset[img_idx][-1] for img_idx, _ in examples], axis=0)
|
485 |
+
print(names)
|
486 |
+
labels = torch.LongTensor([label for _, label in examples])
|
487 |
+
return images, labels
|
488 |
+
|
489 |
+
def get_iterator(self, epoch=0):
|
490 |
+
rand_seed = epoch
|
491 |
+
random.seed(rand_seed)
|
492 |
+
np.random.seed(rand_seed)
|
493 |
+
|
494 |
+
def load_function(iter_idx):
|
495 |
+
Exemplars, Test, Kall, nKbase = self.sample_episode()
|
496 |
+
Xt, Yt = self.createExamplesTensorData(Test)
|
497 |
+
Kall = torch.LongTensor(Kall)
|
498 |
+
if len(Exemplars) > 0:
|
499 |
+
Xe, Ye = self.createExamplesTensorData(Exemplars)
|
500 |
+
return Xe, Ye, Xt, Yt, Kall, nKbase
|
501 |
+
else:
|
502 |
+
return Xt, Yt, Kall, nKbase
|
503 |
+
|
504 |
+
tnt_dataset = tnt.dataset.ListDataset(
|
505 |
+
elem_list=range(self.epoch_size), load=load_function)
|
506 |
+
data_loader = tnt_dataset.parallel(
|
507 |
+
batch_size=self.batch_size,
|
508 |
+
num_workers=(0 if self.is_eval_mode else self.num_workers),
|
509 |
+
shuffle=(False if self.is_eval_mode else True),)
|
510 |
+
|
511 |
+
return data_loader
|
512 |
+
|
513 |
+
def __call__(self, epoch=0):
|
514 |
+
return self.get_iterator(epoch)
|
515 |
+
|
516 |
+
def __len__(self):
|
517 |
+
return int(self.epoch_size / self.batch_size)
|
dataloader/mini_imagenet.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataloader of Gidaris & Komodakis, CVPR 2018
|
2 |
+
# Adapted from:
|
3 |
+
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/dataloader.py
|
4 |
+
from __future__ import print_function
|
5 |
+
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
import numpy as np
|
9 |
+
import random
|
10 |
+
import pickle
|
11 |
+
import json
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.data as data
|
16 |
+
import torchvision
|
17 |
+
import torchvision.datasets as datasets
|
18 |
+
import torchvision.transforms as transforms
|
19 |
+
import torchnet as tnt
|
20 |
+
|
21 |
+
import h5py
|
22 |
+
|
23 |
+
from PIL import Image
|
24 |
+
from PIL import ImageEnhance
|
25 |
+
|
26 |
+
from pdb import set_trace as breakpoint
|
27 |
+
|
28 |
+
from torchvision.transforms.transforms import ToPILImage
|
29 |
+
|
30 |
+
# Set the appropriate paths of the datasets here.
|
31 |
+
_MINI_IMAGENET_DATASET_DIR = './miniimagenet/' ## your miniimagenet folder
|
32 |
+
|
33 |
+
|
34 |
+
def buildLabelIndex(labels):
|
35 |
+
label2inds = {}
|
36 |
+
for idx, label in enumerate(labels):
|
37 |
+
if label not in label2inds:
|
38 |
+
label2inds[label] = []
|
39 |
+
label2inds[label].append(idx)
|
40 |
+
|
41 |
+
return label2inds
|
42 |
+
|
43 |
+
|
44 |
+
def load_data(file):
|
45 |
+
try:
|
46 |
+
with open(file, 'rb') as fo:
|
47 |
+
data = pickle.load(fo)
|
48 |
+
return data
|
49 |
+
except:
|
50 |
+
with open(file, 'rb') as f:
|
51 |
+
u = pickle._Unpickler(f)
|
52 |
+
u.encoding = 'latin1'
|
53 |
+
data = u.load()
|
54 |
+
return data
|
55 |
+
|
56 |
+
class MiniImageNet(data.Dataset):
|
57 |
+
def __init__(self, phase='train', do_not_use_random_transf=False):
|
58 |
+
|
59 |
+
self.base_folder = 'miniImagenet'
|
60 |
+
#assert(phase=='train' or phase=='val' or phase=='test' or ph)
|
61 |
+
self.phase = phase
|
62 |
+
self.name = 'MiniImageNet_' + phase
|
63 |
+
|
64 |
+
print('Loading mini ImageNet dataset - phase {0}'.format(phase))
|
65 |
+
file_train_categories_train_phase = os.path.join(
|
66 |
+
_MINI_IMAGENET_DATASET_DIR,
|
67 |
+
'miniImageNet_category_split_train_phase_train.pickle')
|
68 |
+
file_train_categories_val_phase = os.path.join(
|
69 |
+
_MINI_IMAGENET_DATASET_DIR,
|
70 |
+
'miniImageNet_category_split_train_phase_val.pickle')
|
71 |
+
file_train_categories_test_phase = os.path.join(
|
72 |
+
_MINI_IMAGENET_DATASET_DIR,
|
73 |
+
'miniImageNet_category_split_train_phase_test.pickle')
|
74 |
+
file_val_categories_val_phase = os.path.join(
|
75 |
+
_MINI_IMAGENET_DATASET_DIR,
|
76 |
+
'miniImageNet_category_split_val.pickle')
|
77 |
+
file_test_categories_test_phase = os.path.join(
|
78 |
+
_MINI_IMAGENET_DATASET_DIR,
|
79 |
+
'miniImageNet_category_split_test.pickle')
|
80 |
+
|
81 |
+
if self.phase=='train':
|
82 |
+
# During training phase we only load the training phase images
|
83 |
+
# of the training categories (aka base categories).
|
84 |
+
data_train = load_data(file_train_categories_train_phase)
|
85 |
+
self.data = data_train['data']
|
86 |
+
self.labels = data_train['labels']
|
87 |
+
|
88 |
+
self.label2ind = buildLabelIndex(self.labels)
|
89 |
+
self.labelIds = sorted(self.label2ind.keys())
|
90 |
+
self.num_cats = len(self.labelIds)
|
91 |
+
self.labelIds_base = self.labelIds
|
92 |
+
self.num_cats_base = len(self.labelIds_base)
|
93 |
+
elif self.phase == 'trainval':
|
94 |
+
# During training phase we only load the training phase images
|
95 |
+
# of the training categories (aka base categories).
|
96 |
+
data_train = load_data(file_train_categories_train_phase)
|
97 |
+
self.data = data_train['data']
|
98 |
+
self.labels = data_train['labels']
|
99 |
+
data_base = load_data(file_train_categories_val_phase)
|
100 |
+
data_novel = load_data(file_val_categories_val_phase)
|
101 |
+
self.data = np.concatenate(
|
102 |
+
[self.data, data_novel['data']], axis=0)
|
103 |
+
self.data = np.concatenate(
|
104 |
+
[self.data, data_base['data']], axis=0)
|
105 |
+
self.labels = np.concatenate(
|
106 |
+
[self.labels, data_novel['labels']], axis=0)
|
107 |
+
self.labels = np.concatenate(
|
108 |
+
[self.labels, data_base['labels']], axis=0)
|
109 |
+
|
110 |
+
self.label2ind = buildLabelIndex(self.labels)
|
111 |
+
self.labelIds = sorted(self.label2ind.keys())
|
112 |
+
self.num_cats = len(self.labelIds)
|
113 |
+
self.labelIds_base = self.labelIds
|
114 |
+
self.num_cats_base = len(self.labelIds_base)
|
115 |
+
elif self.phase=='val' or self.phase=='test':
|
116 |
+
if self.phase=='test':
|
117 |
+
# load data that will be used for evaluating the recognition
|
118 |
+
# accuracy of the base categories.
|
119 |
+
data_base = load_data(file_train_categories_test_phase)
|
120 |
+
# load data that will be use for evaluating the few-shot recogniton
|
121 |
+
# accuracy on the novel categories.
|
122 |
+
data_novel = load_data(file_test_categories_test_phase)
|
123 |
+
else: # phase=='val'
|
124 |
+
# load data that will be used for evaluating the recognition
|
125 |
+
# accuracy of the base categories.
|
126 |
+
data_base = load_data(file_train_categories_val_phase)
|
127 |
+
# load data that will be use for evaluating the few-shot recogniton
|
128 |
+
# accuracy on the novel categories.
|
129 |
+
data_novel = load_data(file_val_categories_val_phase)
|
130 |
+
|
131 |
+
self.data = np.concatenate(
|
132 |
+
[data_base['data'], data_novel['data']], axis=0)
|
133 |
+
self.labels = data_base['labels'] + data_novel['labels']
|
134 |
+
|
135 |
+
self.label2ind = buildLabelIndex(self.labels)
|
136 |
+
self.labelIds = sorted(self.label2ind.keys())
|
137 |
+
self.num_cats = len(self.labelIds)
|
138 |
+
|
139 |
+
self.labelIds_base = buildLabelIndex(data_base['labels']).keys()
|
140 |
+
self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys()
|
141 |
+
self.num_cats_base = len(self.labelIds_base)
|
142 |
+
self.num_cats_novel = len(self.labelIds_novel)
|
143 |
+
intersection = set(self.labelIds_base) & set(self.labelIds_novel)
|
144 |
+
assert(len(intersection) == 0)
|
145 |
+
else:
|
146 |
+
raise ValueError('Not valid phase {0}'.format(self.phase))
|
147 |
+
|
148 |
+
mean_pix = [x/255.0 for x in [120.39586422, 115.59361427, 104.54012653]]
|
149 |
+
std_pix = [x/255.0 for x in [70.68188272, 68.27635443, 72.54505529]]
|
150 |
+
normalize = transforms.Normalize(mean=mean_pix, std=std_pix)
|
151 |
+
|
152 |
+
if (self.phase=='test' or self.phase=='val') or (do_not_use_random_transf==True):
|
153 |
+
self.transform = transforms.Compose([
|
154 |
+
# transforms.ToPILImage(),
|
155 |
+
# lambda x: np.asarray(x),
|
156 |
+
transforms.ToTensor(),
|
157 |
+
normalize
|
158 |
+
])
|
159 |
+
else:
|
160 |
+
self.transform = transforms.Compose([
|
161 |
+
# transforms.ToPILImage(),
|
162 |
+
transforms.RandomCrop(84, padding=8),
|
163 |
+
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
|
164 |
+
transforms.RandomHorizontalFlip(),
|
165 |
+
# lambda x: np.asarray(x),
|
166 |
+
transforms.ToTensor(),
|
167 |
+
normalize
|
168 |
+
])
|
169 |
+
|
170 |
+
def __getitem__(self, index):
|
171 |
+
img, label = self.data[index], self.labels[index]
|
172 |
+
# doing this so that it is consistent with all other datasets
|
173 |
+
# to return a PIL Image
|
174 |
+
img = Image.fromarray(img)
|
175 |
+
if self.transform is not None:
|
176 |
+
img = self.transform(img)
|
177 |
+
return img, label
|
178 |
+
|
179 |
+
def __len__(self):
|
180 |
+
return len(self.data)
|
181 |
+
|
182 |
+
|
183 |
+
class FewShotDataloader():
|
184 |
+
def __init__(self,
|
185 |
+
dataset,
|
186 |
+
nKnovel=5, # number of novel categories.
|
187 |
+
nKbase=-1, # number of base categories.
|
188 |
+
nExemplars=1, # number of training examples per novel category.
|
189 |
+
nTestNovel=15*5, # number of test examples for all the novel categories.
|
190 |
+
nTestBase=15*5, # number of test examples for all the base categories.
|
191 |
+
batch_size=1, # number of training episodes per batch.
|
192 |
+
num_workers=0,
|
193 |
+
epoch_size=2000, # number of batches per epoch.
|
194 |
+
):
|
195 |
+
|
196 |
+
self.dataset = dataset
|
197 |
+
self.phase = self.dataset.phase
|
198 |
+
max_possible_nKnovel = (self.dataset.num_cats_base if self.phase=='train' or self.phase=='trainval'
|
199 |
+
else self.dataset.num_cats_novel)
|
200 |
+
assert(nKnovel >= 0 and nKnovel < max_possible_nKnovel)
|
201 |
+
self.nKnovel = nKnovel
|
202 |
+
|
203 |
+
max_possible_nKbase = self.dataset.num_cats_base
|
204 |
+
nKbase = nKbase if nKbase >= 0 else max_possible_nKbase
|
205 |
+
if (self.phase=='train'or self.phase=='trainval') and nKbase > 0:
|
206 |
+
nKbase -= self.nKnovel
|
207 |
+
max_possible_nKbase -= self.nKnovel
|
208 |
+
|
209 |
+
assert(nKbase >= 0 and nKbase <= max_possible_nKbase)
|
210 |
+
self.nKbase = nKbase
|
211 |
+
|
212 |
+
self.nExemplars = nExemplars
|
213 |
+
self.nTestNovel = nTestNovel
|
214 |
+
self.nTestBase = nTestBase
|
215 |
+
self.batch_size = batch_size
|
216 |
+
self.epoch_size = epoch_size
|
217 |
+
self.num_workers = num_workers
|
218 |
+
self.is_eval_mode = (self.phase=='test') or (self.phase=='val')
|
219 |
+
|
220 |
+
def sampleImageIdsFrom(self, cat_id, sample_size=1):
|
221 |
+
"""
|
222 |
+
Samples `sample_size` number of unique image ids picked from the
|
223 |
+
category `cat_id` (i.e., self.dataset.label2ind[cat_id]).
|
224 |
+
|
225 |
+
Args:
|
226 |
+
cat_id: a scalar with the id of the category from which images will
|
227 |
+
be sampled.
|
228 |
+
sample_size: number of images that will be sampled.
|
229 |
+
|
230 |
+
Returns:
|
231 |
+
image_ids: a list of length `sample_size` with unique image ids.
|
232 |
+
"""
|
233 |
+
assert(cat_id in self.dataset.label2ind)
|
234 |
+
assert(len(self.dataset.label2ind[cat_id]) >= sample_size)
|
235 |
+
# Note: random.sample samples elements without replacement.
|
236 |
+
return random.sample(self.dataset.label2ind[cat_id], sample_size)
|
237 |
+
|
238 |
+
def sampleCategories(self, cat_set, sample_size=1):
|
239 |
+
"""
|
240 |
+
Samples `sample_size` number of unique categories picked from the
|
241 |
+
`cat_set` set of categories. `cat_set` can be either 'base' or 'novel'.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
cat_set: string that specifies the set of categories from which
|
245 |
+
categories will be sampled.
|
246 |
+
sample_size: number of categories that will be sampled.
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
cat_ids: a list of length `sample_size` with unique category ids.
|
250 |
+
"""
|
251 |
+
if cat_set=='base':
|
252 |
+
labelIds = self.dataset.labelIds_base
|
253 |
+
elif cat_set=='novel':
|
254 |
+
labelIds = self.dataset.labelIds_novel
|
255 |
+
else:
|
256 |
+
raise ValueError('Not recognized category set {}'.format(cat_set))
|
257 |
+
|
258 |
+
assert(len(labelIds) >= sample_size)
|
259 |
+
# return sample_size unique categories chosen from labelIds set of
|
260 |
+
# categories (that can be either self.labelIds_base or self.labelIds_novel)
|
261 |
+
# Note: random.sample samples elements without replacement.
|
262 |
+
return random.sample(labelIds, sample_size)
|
263 |
+
|
264 |
+
def sample_base_and_novel_categories(self, nKbase, nKnovel):
|
265 |
+
"""
|
266 |
+
Samples `nKbase` number of base categories and `nKnovel` number of novel
|
267 |
+
categories.
|
268 |
+
|
269 |
+
Args:
|
270 |
+
nKbase: number of base categories
|
271 |
+
nKnovel: number of novel categories
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
Kbase: a list of length 'nKbase' with the ids of the sampled base
|
275 |
+
categories.
|
276 |
+
Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel
|
277 |
+
categories.
|
278 |
+
"""
|
279 |
+
if self.is_eval_mode:
|
280 |
+
assert(nKnovel <= self.dataset.num_cats_novel)
|
281 |
+
# sample from the set of base categories 'nKbase' number of base
|
282 |
+
# categories.
|
283 |
+
Kbase = sorted(self.sampleCategories('base', nKbase))
|
284 |
+
# sample from the set of novel categories 'nKnovel' number of novel
|
285 |
+
# categories.
|
286 |
+
Knovel = sorted(self.sampleCategories('novel', nKnovel))
|
287 |
+
else:
|
288 |
+
# sample from the set of base categories 'nKnovel' + 'nKbase' number
|
289 |
+
# of categories.
|
290 |
+
cats_ids = self.sampleCategories('base', nKnovel+nKbase)
|
291 |
+
assert(len(cats_ids) == (nKnovel+nKbase))
|
292 |
+
# Randomly pick 'nKnovel' number of fake novel categories and keep
|
293 |
+
# the rest as base categories.
|
294 |
+
random.shuffle(cats_ids)
|
295 |
+
Knovel = sorted(cats_ids[:nKnovel])
|
296 |
+
Kbase = sorted(cats_ids[nKnovel:])
|
297 |
+
|
298 |
+
return Kbase, Knovel
|
299 |
+
|
300 |
+
def sample_test_examples_for_base_categories(self, Kbase, nTestBase):
|
301 |
+
"""
|
302 |
+
Sample `nTestBase` number of images from the `Kbase` categories.
|
303 |
+
|
304 |
+
Args:
|
305 |
+
Kbase: a list of length `nKbase` with the ids of the categories from
|
306 |
+
where the images will be sampled.
|
307 |
+
nTestBase: the total number of images that will be sampled.
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
Tbase: a list of length `nTestBase` with 2-element tuples. The 1st
|
311 |
+
element of each tuple is the image id that was sampled and the
|
312 |
+
2nd elemend is its category label (which is in the range
|
313 |
+
[0, len(Kbase)-1]).
|
314 |
+
"""
|
315 |
+
Tbase = []
|
316 |
+
if len(Kbase) > 0:
|
317 |
+
# Sample for each base category a number images such that the total
|
318 |
+
# number sampled images of all categories to be equal to `nTestBase`.
|
319 |
+
KbaseIndices = np.random.choice(
|
320 |
+
np.arange(len(Kbase)), size=nTestBase, replace=True)
|
321 |
+
KbaseIndices, NumImagesPerCategory = np.unique(
|
322 |
+
KbaseIndices, return_counts=True)
|
323 |
+
|
324 |
+
for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory):
|
325 |
+
imd_ids = self.sampleImageIdsFrom(
|
326 |
+
Kbase[Kbase_idx], sample_size=NumImages)
|
327 |
+
Tbase += [(img_id, Kbase_idx) for img_id in imd_ids]
|
328 |
+
|
329 |
+
assert(len(Tbase) == nTestBase)
|
330 |
+
|
331 |
+
return Tbase
|
332 |
+
|
333 |
+
def sample_train_and_test_examples_for_novel_categories(
|
334 |
+
self, Knovel, nTestNovel, nExemplars, nKbase):
|
335 |
+
"""Samples train and test examples of the novel categories.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
Knovel: a list with the ids of the novel categories.
|
339 |
+
nTestNovel: the total number of test images that will be sampled
|
340 |
+
from all the novel categories.
|
341 |
+
nExemplars: the number of training examples per novel category that
|
342 |
+
will be sampled.
|
343 |
+
nKbase: the number of base categories. It is used as offset of the
|
344 |
+
category index of each sampled image.
|
345 |
+
|
346 |
+
Returns:
|
347 |
+
Tnovel: a list of length `nTestNovel` with 2-element tuples. The
|
348 |
+
1st element of each tuple is the image id that was sampled and
|
349 |
+
the 2nd element is its category label (which is in the range
|
350 |
+
[nKbase, nKbase + len(Knovel) - 1]).
|
351 |
+
Exemplars: a list of length len(Knovel) * nExemplars of 2-element
|
352 |
+
tuples. The 1st element of each tuple is the image id that was
|
353 |
+
sampled and the 2nd element is its category label (which is in
|
354 |
+
the ragne [nKbase, nKbase + len(Knovel) - 1]).
|
355 |
+
"""
|
356 |
+
|
357 |
+
if len(Knovel) == 0:
|
358 |
+
return [], []
|
359 |
+
|
360 |
+
nKnovel = len(Knovel)
|
361 |
+
Tnovel = []
|
362 |
+
Exemplars = []
|
363 |
+
assert((nTestNovel % nKnovel) == 0)
|
364 |
+
nEvalExamplesPerClass = int(nTestNovel / nKnovel)
|
365 |
+
|
366 |
+
for Knovel_idx in range(nKnovel):
|
367 |
+
imd_ids = self.sampleImageIdsFrom(
|
368 |
+
Knovel[Knovel_idx],
|
369 |
+
sample_size=(nEvalExamplesPerClass + nExemplars))
|
370 |
+
|
371 |
+
imds_tnovel = imd_ids[:nEvalExamplesPerClass]
|
372 |
+
imds_ememplars = imd_ids[nEvalExamplesPerClass:]
|
373 |
+
|
374 |
+
Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel]
|
375 |
+
Exemplars += [(img_id, nKbase+Knovel_idx) for img_id in imds_ememplars]
|
376 |
+
assert(len(Tnovel) == nTestNovel)
|
377 |
+
assert(len(Exemplars) == len(Knovel) * nExemplars)
|
378 |
+
|
379 |
+
# random.shuffle(Exemplars)
|
380 |
+
|
381 |
+
return Tnovel, Exemplars
|
382 |
+
|
383 |
+
def sample_episode(self):
|
384 |
+
"""Samples a training episode."""
|
385 |
+
nKnovel = self.nKnovel
|
386 |
+
nKbase = self.nKbase
|
387 |
+
nTestNovel = self.nTestNovel
|
388 |
+
nTestBase = self.nTestBase
|
389 |
+
nExemplars = self.nExemplars
|
390 |
+
|
391 |
+
Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel)
|
392 |
+
Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase)
|
393 |
+
# print(Kbase,Knovel,Tbase)
|
394 |
+
Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories(
|
395 |
+
Knovel, nTestNovel, nExemplars, nKbase)
|
396 |
+
# concatenate the base and novel category examples.
|
397 |
+
Test = Tbase + Tnovel
|
398 |
+
# random.shuffle(Test)
|
399 |
+
Kall = Kbase + Knovel
|
400 |
+
|
401 |
+
return Exemplars, Test, Kall, nKbase
|
402 |
+
|
403 |
+
def createExamplesTensorData(self, examples):
|
404 |
+
"""
|
405 |
+
Creates the examples image and label tensor data.
|
406 |
+
|
407 |
+
Args:
|
408 |
+
examples: a list of 2-element tuples, each representing a
|
409 |
+
train or test example. The 1st element of each tuple
|
410 |
+
is the image id of the example and 2nd element is the
|
411 |
+
category label of the example, which is in the range
|
412 |
+
[0, nK - 1], where nK is the total number of categories
|
413 |
+
(both novel and base).
|
414 |
+
|
415 |
+
Returns:
|
416 |
+
images: a tensor of shape [nExamples, Height, Width, 3] with the
|
417 |
+
example images, where nExamples is the number of examples
|
418 |
+
(i.e., nExamples = len(examples)).
|
419 |
+
labels: a tensor of shape [nExamples] with the category label
|
420 |
+
of each example.
|
421 |
+
"""
|
422 |
+
images = torch.stack(
|
423 |
+
[self.dataset[img_idx][0] for img_idx, _ in examples], dim=0)
|
424 |
+
labels = torch.LongTensor([label for _, label in examples])
|
425 |
+
return images, labels
|
426 |
+
|
427 |
+
def get_iterator(self, epoch=0):
|
428 |
+
rand_seed = epoch
|
429 |
+
random.seed(rand_seed)
|
430 |
+
np.random.seed(rand_seed)
|
431 |
+
def load_function(iter_idx):
|
432 |
+
Exemplars, Test, Kall, nKbase = self.sample_episode()
|
433 |
+
Xt, Yt = self.createExamplesTensorData(Test)
|
434 |
+
Kall = torch.LongTensor(Kall)
|
435 |
+
if len(Exemplars) > 0:
|
436 |
+
Xe, Ye = self.createExamplesTensorData(Exemplars)
|
437 |
+
return Xe, Ye, Xt, Yt, Kall, nKbase
|
438 |
+
else:
|
439 |
+
return Xt, Yt, Kall, nKbase
|
440 |
+
|
441 |
+
tnt_dataset = tnt.dataset.ListDataset(
|
442 |
+
elem_list=range(self.epoch_size), load=load_function)
|
443 |
+
data_loader = tnt_dataset.parallel(
|
444 |
+
batch_size=self.batch_size,
|
445 |
+
num_workers=(0 if self.is_eval_mode else self.num_workers),
|
446 |
+
shuffle=(False if self.is_eval_mode else True))
|
447 |
+
|
448 |
+
return data_loader
|
449 |
+
|
450 |
+
def __call__(self, epoch=0):
|
451 |
+
return self.get_iterator(epoch)
|
452 |
+
|
453 |
+
def __len__(self):
|
454 |
+
return int(self.epoch_size / self.batch_size)
|
dataloader/simple_datamanager.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from abc import abstractmethod
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import json
|
6 |
+
|
7 |
+
class DataManager:
|
8 |
+
@abstractmethod
|
9 |
+
def get_data_loader(self, data_file, aug):
|
10 |
+
pass
|
11 |
+
|
12 |
+
|
13 |
+
class SimpleDataset:
|
14 |
+
def __init__(self, data_file, transform):
|
15 |
+
with open(data_file, 'r') as f:
|
16 |
+
self.meta = json.load(f)
|
17 |
+
self.transform = transform
|
18 |
+
#self.target_transform = target_transform
|
19 |
+
|
20 |
+
|
21 |
+
def __getitem__(self,i):
|
22 |
+
image_path = os.path.join(self.meta['image_names'][i])
|
23 |
+
img = Image.open(image_path).convert('RGB')
|
24 |
+
img = self.transform(img)
|
25 |
+
target = self.target_transform(self.meta['image_labels'][i])
|
26 |
+
return img, target
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.meta['image_names'])
|
30 |
+
|
31 |
+
|
32 |
+
class SimpleDataManager(DataManager):
|
33 |
+
def __init__(self, dataset, batch_size):
|
34 |
+
super(SimpleDataManager, self).__init__()
|
35 |
+
self.batch_size = batch_size
|
36 |
+
self.dataset = dataset
|
37 |
+
|
38 |
+
def get_data_loader(self): #parameters that would change on train/val set
|
39 |
+
dataset = self.dataset#SimpleDataset(data_file, transform)
|
40 |
+
data_loader_params = dict(batch_size = self.batch_size, shuffle = True, num_workers = 12, pin_memory = True)
|
41 |
+
data_loader = torch.utils.data.DataLoader(dataset, **data_loader_params)
|
42 |
+
|
43 |
+
return data_loader
|
dataloader/tiered_imagenet.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataloader of Gidaris & Komodakis, CVPR 2018
|
2 |
+
# Adapted from:
|
3 |
+
# https://github.com/gidariss/FewShotWithoutForgetting/blob/master/dataloader.py
|
4 |
+
from __future__ import print_function
|
5 |
+
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
import numpy as np
|
9 |
+
import random
|
10 |
+
import pickle
|
11 |
+
import json
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.utils.data as data
|
16 |
+
import torchvision
|
17 |
+
import torchvision.datasets as datasets
|
18 |
+
import torchvision.transforms as transforms
|
19 |
+
import torchnet as tnt
|
20 |
+
|
21 |
+
import h5py
|
22 |
+
|
23 |
+
from PIL import Image
|
24 |
+
from PIL import ImageEnhance
|
25 |
+
|
26 |
+
from pdb import set_trace as breakpoint
|
27 |
+
|
28 |
+
from torchvision.transforms.transforms import ToPILImage
|
29 |
+
|
30 |
+
# Set the appropriate paths of the datasets here.
|
31 |
+
_TIERED_IMAGENET_DATASET_DIR = './tieredimagenet/' # your tiered imagenet folder
|
32 |
+
|
33 |
+
def buildLabelIndex(labels):
|
34 |
+
label2inds = {}
|
35 |
+
for idx, label in enumerate(labels):
|
36 |
+
if label not in label2inds:
|
37 |
+
label2inds[label] = []
|
38 |
+
label2inds[label].append(idx)
|
39 |
+
|
40 |
+
return label2inds
|
41 |
+
|
42 |
+
|
43 |
+
def load_data(file):
|
44 |
+
try:
|
45 |
+
with open(file, 'rb') as fo:
|
46 |
+
data = pickle.load(fo)
|
47 |
+
return data
|
48 |
+
except:
|
49 |
+
with open(file, 'rb') as f:
|
50 |
+
u = pickle._Unpickler(f)
|
51 |
+
u.encoding = 'latin1'
|
52 |
+
data = u.load()
|
53 |
+
return data
|
54 |
+
|
55 |
+
class tieredImageNet(data.Dataset):
|
56 |
+
def __init__(self, phase='train', do_not_use_random_transf=False):
|
57 |
+
|
58 |
+
assert(phase=='train' or phase=='val' or phase=='test' or phase=='trainval')
|
59 |
+
self.phase = phase
|
60 |
+
self.name = 'tieredImageNet_' + phase
|
61 |
+
|
62 |
+
print('Loading tiered ImageNet dataset - phase {0}'.format(phase))
|
63 |
+
file_train_categories_train_phase = os.path.join(
|
64 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
65 |
+
'train_images.npz')
|
66 |
+
label_train_categories_train_phase = os.path.join(
|
67 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
68 |
+
'train_labels.pkl')
|
69 |
+
file_train_categories_val_phase = os.path.join(
|
70 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
71 |
+
'train_images.npz')
|
72 |
+
label_train_categories_val_phase = os.path.join(
|
73 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
74 |
+
'train_labels.pkl')
|
75 |
+
file_train_categories_test_phase = os.path.join(
|
76 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
77 |
+
'train_images.npz')
|
78 |
+
label_train_categories_test_phase = os.path.join(
|
79 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
80 |
+
'train_labels.pkl')
|
81 |
+
|
82 |
+
file_val_categories_val_phase = os.path.join(
|
83 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
84 |
+
'val_images.npz')
|
85 |
+
label_val_categories_val_phase = os.path.join(
|
86 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
87 |
+
'val_labels.pkl')
|
88 |
+
file_test_categories_test_phase = os.path.join(
|
89 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
90 |
+
'test_images.npz')
|
91 |
+
label_test_categories_test_phase = os.path.join(
|
92 |
+
_TIERED_IMAGENET_DATASET_DIR,
|
93 |
+
'test_labels.pkl')
|
94 |
+
|
95 |
+
if self.phase == 'train':
|
96 |
+
# During training phase we only load the training phase images
|
97 |
+
# of the training categories (aka base categories).
|
98 |
+
data_train = load_data(label_train_categories_train_phase)
|
99 |
+
# self.data = data_train['data']
|
100 |
+
self.labels = data_train['labels']
|
101 |
+
self.data = np.load(file_train_categories_train_phase)[
|
102 |
+
'images'] # np.array(load_data(file_train_categories_train_phase))
|
103 |
+
# self.labels = load_data(file_train_categories_train_phase)#data_train['labels']
|
104 |
+
|
105 |
+
self.label2ind = buildLabelIndex(self.labels)
|
106 |
+
self.labelIds = sorted(self.label2ind.keys())
|
107 |
+
self.num_cats = len(self.labelIds)
|
108 |
+
self.labelIds_base = self.labelIds
|
109 |
+
self.num_cats_base = len(self.labelIds_base)
|
110 |
+
# if self.phase=='train':
|
111 |
+
# # During training phase we only load the training phase images
|
112 |
+
# # of the training categories (aka base categories).
|
113 |
+
# data_train = load_data(label_train_categories_train_phase)
|
114 |
+
# #self.data = data_train['data']
|
115 |
+
# self.labels = data_train['labels']
|
116 |
+
# self.data = np.load(file_train_categories_train_phase)['images']#np.array(load_data(file_train_categories_train_phase))
|
117 |
+
# #self.labels = load_data(file_train_categories_train_phase)#data_train['labels']
|
118 |
+
#
|
119 |
+
#
|
120 |
+
# data_base = load_data(label_train_categories_val_phase)['labels']
|
121 |
+
# data_base_images = np.load(file_train_categories_val_phase)['images']
|
122 |
+
# data_novel = load_data(label_val_categories_val_phase)['labels']
|
123 |
+
# data_novel_images = np.load(file_val_categories_val_phase)['images']
|
124 |
+
#
|
125 |
+
# self.data = np.concatenate(
|
126 |
+
# [self.data, data_base_images], axis=0)
|
127 |
+
# self.data = np.concatenate(
|
128 |
+
# [self.data, data_novel_images], axis=0)
|
129 |
+
# self.labels = np.concatenate(
|
130 |
+
# [self.labels, data_base], axis=0)
|
131 |
+
# self.labels = np.concatenate(
|
132 |
+
# [self.labels, data_novel], axis=0)
|
133 |
+
#
|
134 |
+
#
|
135 |
+
# self.label2ind = buildLabelIndex(self.labels)
|
136 |
+
# self.labelIds = sorted(self.label2ind.keys())
|
137 |
+
# self.num_cats = len(self.labelIds)
|
138 |
+
# self.labelIds_base = self.labelIds
|
139 |
+
# self.num_cats_base = len(self.labelIds_base)
|
140 |
+
elif self.phase == 'trainval':
|
141 |
+
# During training phase we only load the training phase images
|
142 |
+
# of the training categories (aka base categories).
|
143 |
+
data_train = load_data(file_train_categories_train_phase)
|
144 |
+
#self.data = data_train['data']
|
145 |
+
self.data = np.load(file_train_categories_train_phase)['images']
|
146 |
+
self.labels = data_train['labels']
|
147 |
+
|
148 |
+
data_base = load_data(label_train_categories_val_phase)['labels']
|
149 |
+
data_base_images = np.load(file_train_categories_val_phase)['images']
|
150 |
+
data_novel = load_data(label_val_categories_val_phase)['labels']
|
151 |
+
data_novel_images = np.load(file_val_categories_val_phase)['images']
|
152 |
+
|
153 |
+
self.data = np.concatenate(
|
154 |
+
[self.data, data_base_images], axis=0)
|
155 |
+
self.data = np.concatenate(
|
156 |
+
[self.data, data_novel_images], axis=0)
|
157 |
+
self.labels = np.concatenate(
|
158 |
+
[self.labels, data_base], axis=0)
|
159 |
+
self.labels = np.concatenate(
|
160 |
+
[self.labels, data_novel], axis=0)
|
161 |
+
|
162 |
+
self.label2ind = buildLabelIndex(self.labels)
|
163 |
+
self.labelIds = sorted(self.label2ind.keys())
|
164 |
+
self.num_cats = len(self.labelIds)
|
165 |
+
self.labelIds_base = self.labelIds
|
166 |
+
self.num_cats_base = len(self.labelIds_base)
|
167 |
+
elif self.phase=='val' or self.phase=='test':
|
168 |
+
if self.phase=='test':
|
169 |
+
# load data that will be used for evaluating the recognition
|
170 |
+
# accuracy of the base categories.
|
171 |
+
data_base = load_data(label_train_categories_test_phase)
|
172 |
+
data_base_images = np.load(file_train_categories_test_phase)['images']
|
173 |
+
|
174 |
+
# load data that will be use for evaluating the few-shot recogniton
|
175 |
+
# accuracy on the novel categories.
|
176 |
+
data_novel = load_data(label_test_categories_test_phase)
|
177 |
+
data_novel_images = np.load(file_test_categories_test_phase)['images']
|
178 |
+
else: # phase=='val'
|
179 |
+
# load data that will be used for evaluating the recognition
|
180 |
+
# accuracy of the base categories.
|
181 |
+
data_base = load_data(label_train_categories_val_phase)
|
182 |
+
data_base_images = np.load(file_train_categories_val_phase)['images']
|
183 |
+
#print (data_base_images)
|
184 |
+
#print (data_base_images.shape)
|
185 |
+
# load data that will be use for evaluating the few-shot recogniton
|
186 |
+
# accuracy on the novel categories.
|
187 |
+
data_novel = load_data(label_val_categories_val_phase)
|
188 |
+
data_novel_images = np.load(file_val_categories_val_phase)['images']
|
189 |
+
|
190 |
+
self.data = np.concatenate(
|
191 |
+
[data_base_images, data_novel_images], axis=0)
|
192 |
+
self.labels = data_base['labels'] + data_novel['labels']
|
193 |
+
|
194 |
+
self.label2ind = buildLabelIndex(self.labels)
|
195 |
+
self.labelIds = sorted(self.label2ind.keys())
|
196 |
+
self.num_cats = len(self.labelIds)
|
197 |
+
|
198 |
+
self.labelIds_base = buildLabelIndex(data_base['labels']).keys()
|
199 |
+
self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys()
|
200 |
+
self.num_cats_base = len(self.labelIds_base)
|
201 |
+
self.num_cats_novel = len(self.labelIds_novel)
|
202 |
+
intersection = set(self.labelIds_base) & set(self.labelIds_novel)
|
203 |
+
print (intersection)
|
204 |
+
assert(len(intersection) == 0)
|
205 |
+
else:
|
206 |
+
raise ValueError('Not valid phase {0}'.format(self.phase))
|
207 |
+
|
208 |
+
mean_pix = [x/255.0 for x in [120.39586422, 115.59361427, 104.54012653]]
|
209 |
+
std_pix = [x/255.0 for x in [70.68188272, 68.27635443, 72.54505529]]
|
210 |
+
normalize = transforms.Normalize(mean=mean_pix, std=std_pix)
|
211 |
+
|
212 |
+
if (self.phase=='test' or self.phase=='val') or (do_not_use_random_transf==True):
|
213 |
+
self.transform = transforms.Compose([
|
214 |
+
# lambda x: np.asarray(x),
|
215 |
+
transforms.ToTensor(),
|
216 |
+
normalize
|
217 |
+
])
|
218 |
+
else:
|
219 |
+
self.transform = transforms.Compose([
|
220 |
+
transforms.RandomCrop(84, padding=8),
|
221 |
+
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
|
222 |
+
transforms.RandomHorizontalFlip(),
|
223 |
+
# lambda x: np.asarray(x),
|
224 |
+
transforms.ToTensor(),
|
225 |
+
normalize
|
226 |
+
])
|
227 |
+
|
228 |
+
def __getitem__(self, index):
|
229 |
+
img, label = self.data[index], self.labels[index]
|
230 |
+
# doing this so that it is consistent with all other datasets
|
231 |
+
# to return a PIL Image
|
232 |
+
img = Image.fromarray(img)
|
233 |
+
if self.transform is not None:
|
234 |
+
img = self.transform(img)
|
235 |
+
return img, label
|
236 |
+
|
237 |
+
def __len__(self):
|
238 |
+
return len(self.data)
|
239 |
+
|
240 |
+
|
241 |
+
class FewShotDataloader():
|
242 |
+
def __init__(self,
|
243 |
+
dataset,
|
244 |
+
nKnovel=5, # number of novel categories.
|
245 |
+
nKbase=-1, # number of base categories.
|
246 |
+
nExemplars=1, # number of training examples per novel category.
|
247 |
+
nTestNovel=15*5, # number of test examples for all the novel categories.
|
248 |
+
nTestBase=15*5, # number of test examples for all the base categories.
|
249 |
+
batch_size=1, # number of training episodes per batch.
|
250 |
+
num_workers=1,
|
251 |
+
epoch_size=2000, # number of batches per epoch.
|
252 |
+
):
|
253 |
+
|
254 |
+
self.dataset = dataset
|
255 |
+
self.phase = self.dataset.phase
|
256 |
+
max_possible_nKnovel = (self.dataset.num_cats_base if self.phase=='train' or self.phase=='trainval'
|
257 |
+
else self.dataset.num_cats_novel)
|
258 |
+
assert(nKnovel >= 0 and nKnovel < max_possible_nKnovel)
|
259 |
+
self.nKnovel = nKnovel
|
260 |
+
|
261 |
+
max_possible_nKbase = self.dataset.num_cats_base
|
262 |
+
nKbase = nKbase if nKbase >= 0 else max_possible_nKbase
|
263 |
+
if (self.phase=='train'or self.phase=='trainval') and nKbase > 0:
|
264 |
+
nKbase -= self.nKnovel
|
265 |
+
max_possible_nKbase -= self.nKnovel
|
266 |
+
|
267 |
+
assert(nKbase >= 0 and nKbase <= max_possible_nKbase)
|
268 |
+
self.nKbase = nKbase
|
269 |
+
|
270 |
+
self.nExemplars = nExemplars
|
271 |
+
self.nTestNovel = nTestNovel
|
272 |
+
self.nTestBase = nTestBase
|
273 |
+
self.batch_size = batch_size
|
274 |
+
self.epoch_size = epoch_size
|
275 |
+
self.num_workers = num_workers
|
276 |
+
self.is_eval_mode = (self.phase=='test') or (self.phase=='val')
|
277 |
+
|
278 |
+
def sampleImageIdsFrom(self, cat_id, sample_size=1):
|
279 |
+
"""
|
280 |
+
Samples `sample_size` number of unique image ids picked from the
|
281 |
+
category `cat_id` (i.e., self.dataset.label2ind[cat_id]).
|
282 |
+
|
283 |
+
Args:
|
284 |
+
cat_id: a scalar with the id of the category from which images will
|
285 |
+
be sampled.
|
286 |
+
sample_size: number of images that will be sampled.
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
image_ids: a list of length `sample_size` with unique image ids.
|
290 |
+
"""
|
291 |
+
assert(cat_id in self.dataset.label2ind)
|
292 |
+
assert(len(self.dataset.label2ind[cat_id]) >= sample_size)
|
293 |
+
# Note: random.sample samples elements without replacement.
|
294 |
+
return random.sample(self.dataset.label2ind[cat_id], sample_size)
|
295 |
+
|
296 |
+
def sampleCategories(self, cat_set, sample_size=1):
|
297 |
+
"""
|
298 |
+
Samples `sample_size` number of unique categories picked from the
|
299 |
+
`cat_set` set of categories. `cat_set` can be either 'base' or 'novel'.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
cat_set: string that specifies the set of categories from which
|
303 |
+
categories will be sampled.
|
304 |
+
sample_size: number of categories that will be sampled.
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
cat_ids: a list of length `sample_size` with unique category ids.
|
308 |
+
"""
|
309 |
+
if cat_set=='base':
|
310 |
+
labelIds = self.dataset.labelIds_base
|
311 |
+
elif cat_set=='novel':
|
312 |
+
labelIds = self.dataset.labelIds_novel
|
313 |
+
else:
|
314 |
+
raise ValueError('Not recognized category set {}'.format(cat_set))
|
315 |
+
|
316 |
+
assert(len(labelIds) >= sample_size)
|
317 |
+
# return sample_size unique categories chosen from labelIds set of
|
318 |
+
# categories (that can be either self.labelIds_base or self.labelIds_novel)
|
319 |
+
# Note: random.sample samples elements without replacement.
|
320 |
+
return random.sample(labelIds, sample_size)
|
321 |
+
|
322 |
+
def sample_base_and_novel_categories(self, nKbase, nKnovel):
|
323 |
+
"""
|
324 |
+
Samples `nKbase` number of base categories and `nKnovel` number of novel
|
325 |
+
categories.
|
326 |
+
|
327 |
+
Args:
|
328 |
+
nKbase: number of base categories
|
329 |
+
nKnovel: number of novel categories
|
330 |
+
|
331 |
+
Returns:
|
332 |
+
Kbase: a list of length 'nKbase' with the ids of the sampled base
|
333 |
+
categories.
|
334 |
+
Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel
|
335 |
+
categories.
|
336 |
+
"""
|
337 |
+
if self.is_eval_mode:
|
338 |
+
assert(nKnovel <= self.dataset.num_cats_novel)
|
339 |
+
# sample from the set of base categories 'nKbase' number of base
|
340 |
+
# categories.
|
341 |
+
Kbase = sorted(self.sampleCategories('base', nKbase))
|
342 |
+
# sample from the set of novel categories 'nKnovel' number of novel
|
343 |
+
# categories.
|
344 |
+
Knovel = sorted(self.sampleCategories('novel', nKnovel))
|
345 |
+
else:
|
346 |
+
# sample from the set of base categories 'nKnovel' + 'nKbase' number
|
347 |
+
# of categories.
|
348 |
+
cats_ids = self.sampleCategories('base', nKnovel+nKbase)
|
349 |
+
assert(len(cats_ids) == (nKnovel+nKbase))
|
350 |
+
# Randomly pick 'nKnovel' number of fake novel categories and keep
|
351 |
+
# the rest as base categories.
|
352 |
+
random.shuffle(cats_ids)
|
353 |
+
Knovel = sorted(cats_ids[:nKnovel])
|
354 |
+
Kbase = sorted(cats_ids[nKnovel:])
|
355 |
+
|
356 |
+
return Kbase, Knovel
|
357 |
+
|
358 |
+
def sample_test_examples_for_base_categories(self, Kbase, nTestBase):
|
359 |
+
"""
|
360 |
+
Sample `nTestBase` number of images from the `Kbase` categories.
|
361 |
+
|
362 |
+
Args:
|
363 |
+
Kbase: a list of length `nKbase` with the ids of the categories from
|
364 |
+
where the images will be sampled.
|
365 |
+
nTestBase: the total number of images that will be sampled.
|
366 |
+
|
367 |
+
Returns:
|
368 |
+
Tbase: a list of length `nTestBase` with 2-element tuples. The 1st
|
369 |
+
element of each tuple is the image id that was sampled and the
|
370 |
+
2nd elemend is its category label (which is in the range
|
371 |
+
[0, len(Kbase)-1]).
|
372 |
+
"""
|
373 |
+
Tbase = []
|
374 |
+
if len(Kbase) > 0:
|
375 |
+
# Sample for each base category a number images such that the total
|
376 |
+
# number sampled images of all categories to be equal to `nTestBase`.
|
377 |
+
KbaseIndices = np.random.choice(
|
378 |
+
np.arange(len(Kbase)), size=nTestBase, replace=True)
|
379 |
+
KbaseIndices, NumImagesPerCategory = np.unique(
|
380 |
+
KbaseIndices, return_counts=True)
|
381 |
+
|
382 |
+
for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory):
|
383 |
+
imd_ids = self.sampleImageIdsFrom(
|
384 |
+
Kbase[Kbase_idx], sample_size=NumImages)
|
385 |
+
Tbase += [(img_id, Kbase_idx) for img_id in imd_ids]
|
386 |
+
|
387 |
+
assert(len(Tbase) == nTestBase)
|
388 |
+
|
389 |
+
return Tbase
|
390 |
+
|
391 |
+
def sample_train_and_test_examples_for_novel_categories(
|
392 |
+
self, Knovel, nTestNovel, nExemplars, nKbase):
|
393 |
+
"""Samples train and test examples of the novel categories.
|
394 |
+
|
395 |
+
Args:
|
396 |
+
Knovel: a list with the ids of the novel categories.
|
397 |
+
nTestNovel: the total number of test images that will be sampled
|
398 |
+
from all the novel categories.
|
399 |
+
nExemplars: the number of training examples per novel category that
|
400 |
+
will be sampled.
|
401 |
+
nKbase: the number of base categories. It is used as offset of the
|
402 |
+
category index of each sampled image.
|
403 |
+
|
404 |
+
Returns:
|
405 |
+
Tnovel: a list of length `nTestNovel` with 2-element tuples. The
|
406 |
+
1st element of each tuple is the image id that was sampled and
|
407 |
+
the 2nd element is its category label (which is in the range
|
408 |
+
[nKbase, nKbase + len(Knovel) - 1]).
|
409 |
+
Exemplars: a list of length len(Knovel) * nExemplars of 2-element
|
410 |
+
tuples. The 1st element of each tuple is the image id that was
|
411 |
+
sampled and the 2nd element is its category label (which is in
|
412 |
+
the ragne [nKbase, nKbase + len(Knovel) - 1]).
|
413 |
+
"""
|
414 |
+
|
415 |
+
if len(Knovel) == 0:
|
416 |
+
return [], []
|
417 |
+
|
418 |
+
nKnovel = len(Knovel)
|
419 |
+
Tnovel = []
|
420 |
+
Exemplars = []
|
421 |
+
assert((nTestNovel % nKnovel) == 0)
|
422 |
+
nEvalExamplesPerClass = int(nTestNovel / nKnovel)
|
423 |
+
|
424 |
+
for Knovel_idx in range(len(Knovel)):
|
425 |
+
imd_ids = self.sampleImageIdsFrom(
|
426 |
+
Knovel[Knovel_idx],
|
427 |
+
sample_size=(nEvalExamplesPerClass + nExemplars))
|
428 |
+
|
429 |
+
imds_tnovel = imd_ids[:nEvalExamplesPerClass]
|
430 |
+
imds_ememplars = imd_ids[nEvalExamplesPerClass:]
|
431 |
+
|
432 |
+
Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel]
|
433 |
+
Exemplars += [(img_id, nKbase+Knovel_idx) for img_id in imds_ememplars]
|
434 |
+
assert(len(Tnovel) == nTestNovel)
|
435 |
+
assert(len(Exemplars) == len(Knovel) * nExemplars)
|
436 |
+
|
437 |
+
# random.shuffle(Exemplars)
|
438 |
+
|
439 |
+
return Tnovel, Exemplars
|
440 |
+
|
441 |
+
def sample_episode(self):
|
442 |
+
"""Samples a training episode."""
|
443 |
+
nKnovel = self.nKnovel
|
444 |
+
nKbase = self.nKbase
|
445 |
+
nTestNovel = self.nTestNovel
|
446 |
+
nTestBase = self.nTestBase
|
447 |
+
nExemplars = self.nExemplars
|
448 |
+
|
449 |
+
Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel)
|
450 |
+
Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase)
|
451 |
+
Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories(
|
452 |
+
Knovel, nTestNovel, nExemplars, nKbase)
|
453 |
+
|
454 |
+
# concatenate the base and novel category examples.
|
455 |
+
Test = Tbase + Tnovel
|
456 |
+
# random.shuffle(Test)
|
457 |
+
Kall = Kbase + Knovel
|
458 |
+
|
459 |
+
return Exemplars, Test, Kall, nKbase
|
460 |
+
|
461 |
+
def createExamplesTensorData(self, examples):
|
462 |
+
"""
|
463 |
+
Creates the examples image and label tensor data.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
examples: a list of 2-element tuples, each representing a
|
467 |
+
train or test example. The 1st element of each tuple
|
468 |
+
is the image id of the example and 2nd element is the
|
469 |
+
category label of the example, which is in the range
|
470 |
+
[0, nK - 1], where nK is the total number of categories
|
471 |
+
(both novel and base).
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
images: a tensor of shape [nExamples, Height, Width, 3] with the
|
475 |
+
example images, where nExamples is the number of examples
|
476 |
+
(i.e., nExamples = len(examples)).
|
477 |
+
labels: a tensor of shape [nExamples] with the category label
|
478 |
+
of each example.
|
479 |
+
"""
|
480 |
+
images = torch.stack(
|
481 |
+
[self.dataset[img_idx][0] for img_idx, _ in examples], dim=0)
|
482 |
+
labels = torch.LongTensor([label for _, label in examples])
|
483 |
+
return images, labels
|
484 |
+
|
485 |
+
def get_iterator(self, epoch=0):
|
486 |
+
rand_seed = epoch
|
487 |
+
random.seed(rand_seed)
|
488 |
+
np.random.seed(rand_seed)
|
489 |
+
def load_function(iter_idx):
|
490 |
+
Exemplars, Test, Kall, nKbase = self.sample_episode()
|
491 |
+
Xt, Yt = self.createExamplesTensorData(Test)
|
492 |
+
Kall = torch.LongTensor(Kall)
|
493 |
+
if len(Exemplars) > 0:
|
494 |
+
Xe, Ye = self.createExamplesTensorData(Exemplars)
|
495 |
+
return Xe, Ye, Xt, Yt, Kall, nKbase
|
496 |
+
else:
|
497 |
+
return Xt, Yt, Kall, nKbase
|
498 |
+
|
499 |
+
tnt_dataset = tnt.dataset.ListDataset(
|
500 |
+
elem_list=range(self.epoch_size), load=load_function)
|
501 |
+
data_loader = tnt_dataset.parallel(
|
502 |
+
batch_size=self.batch_size,
|
503 |
+
num_workers=(0 if self.is_eval_mode else self.num_workers),
|
504 |
+
shuffle=(False if self.is_eval_mode else True))
|
505 |
+
|
506 |
+
return data_loader
|
507 |
+
|
508 |
+
def __call__(self, epoch=0):
|
509 |
+
return self.get_iterator(epoch)
|
510 |
+
|
511 |
+
def __len__(self):
|
512 |
+
return int(self.epoch_size / self.batch_size)
|
norm.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import statistics
|
5 |
+
from tqdm import tqdm
|
6 |
+
from glob import glob
|
7 |
+
|
8 |
+
def calculate_normalization_parameters(path=None):
|
9 |
+
# data = pd.read_csv(path_to_train_csv)
|
10 |
+
data = glob('NIH/images/*.png')
|
11 |
+
mean = 0
|
12 |
+
std = 0
|
13 |
+
height = []
|
14 |
+
width = []
|
15 |
+
for i in tqdm(data):
|
16 |
+
image = cv2.imread(i)[:, :, ::-1]
|
17 |
+
h, w, _ = image.shape
|
18 |
+
image = image.reshape(-1, 3)
|
19 |
+
mean += np.mean(image, axis=0)
|
20 |
+
std += np.std(image, axis=0)
|
21 |
+
height.append(h)
|
22 |
+
width.append(w)
|
23 |
+
mean = mean / (255 * len(data))
|
24 |
+
std = std / (255 * len(data))
|
25 |
+
print("median height:", statistics.median(height))
|
26 |
+
print("median width:", statistics.median(width))
|
27 |
+
print("mean:", mean)
|
28 |
+
print("std:", std)
|
29 |
+
return mean, std
|
30 |
+
|
31 |
+
|
32 |
+
calculate_normalization_parameters()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
einops
|
2 |
+
timm
|
3 |
+
torchinfo
|
4 |
+
torchsummary
|
5 |
+
torchnet
|
6 |
+
wandb
|
7 |
+
adabelief_pytorch
|
8 |
+
scikit-plot
|
9 |
+
pandas
|
10 |
+
h5py
|
test.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
|
8 |
+
from torch.autograd import Variable
|
9 |
+
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from models.protonet_embedding import ProtoNetEmbedding
|
13 |
+
from models.R2D2_embedding import R2D2Embedding
|
14 |
+
from models.ResNet12_embedding import resnet12
|
15 |
+
|
16 |
+
from models.classification_heads import ClassificationHead
|
17 |
+
|
18 |
+
from utils import pprint, set_gpu, Timer, count_accuracy, log
|
19 |
+
from sklearn.metrics import confusion_matrix, f1_score, roc_curve, auc
|
20 |
+
import scikitplot as skplt
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import os
|
26 |
+
import random
|
27 |
+
|
28 |
+
import pickle
|
29 |
+
|
30 |
+
from dataloader.chest import label_dict
|
31 |
+
|
32 |
+
|
33 |
+
import pandas as pd
|
34 |
+
|
35 |
+
def multiclass_roc(y_test, y_score,n_classes = 3):
|
36 |
+
|
37 |
+
|
38 |
+
# structures
|
39 |
+
fpr = dict()
|
40 |
+
tpr = dict()
|
41 |
+
roc_auc = dict()
|
42 |
+
|
43 |
+
# calculate dummies once
|
44 |
+
y_test_dummies = pd.get_dummies(y_test, drop_first=False).values
|
45 |
+
for i in range(n_classes):
|
46 |
+
fpr[i], tpr[i], _ = roc_curve(y_test_dummies[:, i], y_score[:, i])
|
47 |
+
roc_auc[i] = auc(fpr[i], tpr[i])
|
48 |
+
|
49 |
+
return fpr,tpr,roc_auc
|
50 |
+
|
51 |
+
# os.environ['CUDA_VISIBLE_DEVICES'] = "0"
|
52 |
+
|
53 |
+
def seed_everything(seed: int):
|
54 |
+
random.seed(seed)
|
55 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
56 |
+
np.random.seed(seed)
|
57 |
+
torch.manual_seed(seed)
|
58 |
+
torch.cuda.manual_seed(seed)
|
59 |
+
torch.backends.cudnn.deterministic = True
|
60 |
+
torch.backends.cudnn.benchmark = True
|
61 |
+
|
62 |
+
def euclidean_dist(x, y):
|
63 |
+
|
64 |
+
# x: N x D
|
65 |
+
# y: M x D
|
66 |
+
n = x.size(0)
|
67 |
+
m = y.size(0)
|
68 |
+
d = x.size(1)
|
69 |
+
|
70 |
+
assert d == y.size(1)
|
71 |
+
|
72 |
+
x = x.unsqueeze(1).expand(n, m, d)
|
73 |
+
y = y.unsqueeze(0).expand(n, m, d)
|
74 |
+
|
75 |
+
return torch.pow(x - y, 2).sum(2)
|
76 |
+
|
77 |
+
def flip(x, dim):
|
78 |
+
xsize = x.size()
|
79 |
+
dim = x.dim() + dim if dim < 0 else dim
|
80 |
+
x = x.view(-1, *xsize[dim:])
|
81 |
+
x = x.view(x.size(0), x.size(1), -1)[:, getattr(torch.arange(x.size(1)-1,
|
82 |
+
-1, -1), ('cpu','cuda')[x.is_cuda])().long(), :]
|
83 |
+
return x.view(xsize)
|
84 |
+
|
85 |
+
|
86 |
+
def get_model(options):
|
87 |
+
# Choose the embedding network
|
88 |
+
if options.network == 'ProtoNet':
|
89 |
+
network = ProtoNetEmbedding().cuda()
|
90 |
+
elif options.network == 'R2D2':
|
91 |
+
network = R2D2Embedding().cuda()
|
92 |
+
elif options.network == 'ResNet':
|
93 |
+
if options.dataset == 'miniImageNet' or options.dataset == 'tieredImageNet':
|
94 |
+
network = resnet12(avg_pool=False, drop_rate=0.1, dropblock_size=5,num_layer=options.num_layer).cuda()
|
95 |
+
network = torch.nn.DataParallel(network)
|
96 |
+
else:
|
97 |
+
network = resnet12(avg_pool=False, drop_rate=0.1, dropblock_size=2,num_layer=options.num_layer).cuda()
|
98 |
+
else:
|
99 |
+
print ("Cannot recognize the network type")
|
100 |
+
assert(False)
|
101 |
+
|
102 |
+
# Choose the classification head
|
103 |
+
if opt.head == 'ProtoNet':
|
104 |
+
cls_head = ClassificationHead(base_learner='ProtoNet').cuda()
|
105 |
+
elif options.head == 'SubspaceTrans':
|
106 |
+
cls_head = ClassificationHead(base_learner='SubspaceTrans').cuda()
|
107 |
+
elif options.head == 'Subspace':
|
108 |
+
cls_head = ClassificationHead(base_learner='Subspace').cuda()
|
109 |
+
elif options.head == 'SubspaceFast':
|
110 |
+
cls_head = ClassificationHead(base_learner='SubspaceFast').cuda()
|
111 |
+
elif opt.head == 'Ridge':
|
112 |
+
cls_head = ClassificationHead(base_learner='Ridge').cuda()
|
113 |
+
elif opt.head == 'R2D2':
|
114 |
+
cls_head = ClassificationHead(base_learner='R2D2').cuda()
|
115 |
+
elif opt.head == 'SVM':
|
116 |
+
cls_head = ClassificationHead(base_learner='SVM-CS').cuda()
|
117 |
+
else:
|
118 |
+
print ("Cannot recognize the classification head type")
|
119 |
+
assert(False)
|
120 |
+
|
121 |
+
return (network, cls_head)
|
122 |
+
|
123 |
+
def get_dataset(options):
|
124 |
+
# Choose the embedding network
|
125 |
+
if options.dataset == 'miniImageNet':
|
126 |
+
from dataloader.mini_imagenet import MiniImageNet, FewShotDataloader
|
127 |
+
dataset_test = MiniImageNet(phase='test')
|
128 |
+
data_loader = FewShotDataloader
|
129 |
+
elif options.dataset == 'tieredImageNet':
|
130 |
+
from dataloader.tiered_imagenet import tieredImageNet, FewShotDataloader
|
131 |
+
dataset_test = tieredImageNet(phase='test')
|
132 |
+
data_loader = FewShotDataloader
|
133 |
+
elif options.dataset == 'CIFAR_FS':
|
134 |
+
from dataloader.CIFAR_FS import CIFAR_FS, FewShotDataloader
|
135 |
+
dataset_test = CIFAR_FS(phase='test')
|
136 |
+
data_loader = FewShotDataloader
|
137 |
+
elif options.dataset == 'FC100':
|
138 |
+
from dataloader.FC100 import FC100, FewShotDataloader
|
139 |
+
dataset_test = FC100(phase='test')
|
140 |
+
data_loader = FewShotDataloader
|
141 |
+
elif options.dataset == 'Chest':
|
142 |
+
from dataloader.chest import Chest, FewShotDataloader
|
143 |
+
dataset_test = Chest(phase='test')
|
144 |
+
data_loader = FewShotDataloader
|
145 |
+
else:
|
146 |
+
print ("Cannot recognize the dataset type")
|
147 |
+
assert(False)
|
148 |
+
|
149 |
+
return (dataset_test, data_loader)
|
150 |
+
|
151 |
+
#
|
152 |
+
if __name__ == '__main__':
|
153 |
+
parser = argparse.ArgumentParser()
|
154 |
+
|
155 |
+
#Changes
|
156 |
+
parser.add_argument('--gpu', default='3')
|
157 |
+
#Changes
|
158 |
+
parser.add_argument('--load',
|
159 |
+
default='experiments/group2_subspace30_CE_train/best_model.pth', ## your best model
|
160 |
+
help='path of the checkpoint file')
|
161 |
+
#Changes
|
162 |
+
parser.add_argument('--num_layer', type=int, default=30,
|
163 |
+
help='num of layer')
|
164 |
+
|
165 |
+
parser.add_argument('--episode', type=int, default=1000,
|
166 |
+
help='number of episodes to test')
|
167 |
+
parser.add_argument('--way', type=int, default=3,
|
168 |
+
help='number of classes in one test episode')
|
169 |
+
parser.add_argument('--shot', type=int, default=5,
|
170 |
+
help='number of support examples per training class')
|
171 |
+
parser.add_argument('--query', type=int, default=5,
|
172 |
+
help='number of query examples per training class')
|
173 |
+
parser.add_argument('--network', type=str, default='ResNet',
|
174 |
+
help='choose which embedding network to use. ProtoNet, R2D2, ResNet')
|
175 |
+
parser.add_argument('--head', type=str, default='Subspace',
|
176 |
+
help='choose which embedding network to use. ProtoNet, Ridge, R2D2, SVM')
|
177 |
+
parser.add_argument('--dataset', type=str, default='Chest',
|
178 |
+
help='choose which classification head to use. miniImageNet, tieredImageNet, CIFAR_FS, FC100')
|
179 |
+
|
180 |
+
|
181 |
+
opt = parser.parse_args()
|
182 |
+
|
183 |
+
seed_everything(42)
|
184 |
+
|
185 |
+
(dataset_test, data_loader) = get_dataset(opt)
|
186 |
+
|
187 |
+
set_gpu(opt.gpu)
|
188 |
+
|
189 |
+
# Define the models
|
190 |
+
(embedding_net, cls_head) = get_model(opt)
|
191 |
+
|
192 |
+
# Load saved model checkpoints
|
193 |
+
saved_models = torch.load(opt.load)
|
194 |
+
embedding_net.load_state_dict(saved_models['embedding'])
|
195 |
+
embedding_net.eval()
|
196 |
+
cls_head.load_state_dict(saved_models['head'])
|
197 |
+
cls_head.eval()
|
198 |
+
|
199 |
+
|
200 |
+
aug=False
|
201 |
+
|
202 |
+
label_dict_inv = {v:k for k,v in label_dict.items()}
|
203 |
+
|
204 |
+
test_accuracies = []
|
205 |
+
per_class_accuracies = []
|
206 |
+
y_pred_list = []
|
207 |
+
y_list = []
|
208 |
+
dloader_test = data_loader(
|
209 |
+
dataset=dataset_test,
|
210 |
+
nKnovel=opt.way,
|
211 |
+
nKbase=0,
|
212 |
+
nExemplars=opt.shot, # num training examples per novel category
|
213 |
+
nTestNovel=opt.query * opt.way, # num test examples for all the novel categories
|
214 |
+
nTestBase=0, # num test examples for all the base categories
|
215 |
+
batch_size=1,
|
216 |
+
num_workers=1,
|
217 |
+
epoch_size=opt.episode, # num of batches per epoch
|
218 |
+
)
|
219 |
+
|
220 |
+
#print("epp: ", epp)
|
221 |
+
|
222 |
+
with torch.no_grad():
|
223 |
+
for i, batch in enumerate(tqdm(dloader_test()), 1):
|
224 |
+
data_support, labels_support, data_query, labels_query, _, _ = [x.cuda() for x in batch]
|
225 |
+
|
226 |
+
n_support = opt.way * opt.shot
|
227 |
+
n_query = opt.way * opt.query
|
228 |
+
|
229 |
+
if opt.shot == 1 and aug:
|
230 |
+
flipped_data_support = flip(data_support, 3)
|
231 |
+
data_support = torch.cat((data_support, flipped_data_support), dim=0)
|
232 |
+
labels_support = torch.cat((labels_support, labels_support), dim=0)
|
233 |
+
|
234 |
+
list_emb_support = embedding_net(data_support.reshape([-1] + list(data_support.shape[-3:])))
|
235 |
+
list_emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:])))
|
236 |
+
|
237 |
+
logits = torch.zeros(n_query, opt.way).cuda()
|
238 |
+
|
239 |
+
for emb_support, emb_query in zip(list_emb_support, list_emb_query):
|
240 |
+
|
241 |
+
|
242 |
+
emb_support = emb_support.view(1, opt.way, opt.shot, -1).mean(2)
|
243 |
+
|
244 |
+
emb_query = emb_query.reshape(1, n_query, -1)
|
245 |
+
|
246 |
+
dists = euclidean_dist(emb_query[0], emb_support[0])
|
247 |
+
|
248 |
+
|
249 |
+
logits += F.softmax(-dists, dim=1).view(1 * opt.way * opt.query, -1)
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
logits /= opt.num_layer
|
254 |
+
|
255 |
+
logits = logits.reshape(-1, opt.way)
|
256 |
+
labels_query = labels_query.reshape(-1)
|
257 |
+
|
258 |
+
|
259 |
+
acc,pca = count_accuracy(logits, labels_query)
|
260 |
+
test_accuracies.append(acc.item())
|
261 |
+
per_class_accuracies.append(pca)
|
262 |
+
|
263 |
+
y_pred_list.append(logits.detach().cpu().numpy())
|
264 |
+
y_list.append(labels_query.detach().cpu().numpy())
|
265 |
+
|
266 |
+
avg = np.mean(np.array(test_accuracies))
|
267 |
+
std = np.std(np.array(test_accuracies))
|
268 |
+
ci95 = 1.96 * std / np.sqrt(i + 1)
|
269 |
+
|
270 |
+
if i % 10 == 0:
|
271 |
+
|
272 |
+
# print(logits.detach().cpu().numpy())
|
273 |
+
# print(torch.argmax(logits, dim=1).view(-1))
|
274 |
+
# print(labels_query.detach().cpu().numpy())
|
275 |
+
|
276 |
+
pca = np.array(per_class_accuracies).mean(0)
|
277 |
+
pcs = np.array(per_class_accuracies).std(0)
|
278 |
+
|
279 |
+
print('Episode [{}/{}]:\t\t\tAccuracy: {:.2f} ± {:.2f} ({:.2f}) % ({:.2f} %)'\
|
280 |
+
.format(i, opt.episode, avg, ci95,std, acc))
|
281 |
+
print(f'{label_dict_inv[9]}: {pca[0]:.2f} ± {pcs[0]:.2f} % | {label_dict_inv[10]}: {pca[1]:.2f} ± {pcs[1]:.2f} % | {label_dict_inv[11]}: {pca[2]:.2f} ± {pcs[2]:.2f}%')
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
pca = np.array(per_class_accuracies).mean(0)
|
286 |
+
pcs = np.array(per_class_accuracies).std(0)
|
287 |
+
|
288 |
+
print("Mean")
|
289 |
+
print(pca)
|
290 |
+
print('Standard Deviation')
|
291 |
+
print(pcs)
|
292 |
+
|
293 |
+
|
294 |
+
y_pred_proba = np.array(
|
295 |
+
y_pred_list).reshape(-1, 3)
|
296 |
+
|
297 |
+
y_pred = np.argmax(y_pred_proba, axis=1)
|
298 |
+
|
299 |
+
y_true = np.array(y_list).reshape(-1)
|
300 |
+
|
301 |
+
f1 = f1_score(y_true, y_pred, average=None)
|
302 |
+
|
303 |
+
print('F1 Score')
|
304 |
+
print(f1)
|
305 |
+
|
306 |
+
fpr,tpr, auc = multiclass_roc(y_true,y_pred_proba)
|
307 |
+
save_tuple = (fpr,tpr,auc)
|
308 |
+
|
309 |
+
print(auc)
|
310 |
+
|
311 |
+
# Plots
|
312 |
+
|
313 |
+
#Changes
|
314 |
+
# with open('plot/group5_subspace25.pickle', 'wb') as f:
|
315 |
+
# pickle.dump(save_tuple, f)
|
316 |
+
|
317 |
+
#Changes
|
318 |
+
class_dict = {'Fibrosis': 0, 'Hernia': 1, 'Pneumonia': 2}
|
319 |
+
# class_dict = {'Mass': 0, 'Nodule': 1, 'Pleural_Thickening': 2}
|
320 |
+
# class_dict = {'Cardiomegaly': 0, 'Edema': 1, 'Emphysema': 2}
|
321 |
+
# class_dict = {'Consolidation': 0, 'Effusion': 1, 'Pneumothorax': 2}
|
322 |
+
# class_dict = {'Atelectasis': 0, 'Infiltration': 1, 'No Finding': 2}
|
323 |
+
|
324 |
+
class_dict_inv = {v: k for k, v in class_dict.items()}
|
325 |
+
|
326 |
+
y_true = np.array([class_dict_inv[i]
|
327 |
+
for i in np.array(y_list).reshape(-1)])
|
328 |
+
|
329 |
+
# print(np.array(y_pred_list).reshape(-1, 3).shape)
|
330 |
+
# print(np.array(y_list).reshape(-1).shape)
|
331 |
+
# print(y_list)
|
332 |
+
# print(np.array(y_pred_list).reshape(-1, 3))
|
333 |
+
|
334 |
+
|
335 |
+
# skplt.metrics.plot_roc(y_true, y_pred_proba,plot_micro=False, plot_macro=False)
|
336 |
+
|
337 |
+
#Changes
|
338 |
+
# plt.savefig('plot/group5_subspace25.png', dpi=1000)
|
339 |
+
# plt.show()
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
# python test_ortho_bcs.py --gpu 2 --load experiments/chest_exp1/best_model.pth --way 3 --dataset Chest
|
345 |
+
# python test_ortho_bcs.py --gpu 2 --load experiments/chest_exp1/best_model.pth --way 3 --dataset Chest
|
train.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import timm
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import argparse
|
6 |
+
import random
|
7 |
+
import numpy as np
|
8 |
+
from tqdm import tqdm
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch import linalg as LA
|
12 |
+
from models.classification_heads import ClassificationHead
|
13 |
+
from models.R2D2_embedding import R2D2Embedding
|
14 |
+
from models.protonet_embedding import ProtoNetEmbedding
|
15 |
+
from models.ResNet12_embedding import resnet12
|
16 |
+
import torch.nn as nn
|
17 |
+
from utils import set_gpu, Timer, count_accuracy, check_dir, log
|
18 |
+
import warnings
|
19 |
+
import wandb
|
20 |
+
from itertools import combinations
|
21 |
+
|
22 |
+
from torchsummary import summary
|
23 |
+
warnings.filterwarnings("ignore")
|
24 |
+
|
25 |
+
|
26 |
+
def one_hot(indices, depth):
|
27 |
+
"""
|
28 |
+
Returns a one-hot tensor.
|
29 |
+
This is a PyTorch equivalent of Tensorflow's tf.one_hot.
|
30 |
+
|
31 |
+
Parameters:
|
32 |
+
indices: a (n_batch, m) Tensor or (m) Tensor.
|
33 |
+
depth: a scalar. Represents the depth of the one hot dimension.
|
34 |
+
Returns: a (n_batch, m, depth) Tensor or (m, depth) Tensor.
|
35 |
+
"""
|
36 |
+
|
37 |
+
encoded_indicies = torch.zeros(indices.size() + torch.Size([depth])).cuda()
|
38 |
+
index = indices.view(indices.size()+torch.Size([1]))
|
39 |
+
encoded_indicies = encoded_indicies.scatter_(1, index, 1)
|
40 |
+
|
41 |
+
return encoded_indicies
|
42 |
+
|
43 |
+
def seed_everything(seed: int):
|
44 |
+
random.seed(seed)
|
45 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
46 |
+
np.random.seed(seed)
|
47 |
+
torch.manual_seed(seed)
|
48 |
+
torch.cuda.manual_seed(seed)
|
49 |
+
torch.backends.cudnn.deterministic = True
|
50 |
+
torch.backends.cudnn.benchmark = True
|
51 |
+
|
52 |
+
|
53 |
+
def euclidean_dist(x, y):
|
54 |
+
|
55 |
+
# x: N x D
|
56 |
+
# y: M x D
|
57 |
+
n = x.size(0)
|
58 |
+
m = y.size(0)
|
59 |
+
d = x.size(1)
|
60 |
+
|
61 |
+
assert d == y.size(1)
|
62 |
+
|
63 |
+
x = x.unsqueeze(1).expand(n, m, d)
|
64 |
+
y = y.unsqueeze(0).expand(n, m, d)
|
65 |
+
|
66 |
+
|
67 |
+
return torch.pow(x - y, 2).sum(2)
|
68 |
+
|
69 |
+
def cosine_dist(x, y):
|
70 |
+
|
71 |
+
# x: N x D
|
72 |
+
# y: M x D
|
73 |
+
n = x.size(0)
|
74 |
+
m = y.size(0)
|
75 |
+
d = x.size(1)
|
76 |
+
|
77 |
+
assert d == y.size(1)
|
78 |
+
|
79 |
+
x = x.unsqueeze(1).expand(n, m, d)
|
80 |
+
y = y.unsqueeze(0).expand(n, m, d)
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
cos = nn.CosineSimilarity(dim=2, eps=1e-6)
|
85 |
+
out = 1 - cos(x,y)
|
86 |
+
|
87 |
+
|
88 |
+
return out
|
89 |
+
|
90 |
+
|
91 |
+
def get_model(options):
|
92 |
+
# Choose the embedding network
|
93 |
+
if options.network == 'ProtoNet':
|
94 |
+
network = ProtoNetEmbedding().cuda()
|
95 |
+
elif options.network == 'R2D2':
|
96 |
+
network = R2D2Embedding().cuda()
|
97 |
+
elif options.network == 'ResNet':
|
98 |
+
if options.dataset == 'miniImageNet' or options.dataset == 'tieredImageNet':
|
99 |
+
network = resnet12(avg_pool=False, drop_rate=0.1,
|
100 |
+
dropblock_size=5,num_layer=options.num_layer).cuda()
|
101 |
+
network = torch.nn.DataParallel(network) # , device_ids=[1, 2])
|
102 |
+
else:
|
103 |
+
network = resnet12(avg_pool=False, drop_rate=0.1,
|
104 |
+
dropblock_size=2,num_layer=options.num_layer).cuda()
|
105 |
+
else:
|
106 |
+
print("Cannot recognize the network type")
|
107 |
+
assert(False)
|
108 |
+
|
109 |
+
# Choose the classification head
|
110 |
+
if options.head == 'Subspace':
|
111 |
+
cls_head = ClassificationHead(base_learner='Subspace').cuda()
|
112 |
+
elif options.head == 'ProtoNet':
|
113 |
+
cls_head = ClassificationHead(base_learner='ProtoNet').cuda()
|
114 |
+
elif options.head == 'Ridge':
|
115 |
+
cls_head = ClassificationHead(base_learner='Ridge').cuda()
|
116 |
+
elif options.head == 'R2D2':
|
117 |
+
cls_head = ClassificationHead(base_learner='R2D2').cuda()
|
118 |
+
elif options.head == 'SVM':
|
119 |
+
cls_head = ClassificationHead(base_learner='SVM-CS').cuda()
|
120 |
+
else:
|
121 |
+
print("Cannot recognize the dataset type")
|
122 |
+
assert(False)
|
123 |
+
|
124 |
+
return (network, cls_head)
|
125 |
+
|
126 |
+
def get_dataset(options):
|
127 |
+
# Choose the embedding network
|
128 |
+
if options.dataset == 'miniImageNet':
|
129 |
+
from dataloader.mini_imagenet import MiniImageNet, FewShotDataloader
|
130 |
+
# change it to train only, this is including the validation set
|
131 |
+
dataset_train = MiniImageNet(phase='trainval')
|
132 |
+
dataset_val = MiniImageNet(phase='test')
|
133 |
+
data_loader = FewShotDataloader
|
134 |
+
elif options.dataset == 'tieredImageNet':
|
135 |
+
from dataloader.tiered_imagenet import tieredImageNet, FewShotDataloader
|
136 |
+
dataset_train = tieredImageNet(phase='train')
|
137 |
+
dataset_val = tieredImageNet(phase='test')
|
138 |
+
data_loader = FewShotDataloader
|
139 |
+
elif options.dataset == 'CIFAR_FS':
|
140 |
+
from dataloader.CIFAR_FS import CIFAR_FS, FewShotDataloader
|
141 |
+
dataset_train = CIFAR_FS(phase='train')
|
142 |
+
dataset_val = CIFAR_FS(phase='test')
|
143 |
+
data_loader = FewShotDataloader
|
144 |
+
elif options.dataset == 'Chest':
|
145 |
+
from dataloader.chest import Chest, FewShotDataloader
|
146 |
+
dataset_train = Chest(phase='train')
|
147 |
+
dataset_val = Chest(phase='val')
|
148 |
+
data_loader = FewShotDataloader
|
149 |
+
else:
|
150 |
+
print("Cannot recognize the dataset type")
|
151 |
+
assert(False)
|
152 |
+
|
153 |
+
return (dataset_train, dataset_val, data_loader)
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == '__main__':
|
157 |
+
parser = argparse.ArgumentParser()
|
158 |
+
parser.add_argument('--num-epoch', type=int, default=80,
|
159 |
+
help='number of training epochs')
|
160 |
+
parser.add_argument('--save-epoch', type=int, default=5,
|
161 |
+
help='frequency of model saving')
|
162 |
+
parser.add_argument('--train-shot', type=int, default=5,
|
163 |
+
help='number of support examples per training class')
|
164 |
+
parser.add_argument('--val-shot', type=int, default=5,
|
165 |
+
help='number of support examples per validation class')
|
166 |
+
parser.add_argument('--train-query', type=int, default=5,
|
167 |
+
help='number of query examples per training class')
|
168 |
+
parser.add_argument('--val-episode', type=int, default=600,
|
169 |
+
help='number of episodes per validation')
|
170 |
+
parser.add_argument('--val-query', type=int, default=5,
|
171 |
+
help='number of query examples per validation class')
|
172 |
+
parser.add_argument('--train-way', type=int, default=3,
|
173 |
+
help='number of classes in one training episode')
|
174 |
+
parser.add_argument('--test-way', type=int, default=3,
|
175 |
+
help='number of classes in one test (or validation) episode')
|
176 |
+
parser.add_argument('--save-path', default='experiments')
|
177 |
+
|
178 |
+
parser.add_argument('--wandbexperiment', default="group5_subspace30",type=str)
|
179 |
+
parser.add_argument('--gpu', default='0') # using 4 gpus
|
180 |
+
parser.add_argument('--num_layer', type=int, default=30,
|
181 |
+
help='number of linear layer')
|
182 |
+
|
183 |
+
# parser.add_argument('--gpu', default='0,1,2,3') # using 4 gpus
|
184 |
+
parser.add_argument('--network', type=str, default='ResNet',
|
185 |
+
help='choose which embedding network to use. ResNet')
|
186 |
+
parser.add_argument('--head', type=str, default='Subspace',
|
187 |
+
help='choose which classification head to use. Subspace, ProtoNet, R2D2, SVM')
|
188 |
+
parser.add_argument('--dataset', type=str, default='Chest',
|
189 |
+
help='choose which classification head to use. miniImageNet, tieredImageNet, CIFAR_FS, FC100')
|
190 |
+
parser.add_argument('--episodes-per-batch', type=int, default=1,
|
191 |
+
help='number of episodes per batch')
|
192 |
+
parser.add_argument('--eps', type=float, default=0.0,
|
193 |
+
help='epsilon of label smoothing')
|
194 |
+
parser.add_argument('--wandb', action="store_true")
|
195 |
+
parser.add_argument("--wandbkey", type=str,
|
196 |
+
default='db1158429a436f94565ac9eadecc6afe9e5a0b8f',
|
197 |
+
help='Wandb project key')
|
198 |
+
|
199 |
+
|
200 |
+
# python train_my.py --gpu 2 --dataset Chest --num_layer 5
|
201 |
+
|
202 |
+
|
203 |
+
opt = parser.parse_args()
|
204 |
+
seed_everything(42)
|
205 |
+
print(opt)
|
206 |
+
opt.save_path = os.path.join(opt.save_path,opt.wandbexperiment)
|
207 |
+
|
208 |
+
|
209 |
+
if opt.wandb:
|
210 |
+
os.system('wandb login {}'.format(opt.wandbkey))
|
211 |
+
wandb.init(name=opt.wandbexperiment,
|
212 |
+
project='chest-few-shot-final')
|
213 |
+
wandb.config.update(opt)
|
214 |
+
|
215 |
+
(dataset_train, dataset_val, data_loader) = get_dataset(opt)
|
216 |
+
|
217 |
+
# Dataloader of Gidaris & Komodakis (CVPR 2018)
|
218 |
+
dloader_train = data_loader(
|
219 |
+
dataset=dataset_train,
|
220 |
+
nKnovel=opt.train_way,
|
221 |
+
nKbase=0,
|
222 |
+
nExemplars=opt.train_shot, # num training examples per novel category
|
223 |
+
# num test examples for all the novel categories
|
224 |
+
nTestNovel=opt.train_way * opt.train_query,
|
225 |
+
nTestBase=0, # num test examples for all the base categories
|
226 |
+
batch_size=opt.episodes_per_batch,
|
227 |
+
num_workers=15,
|
228 |
+
epoch_size=opt.episodes_per_batch * 1000, # num of batches per epoch
|
229 |
+
)
|
230 |
+
|
231 |
+
dloader_val = data_loader(
|
232 |
+
dataset=dataset_val,
|
233 |
+
nKnovel=opt.test_way,
|
234 |
+
nKbase=0,
|
235 |
+
nExemplars=opt.val_shot, # num training examples per novel category
|
236 |
+
# num test examples for all the novel categories
|
237 |
+
nTestNovel=opt.val_query * opt.test_way,
|
238 |
+
nTestBase=0, # num test examples for all the base categories
|
239 |
+
batch_size=1,
|
240 |
+
num_workers=15,
|
241 |
+
epoch_size=1 * opt.val_episode, # num of batches per epoch
|
242 |
+
)
|
243 |
+
|
244 |
+
set_gpu(opt.gpu)
|
245 |
+
check_dir('./experiments/')
|
246 |
+
check_dir(opt.save_path)
|
247 |
+
|
248 |
+
log_file_path = os.path.join(opt.save_path, "train_log.txt")
|
249 |
+
log(log_file_path, str(vars(opt)))
|
250 |
+
|
251 |
+
(embedding_net, cls_head) = get_model(opt)
|
252 |
+
|
253 |
+
optimizer = torch.optim.SGD(embedding_net.parameters(),lr=3e-3)
|
254 |
+
|
255 |
+
|
256 |
+
def lambda_epoch(e): return 1.0 if e < 12 else (
|
257 |
+
0.025 if e < 30 else 0.0032 if e < 45 else (0.0014 if e < 57 else (0.00052)))
|
258 |
+
|
259 |
+
## tieredimagenet###
|
260 |
+
# lambda_epoch = lambda e: 1.0 if e < 20 else (
|
261 |
+
# 0.012 if e < 45 else 0.0052 if e < 59 else (0.00054 if e < 68 else (0.00012)))
|
262 |
+
|
263 |
+
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
|
264 |
+
optimizer, lr_lambda=lambda_epoch, last_epoch=-1)
|
265 |
+
|
266 |
+
max_val_acc = 0.0
|
267 |
+
|
268 |
+
timer = Timer()
|
269 |
+
x_entropy = torch.nn.CrossEntropyLoss()
|
270 |
+
|
271 |
+
|
272 |
+
index = list(combinations([i for i in range(opt.num_layer)], 2))
|
273 |
+
|
274 |
+
for epoch in range(1, opt.num_epoch + 1):
|
275 |
+
|
276 |
+
|
277 |
+
for param_group in optimizer.param_groups:
|
278 |
+
epoch_learning_rate = param_group['lr']
|
279 |
+
|
280 |
+
log(log_file_path, 'Train Epoch: {}\tLearning Rate: {:.4f}'.format(
|
281 |
+
epoch, epoch_learning_rate))
|
282 |
+
|
283 |
+
_, _ = [x.train() for x in (embedding_net, cls_head)]
|
284 |
+
|
285 |
+
train_accuracies = []
|
286 |
+
train_losses = []
|
287 |
+
|
288 |
+
train_n_support = opt.train_way * opt.train_shot
|
289 |
+
train_n_query = opt.train_way * opt.train_query
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
for i, batch in enumerate(tqdm(dloader_train(epoch)), 1):
|
295 |
+
|
296 |
+
data_support, labels_support, data_query, labels_query, _, _ = [
|
297 |
+
x.cuda() for x in batch]
|
298 |
+
|
299 |
+
list_emb_query = embedding_net(data_query.view(
|
300 |
+
[-1] + list(data_query.shape[-3:]))) # [100, 2560]
|
301 |
+
list_emb_support = embedding_net(data_support.view(
|
302 |
+
[-1] + list(data_support.shape[-3:]))) # [100, 3, 32, 32] -> [100, 2560]
|
303 |
+
|
304 |
+
|
305 |
+
loss_weights = 0.
|
306 |
+
for ind in index:
|
307 |
+
|
308 |
+
loss_weights += torch.abs(F.cosine_similarity(getattr(embedding_net,f'linear{ind[0]}_1').weight.view(-1),getattr(embedding_net,f'linear{ind[1]}_1').weight.view(-1),dim=0))
|
309 |
+
|
310 |
+
|
311 |
+
log_p_y = torch.zeros(
|
312 |
+
opt.episodes_per_batch * opt.train_way * opt.train_query, opt.train_way).cuda()
|
313 |
+
|
314 |
+
for emb_support,emb_query in zip(list_emb_support, list_emb_query):
|
315 |
+
# emb_support = emb_support.view(
|
316 |
+
# opt.episodes_per_batch, train_n_support, -1) # [4, 25, 2560]
|
317 |
+
if opt.train_shot == 1:
|
318 |
+
emb_support = emb_support.view(
|
319 |
+
opt.episodes_per_batch, opt.train_way, -1) # [4,5,5,2560] --> [4, 5, 20]
|
320 |
+
else:
|
321 |
+
emb_support = emb_support.view(
|
322 |
+
opt.episodes_per_batch, opt.train_way, opt.train_shot, -1).mean(2) # [4,5,5,2560] --> [4, 5, 20]
|
323 |
+
|
324 |
+
emb_query = emb_query.view(
|
325 |
+
opt.episodes_per_batch, train_n_query, -1) # [4, 25, 2560]
|
326 |
+
|
327 |
+
|
328 |
+
dists = torch.stack(
|
329 |
+
[euclidean_dist(emb_query[i], emb_support[i]) for i in range(opt.episodes_per_batch)]) # [4,25,5]
|
330 |
+
|
331 |
+
|
332 |
+
|
333 |
+
log_p_y += F.softmax(-dists,
|
334 |
+
dim=2).view(opt.episodes_per_batch* opt.train_way* opt.train_query, -1) # [100,5]
|
335 |
+
|
336 |
+
|
337 |
+
log_p_y /= opt.num_layer
|
338 |
+
|
339 |
+
|
340 |
+
smoothed_one_hot = one_hot(
|
341 |
+
labels_query.view(-1), opt.train_way) # [100,5]
|
342 |
+
|
343 |
+
loss = x_entropy(
|
344 |
+
log_p_y.view(-1, opt.train_way), labels_query.view(-1))
|
345 |
+
|
346 |
+
|
347 |
+
acc, _ = count_accuracy(
|
348 |
+
log_p_y.view(-1, opt.train_way), labels_query.view(-1))
|
349 |
+
|
350 |
+
train_accuracies.append(acc.item())
|
351 |
+
train_losses.append(loss.item())
|
352 |
+
|
353 |
+
if (i % 100 == 0):
|
354 |
+
train_acc_avg = np.mean(np.array(train_accuracies))
|
355 |
+
log(log_file_path, 'Train Epoch: {}\tBatch: [{}/{}]\tLoss: {:.4f}\tAccuracy: {:.2f} % ({:.2f} %)'.format(
|
356 |
+
epoch, i, len(dloader_train), loss.item(), train_acc_avg, acc))
|
357 |
+
if opt.wandb:
|
358 |
+
|
359 |
+
wandb.log({'Epoch': epoch,
|
360 |
+
'lr': optimizer.param_groups[0]['lr'],"Loss":loss.item(),"Avg Accuracy":train_acc_avg,'Accuracy':acc,
|
361 |
+
'cosine loss':loss_weights})
|
362 |
+
|
363 |
+
|
364 |
+
optimizer.zero_grad()
|
365 |
+
|
366 |
+
loss += loss_weights
|
367 |
+
loss.backward()
|
368 |
+
|
369 |
+
optimizer.step()
|
370 |
+
|
371 |
+
# Evaluate on the validation split
|
372 |
+
_, _ = [x.eval() for x in (embedding_net, cls_head)]
|
373 |
+
|
374 |
+
val_accuracies = []
|
375 |
+
val_losses = []
|
376 |
+
|
377 |
+
|
378 |
+
with torch.no_grad():
|
379 |
+
|
380 |
+
for i, batch in enumerate(tqdm(dloader_val(epoch)), 1):
|
381 |
+
data_support, labels_support, data_query, labels_query, _, _ = [
|
382 |
+
x.cuda() for x in batch]
|
383 |
+
|
384 |
+
test_n_support = opt.test_way * opt.val_shot
|
385 |
+
test_n_query = opt.test_way * opt.val_query
|
386 |
+
|
387 |
+
|
388 |
+
list_emb_support = embedding_net(data_support.view(
|
389 |
+
[-1] + list(data_support.shape[-3:])))
|
390 |
+
list_emb_query = embedding_net(data_query.view(
|
391 |
+
[-1] + list(data_query.shape[-3:])))
|
392 |
+
|
393 |
+
|
394 |
+
logit_query = torch.zeros(test_n_query, opt.test_way).cuda()
|
395 |
+
|
396 |
+
for emb_support, emb_query in zip(list_emb_support, list_emb_query):
|
397 |
+
|
398 |
+
# print(emb_support.size())
|
399 |
+
emb_support = emb_support.view(1, test_n_support, -1)
|
400 |
+
# print(emb_support.size())
|
401 |
+
|
402 |
+
emb_support = emb_support.view(
|
403 |
+
1, opt.train_way, opt.train_shot, -1).mean(2) # [4, 5, 20]
|
404 |
+
|
405 |
+
emb_query = emb_query.view(1, test_n_query, -1)
|
406 |
+
|
407 |
+
# print(emb_support.size(),emb_query.size())
|
408 |
+
|
409 |
+
dists = torch.stack(
|
410 |
+
[euclidean_dist(emb_query[i], emb_support[i]) for i in range(emb_query.size(0))])
|
411 |
+
|
412 |
+
logit_query += F.softmax(-dists, dim=2).view(1 *
|
413 |
+
opt.test_way * opt.val_query, -1) # []
|
414 |
+
|
415 |
+
logit_query /= opt.num_layer
|
416 |
+
|
417 |
+
|
418 |
+
loss = x_entropy(
|
419 |
+
logit_query.view(-1, opt.test_way), labels_query.view(-1))
|
420 |
+
acc, _ = count_accuracy(
|
421 |
+
logit_query.view(-1, opt.test_way), labels_query.view(-1))
|
422 |
+
|
423 |
+
val_accuracies.append(acc.item())
|
424 |
+
val_losses.append(loss.item())
|
425 |
+
|
426 |
+
val_acc_avg = np.mean(np.array(val_accuracies))
|
427 |
+
val_acc_ci95 = 1.96 * \
|
428 |
+
np.std(np.array(val_accuracies)) / np.sqrt(opt.val_episode)
|
429 |
+
|
430 |
+
val_loss_avg = np.mean(np.array(val_losses))
|
431 |
+
|
432 |
+
if val_acc_avg > max_val_acc:
|
433 |
+
max_val_acc = val_acc_avg
|
434 |
+
torch.save({'embedding': embedding_net.state_dict(), 'head': cls_head.state_dict()},
|
435 |
+
os.path.join(opt.save_path, 'best_model.pth'))
|
436 |
+
|
437 |
+
|
438 |
+
|
439 |
+
log(log_file_path, 'Validation Epoch: {}\t\t\tLoss: {:.4f}\tAccuracy: {:.2f} ± {:.2f} % (Best)'
|
440 |
+
.format(epoch, val_loss_avg, val_acc_avg, val_acc_ci95))
|
441 |
+
else:
|
442 |
+
log(log_file_path, 'Validation Epoch: {}\t\t\tLoss: {:.4f}\tAccuracy: {:.2f} ± {:.2f} %'
|
443 |
+
.format(epoch, val_loss_avg, val_acc_avg, val_acc_ci95))
|
444 |
+
|
445 |
+
if opt.wandb:
|
446 |
+
wandb.log({"Validation Loss":val_loss_avg,"Val Avg Accuracy":val_acc_avg})
|
447 |
+
|
448 |
+
torch.save({'embedding': embedding_net.state_dict(
|
449 |
+
), 'head': cls_head.state_dict()}, os.path.join(opt.save_path, 'last_epoch.pth'))
|
450 |
+
|
451 |
+
if epoch % opt.save_epoch == 0:
|
452 |
+
torch.save({'embedding': embedding_net.state_dict(), 'head': cls_head.state_dict(
|
453 |
+
)}, os.path.join(opt.save_path, 'epoch_{}.pth'.format(epoch)))
|
454 |
+
|
455 |
+
log(log_file_path, 'Elapsed Time: {}/{}\n'.format(timer.measure(),
|
456 |
+
timer.measure(epoch / float(opt.num_epoch))))
|
457 |
+
|
458 |
+
# lr_scheduler.step()
|
utils.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import pprint
|
4 |
+
import torch
|
5 |
+
from sklearn.metrics import confusion_matrix
|
6 |
+
|
7 |
+
def set_gpu(x):
|
8 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = x
|
9 |
+
print('using gpu:', x)
|
10 |
+
|
11 |
+
def check_dir(path):
|
12 |
+
'''
|
13 |
+
Create directory if it does not exist.
|
14 |
+
path: Path of directory.
|
15 |
+
'''
|
16 |
+
if not os.path.exists(path):
|
17 |
+
os.mkdir(path)
|
18 |
+
|
19 |
+
def count_accuracy(logits, label):
|
20 |
+
pred = torch.argmax(logits, dim=1).view(-1)
|
21 |
+
label = label.view(-1)
|
22 |
+
|
23 |
+
acc = [0 for c in range(3)]
|
24 |
+
for c in range(3):
|
25 |
+
acc[c] = (pred.eq(label) * label.eq(c)).float() / max((label.eq(c)).sum(), 1)
|
26 |
+
|
27 |
+
|
28 |
+
matrix = confusion_matrix(label.cpu().detach().numpy(), pred.cpu().detach().numpy())
|
29 |
+
pca = matrix.diagonal()/matrix.sum(axis=1)
|
30 |
+
|
31 |
+
accuracy = 100 * pred.eq(label).float().mean()
|
32 |
+
return accuracy, pca * 100
|
33 |
+
|
34 |
+
class Timer():
|
35 |
+
def __init__(self):
|
36 |
+
self.o = time.time()
|
37 |
+
|
38 |
+
def measure(self, p=1):
|
39 |
+
x = (time.time() - self.o) / float(p)
|
40 |
+
x = int(x)
|
41 |
+
if x >= 3600:
|
42 |
+
return '{:.1f}h'.format(x / 3600)
|
43 |
+
if x >= 60:
|
44 |
+
return '{}m'.format(round(x / 60))
|
45 |
+
return '{}s'.format(x)
|
46 |
+
|
47 |
+
def log(log_file_path, string):
|
48 |
+
'''
|
49 |
+
Write one line of log into screen and file.
|
50 |
+
log_file_path: Path of log file.
|
51 |
+
string: String to write in log file.
|
52 |
+
'''
|
53 |
+
with open(log_file_path, 'a+') as f:
|
54 |
+
f.write(string + '\n')
|
55 |
+
f.flush()
|
56 |
+
print(string)
|