|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: mt5_lr3e-05_bs4_ep3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5_lr3e-05_bs4_ep3 |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5076 |
|
- Precision: 0.5353 |
|
- Recall: 0.4164 |
|
- F1: 0.4684 |
|
- Accuracy: 0.7817 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 2.2373 | 1.0 | 860 | 0.5532 | 0.5208 | 0.2941 | 0.3759 | 0.7744 | |
|
| 0.8792 | 2.0 | 1720 | 0.5793 | 0.4464 | 0.6333 | 0.5237 | 0.7339 | |
|
| 0.7574 | 3.0 | 2580 | 0.5076 | 0.5353 | 0.4164 | 0.4684 | 0.7817 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0.dev0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|