|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: |
|
- en |
|
model-index: |
|
- name: en_acnl_electra_pipeline |
|
results: |
|
- task: |
|
name: POS |
|
type: token-classification |
|
metrics: |
|
- name: POS Accuracy |
|
type: accuracy |
|
value: 0.9769257272 |
|
- task: |
|
name: SENTER |
|
type: token-classification |
|
metrics: |
|
- name: SENTER Precision |
|
type: precision |
|
value: 0.9508884151 |
|
- name: SENTER Recall |
|
type: recall |
|
value: 0.94805839 |
|
- name: SENTER F Score |
|
type: f_score |
|
value: 0.9494712937 |
|
- task: |
|
name: UNLABELED_DEPENDENCIES |
|
type: token-classification |
|
metrics: |
|
- name: Unlabeled Dependencies Accuracy |
|
type: accuracy |
|
value: 0.9577103137 |
|
- task: |
|
name: LABELED_DEPENDENCIES |
|
type: token-classification |
|
metrics: |
|
- name: Labeled Dependencies Accuracy |
|
type: accuracy |
|
value: 0.9577103137 |
|
--- |
|
| Feature | Description | |
|
| --- | --- | |
|
| **Name** | `en_acnl_electra_pipeline` | |
|
| **Version** | `0.0.1` | |
|
| **spaCy** | `>=3.1.3,<3.2.0` | |
|
| **Default Pipeline** | `transformer`, `tagger`, `parser` | |
|
| **Components** | `transformer`, `tagger`, `parser` | |
|
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | |
|
| **Sources** | n/a | |
|
| **License** | GPL | |
|
| **Author** | Daniel Vasić() | |
|
|
|
### Label Scheme |
|
|
|
<details> |
|
|
|
<summary>View label scheme (87 labels for 2 components)</summary> |
|
|
|
| Component | Labels | |
|
| --- | --- | |
|
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `VERB`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | |
|
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `dative`, `dep`, `det`, `dobj`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nummod`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
| Type | Score | |
|
| --- | --- | |
|
| `TAG_ACC` | 97.69 | |
|
| `DEP_UAS` | 95.77 | |
|
| `DEP_LAS` | 94.52 | |
|
| `SENTS_P` | 95.09 | |
|
| `SENTS_R` | 94.81 | |
|
| `SENTS_F` | 94.95 | |
|
| `TRANSFORMER_LOSS` | 6123357.72 | |
|
| `TAGGER_LOSS` | 338995.26 | |
|
| `PARSER_LOSS` | 4101825.66 | |