danielgombas/llama_3b_step2_batch_v2
Browse files- .ipynb_checkpoints/args_v2-checkpoint.txt +71 -0
- README.md +110 -194
- args_v2.txt +71 -0
- training_args.bin +3 -0
.ipynb_checkpoints/args_v2-checkpoint.txt
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
max_seq_length = 500
|
2 |
+
|
3 |
+
def fmt(examples):
|
4 |
+
print(len(examples))
|
5 |
+
return examples
|
6 |
+
|
7 |
+
# 'lora_r' is the dimension of the LoRA attention.
|
8 |
+
lora_r = 32
|
9 |
+
|
10 |
+
# 'lora_alpha' is the alpha parameter for LoRA scaling.
|
11 |
+
lora_alpha = 16
|
12 |
+
|
13 |
+
# 'lora_dropout' is the dropout probability for LoRA layers.
|
14 |
+
lora_dropout = 0.05
|
15 |
+
|
16 |
+
# 'target_modules' is a list of the modules that should be targeted by LoRA.
|
17 |
+
target_modules= ['k_proj', 'q_proj', 'v_proj', 'o_proj', "gate_proj", "down_proj", "up_proj"]
|
18 |
+
|
19 |
+
# 'se
|
20 |
+
|
21 |
+
peft_config = LoraConfig(
|
22 |
+
r=lora_r,
|
23 |
+
lora_alpha=lora_alpha,
|
24 |
+
lora_dropout=lora_dropout,
|
25 |
+
task_type=TaskType.CAUSAL_LM,
|
26 |
+
target_modules=target_modules,
|
27 |
+
)
|
28 |
+
|
29 |
+
trainer = SFTTrainer(
|
30 |
+
model = model,
|
31 |
+
tokenizer = tokenizer,
|
32 |
+
train_dataset = qa_dataset['train'],
|
33 |
+
eval_dataset = qa_dataset['test'],
|
34 |
+
dataset_text_field = "text",
|
35 |
+
max_seq_length = max_seq_length,
|
36 |
+
dataset_num_proc = 4,
|
37 |
+
data_collator = collator,
|
38 |
+
# formatting_func = fmt,
|
39 |
+
# peft_config=peft_config,
|
40 |
+
args = TrainingArguments(
|
41 |
+
per_device_train_batch_size = 2,
|
42 |
+
gradient_checkpointing = True,
|
43 |
+
gradient_accumulation_steps = 4,
|
44 |
+
per_device_eval_batch_size = 40,
|
45 |
+
do_eval = True,
|
46 |
+
eval_strategy = 'steps',
|
47 |
+
eval_steps = 50,
|
48 |
+
# save_strategy = 'steps',
|
49 |
+
save_steps = 1000,
|
50 |
+
|
51 |
+
# Use num_train_epochs and warmup_ratio for longer runs!
|
52 |
+
# max_steps = 70,
|
53 |
+
# warmup_steps = 10,
|
54 |
+
# warmup_ratio = 0.1,
|
55 |
+
num_train_epochs = 2,
|
56 |
+
|
57 |
+
# Select a 2 to 10x smaller learning rate for the embedding matrices!
|
58 |
+
learning_rate = 3e-5,
|
59 |
+
# embedding_learning_rate = 1e-6,
|
60 |
+
|
61 |
+
# fp16 = not is_bfloat16_supported(),
|
62 |
+
bf16 = True,
|
63 |
+
logging_steps = 1,
|
64 |
+
optim = "adamw_torch",
|
65 |
+
weight_decay = 0.00,
|
66 |
+
lr_scheduler_type = "linear",
|
67 |
+
# seed = 3407,
|
68 |
+
|
69 |
+
output_dir = "llama_3b_step2_batch_v2",
|
70 |
+
),
|
71 |
+
)
|
README.md
CHANGED
@@ -3,199 +3,115 @@ library_name: transformers
|
|
3 |
tags:
|
4 |
- trl
|
5 |
- sft
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
-
|
36 |
-
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
#### Factors
|
118 |
-
|
119 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
#### Metrics
|
124 |
-
|
125 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
126 |
-
|
127 |
-
[More Information Needed]
|
128 |
-
|
129 |
-
### Results
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
#### Summary
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
## Model Examination [optional]
|
138 |
-
|
139 |
-
<!-- Relevant interpretability work for the model goes here -->
|
140 |
-
|
141 |
-
[More Information Needed]
|
142 |
-
|
143 |
-
## Environmental Impact
|
144 |
-
|
145 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
-
|
147 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
-
|
149 |
-
- **Hardware Type:** [More Information Needed]
|
150 |
-
- **Hours used:** [More Information Needed]
|
151 |
-
- **Cloud Provider:** [More Information Needed]
|
152 |
-
- **Compute Region:** [More Information Needed]
|
153 |
-
- **Carbon Emitted:** [More Information Needed]
|
154 |
-
|
155 |
-
## Technical Specifications [optional]
|
156 |
-
|
157 |
-
### Model Architecture and Objective
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
### Compute Infrastructure
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Hardware
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Software
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
## Citation [optional]
|
174 |
-
|
175 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
-
|
177 |
-
**BibTeX:**
|
178 |
-
|
179 |
-
[More Information Needed]
|
180 |
-
|
181 |
-
**APA:**
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
## Glossary [optional]
|
186 |
-
|
187 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## More Information [optional]
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## Model Card Authors [optional]
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
## Model Card Contact
|
200 |
-
|
201 |
-
[More Information Needed]
|
|
|
3 |
tags:
|
4 |
- trl
|
5 |
- sft
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: llama_3b_step2_batch_v2
|
9 |
+
results: []
|
10 |
---
|
11 |
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# llama_3b_step2_batch_v2
|
16 |
+
|
17 |
+
This model was trained from scratch on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3132
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 3e-05
|
39 |
+
- train_batch_size: 2
|
40 |
+
- eval_batch_size: 40
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 4
|
43 |
+
- total_train_batch_size: 8
|
44 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 2
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:------:|:----:|:---------------:|
|
52 |
+
| 0.993 | 0.0341 | 50 | 1.1011 |
|
53 |
+
| 1.0449 | 0.0682 | 100 | 0.9752 |
|
54 |
+
| 0.9894 | 0.1023 | 150 | 0.8698 |
|
55 |
+
| 0.6199 | 0.1364 | 200 | 0.7913 |
|
56 |
+
| 0.5326 | 0.1704 | 250 | 0.7341 |
|
57 |
+
| 0.8109 | 0.2045 | 300 | 0.6799 |
|
58 |
+
| 0.7554 | 0.2386 | 350 | 0.6332 |
|
59 |
+
| 0.9877 | 0.2727 | 400 | 0.5993 |
|
60 |
+
| 0.3571 | 0.3068 | 450 | 0.5726 |
|
61 |
+
| 0.4539 | 0.3409 | 500 | 0.5439 |
|
62 |
+
| 0.464 | 0.3750 | 550 | 0.5147 |
|
63 |
+
| 0.4051 | 0.4091 | 600 | 0.4904 |
|
64 |
+
| 0.5371 | 0.4432 | 650 | 0.4732 |
|
65 |
+
| 0.4954 | 0.4772 | 700 | 0.4549 |
|
66 |
+
| 0.4594 | 0.5113 | 750 | 0.4399 |
|
67 |
+
| 0.4755 | 0.5454 | 800 | 0.4281 |
|
68 |
+
| 0.2948 | 0.5795 | 850 | 0.4118 |
|
69 |
+
| 0.3699 | 0.6136 | 900 | 0.4021 |
|
70 |
+
| 0.319 | 0.6477 | 950 | 0.3927 |
|
71 |
+
| 0.3359 | 0.6818 | 1000 | 0.3802 |
|
72 |
+
| 0.4056 | 0.7159 | 1050 | 0.3746 |
|
73 |
+
| 0.2975 | 0.7500 | 1100 | 0.3643 |
|
74 |
+
| 0.3868 | 0.7840 | 1150 | 0.3596 |
|
75 |
+
| 0.3485 | 0.8181 | 1200 | 0.3512 |
|
76 |
+
| 0.3546 | 0.8522 | 1250 | 0.3476 |
|
77 |
+
| 0.3697 | 0.8863 | 1300 | 0.3416 |
|
78 |
+
| 0.4056 | 0.9204 | 1350 | 0.3388 |
|
79 |
+
| 0.3189 | 0.9545 | 1400 | 0.3332 |
|
80 |
+
| 0.4173 | 0.9886 | 1450 | 0.3286 |
|
81 |
+
| 0.1779 | 1.0228 | 1500 | 0.3338 |
|
82 |
+
| 0.2877 | 1.0569 | 1550 | 0.3300 |
|
83 |
+
| 0.1506 | 1.0910 | 1600 | 0.3301 |
|
84 |
+
| 0.2075 | 1.1251 | 1650 | 0.3289 |
|
85 |
+
| 0.1956 | 1.1592 | 1700 | 0.3271 |
|
86 |
+
| 0.162 | 1.1933 | 1750 | 0.3276 |
|
87 |
+
| 0.2416 | 1.2274 | 1800 | 0.3228 |
|
88 |
+
| 0.2364 | 1.2615 | 1850 | 0.3243 |
|
89 |
+
| 0.1602 | 1.2956 | 1900 | 0.3219 |
|
90 |
+
| 0.1566 | 1.3296 | 1950 | 0.3211 |
|
91 |
+
| 0.1784 | 1.3637 | 2000 | 0.3215 |
|
92 |
+
| 0.1627 | 1.3978 | 2050 | 0.3190 |
|
93 |
+
| 0.1907 | 1.4319 | 2100 | 0.3183 |
|
94 |
+
| 0.1182 | 1.4660 | 2150 | 0.3183 |
|
95 |
+
| 0.1585 | 1.5001 | 2200 | 0.3179 |
|
96 |
+
| 0.2261 | 1.5342 | 2250 | 0.3158 |
|
97 |
+
| 0.1457 | 1.5683 | 2300 | 0.3150 |
|
98 |
+
| 0.2589 | 1.6024 | 2350 | 0.3146 |
|
99 |
+
| 0.2253 | 1.6364 | 2400 | 0.3144 |
|
100 |
+
| 0.1741 | 1.6705 | 2450 | 0.3143 |
|
101 |
+
| 0.1477 | 1.7046 | 2500 | 0.3141 |
|
102 |
+
| 0.1886 | 1.7387 | 2550 | 0.3141 |
|
103 |
+
| 0.2211 | 1.7728 | 2600 | 0.3139 |
|
104 |
+
| 0.238 | 1.8069 | 2650 | 0.3138 |
|
105 |
+
| 0.2863 | 1.8410 | 2700 | 0.3137 |
|
106 |
+
| 0.2603 | 1.8751 | 2750 | 0.3135 |
|
107 |
+
| 0.2484 | 1.9092 | 2800 | 0.3133 |
|
108 |
+
| 0.2343 | 1.9432 | 2850 | 0.3132 |
|
109 |
+
| 0.254 | 1.9773 | 2900 | 0.3132 |
|
110 |
+
|
111 |
+
|
112 |
+
### Framework versions
|
113 |
+
|
114 |
+
- Transformers 4.46.1
|
115 |
+
- Pytorch 2.1.0+cu118
|
116 |
+
- Datasets 3.0.2
|
117 |
+
- Tokenizers 0.20.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
args_v2.txt
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
max_seq_length = 500
|
2 |
+
|
3 |
+
def fmt(examples):
|
4 |
+
print(len(examples))
|
5 |
+
return examples
|
6 |
+
|
7 |
+
# 'lora_r' is the dimension of the LoRA attention.
|
8 |
+
lora_r = 32
|
9 |
+
|
10 |
+
# 'lora_alpha' is the alpha parameter for LoRA scaling.
|
11 |
+
lora_alpha = 16
|
12 |
+
|
13 |
+
# 'lora_dropout' is the dropout probability for LoRA layers.
|
14 |
+
lora_dropout = 0.05
|
15 |
+
|
16 |
+
# 'target_modules' is a list of the modules that should be targeted by LoRA.
|
17 |
+
target_modules= ['k_proj', 'q_proj', 'v_proj', 'o_proj', "gate_proj", "down_proj", "up_proj"]
|
18 |
+
|
19 |
+
# 'se
|
20 |
+
|
21 |
+
peft_config = LoraConfig(
|
22 |
+
r=lora_r,
|
23 |
+
lora_alpha=lora_alpha,
|
24 |
+
lora_dropout=lora_dropout,
|
25 |
+
task_type=TaskType.CAUSAL_LM,
|
26 |
+
target_modules=target_modules,
|
27 |
+
)
|
28 |
+
|
29 |
+
trainer = SFTTrainer(
|
30 |
+
model = model,
|
31 |
+
tokenizer = tokenizer,
|
32 |
+
train_dataset = qa_dataset['train'],
|
33 |
+
eval_dataset = qa_dataset['test'],
|
34 |
+
dataset_text_field = "text",
|
35 |
+
max_seq_length = max_seq_length,
|
36 |
+
dataset_num_proc = 4,
|
37 |
+
data_collator = collator,
|
38 |
+
# formatting_func = fmt,
|
39 |
+
# peft_config=peft_config,
|
40 |
+
args = TrainingArguments(
|
41 |
+
per_device_train_batch_size = 2,
|
42 |
+
gradient_checkpointing = True,
|
43 |
+
gradient_accumulation_steps = 4,
|
44 |
+
per_device_eval_batch_size = 40,
|
45 |
+
do_eval = True,
|
46 |
+
eval_strategy = 'steps',
|
47 |
+
eval_steps = 50,
|
48 |
+
# save_strategy = 'steps',
|
49 |
+
save_steps = 1000,
|
50 |
+
|
51 |
+
# Use num_train_epochs and warmup_ratio for longer runs!
|
52 |
+
# max_steps = 70,
|
53 |
+
# warmup_steps = 10,
|
54 |
+
# warmup_ratio = 0.1,
|
55 |
+
num_train_epochs = 2,
|
56 |
+
|
57 |
+
# Select a 2 to 10x smaller learning rate for the embedding matrices!
|
58 |
+
learning_rate = 3e-5,
|
59 |
+
# embedding_learning_rate = 1e-6,
|
60 |
+
|
61 |
+
# fp16 = not is_bfloat16_supported(),
|
62 |
+
bf16 = True,
|
63 |
+
logging_steps = 1,
|
64 |
+
optim = "adamw_torch",
|
65 |
+
weight_decay = 0.00,
|
66 |
+
lr_scheduler_type = "linear",
|
67 |
+
# seed = 3407,
|
68 |
+
|
69 |
+
output_dir = "llama_3b_step2_batch_v2",
|
70 |
+
),
|
71 |
+
)
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fa39175d2ef0b886e4b9dd3b7b39382be9b1e33a3d2acf2ab7666712e70893d
|
3 |
+
size 5240
|